1
0
Fork 0
arangodb/lib/BasicsC/associative-multi.c

942 lines
30 KiB
C

////////////////////////////////////////////////////////////////////////////////
/// @brief associative multi array implementation
///
/// @file
///
/// DISCLAIMER
///
/// Copyright 2004-2013 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is triAGENS GmbH, Cologne, Germany
///
/// @author Dr. Frank Celler
/// @author Martin Schoenert
/// @author Copyright 2006-2013, triAGENS GmbH, Cologne, Germany
////////////////////////////////////////////////////////////////////////////////
#include "associative-multi.h"
#include "BasicsC/prime-numbers.h"
// -----------------------------------------------------------------------------
// --SECTION-- ASSOCIATIVE ARRAY
// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
// --SECTION-- private defines
// -----------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// @addtogroup Collections
/// @{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
/// @brief initial number of elements of a container
////////////////////////////////////////////////////////////////////////////////
#define INITIAL_SIZE (64)
////////////////////////////////////////////////////////////////////////////////
/// @}
////////////////////////////////////////////////////////////////////////////////
// -----------------------------------------------------------------------------
// --SECTION-- private functions
// -----------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// @addtogroup Collections
/// @{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
/// @brief adds a new element
///
/// Note: no out-of-memory possible.
////////////////////////////////////////////////////////////////////////////////
static void AddNewElement (TRI_multi_array_t* array, void* element) {
uint64_t hash;
uint64_t i;
// compute the hash
hash = array->hashElement(array, element);
// search the table
i = hash % array->_nrAlloc;
while (! array->isEmptyElement(array, array->_table + i * array->_elementSize)) {
i = TRI_IncModU64(i, array->_nrAlloc);
#ifdef TRI_INTERNAL_STATS
array->_nrProbesR++;
#endif
}
// add a new element to the associative array
memcpy(array->_table + i * array->_elementSize, element, array->_elementSize);
array->_nrUsed++;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief resizes the array
////////////////////////////////////////////////////////////////////////////////
static void ResizeMultiArray (TRI_multi_array_t* array) {
char* oldTable;
uint64_t oldAlloc;
uint64_t j;
oldTable = array->_table;
oldAlloc = array->_nrAlloc;
array->_nrAlloc = 2 * array->_nrAlloc + 1;
array->_table = TRI_Allocate(array->_memoryZone, array->_nrAlloc * array->_elementSize, true);
if (array->_table == NULL) {
array->_nrAlloc = oldAlloc;
array->_table = oldTable;
return;
}
array->_nrUsed = 0;
#ifdef TRI_INTERNAL_STATS
array->_nrResizes++;
#endif
for (j = 0; j < oldAlloc; j++) {
if (! array->isEmptyElement(array, oldTable + j * array->_elementSize)) {
AddNewElement(array, oldTable + j * array->_elementSize);
}
}
TRI_Free(array->_memoryZone, oldTable);
}
////////////////////////////////////////////////////////////////////////////////
/// @}
////////////////////////////////////////////////////////////////////////////////
// -----------------------------------------------------------------------------
// --SECTION-- constructors and destructors
// -----------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// @addtogroup Collections
/// @{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
/// @brief initialises an array
////////////////////////////////////////////////////////////////////////////////
int TRI_InitMultiArray(TRI_multi_array_t* array,
TRI_memory_zone_t* zone,
size_t elementSize,
uint64_t (*hashKey) (TRI_multi_array_t*, void*),
uint64_t (*hashElement) (TRI_multi_array_t*, void*),
void (*clearElement) (TRI_multi_array_t*, void*),
bool (*isEmptyElement) (TRI_multi_array_t*, void*),
bool (*isEqualKeyElement) (TRI_multi_array_t*, void*, void*),
bool (*isEqualElementElement) (TRI_multi_array_t*, void*, void*)) {
array->hashKey = hashKey;
array->hashElement = hashElement;
array->clearElement = clearElement;
array->isEmptyElement = isEmptyElement;
array->isEqualKeyElement = isEqualKeyElement;
array->isEqualElementElement = isEqualElementElement;
array->_memoryZone = zone;
array->_elementSize = elementSize;
array->_nrAlloc = 0;
array->_nrUsed = 0;
if (NULL == (array->_table = TRI_Allocate(array->_memoryZone, array->_elementSize * INITIAL_SIZE, true))) {
return TRI_ERROR_OUT_OF_MEMORY;
}
array->_nrAlloc = INITIAL_SIZE;
#ifdef TRI_INTERNAL_STATS
array->_nrFinds = 0;
array->_nrAdds = 0;
array->_nrRems = 0;
array->_nrResizes = 0;
array->_nrProbesF = 0;
array->_nrProbesA = 0;
array->_nrProbesD = 0;
array->_nrProbesR = 0;
#endif
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief destroys an array, but does not free the pointer
////////////////////////////////////////////////////////////////////////////////
void TRI_DestroyMultiArray (TRI_multi_array_t* array) {
if (array->_table != NULL) {
TRI_Free(array->_memoryZone, array->_table);
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief destroys an array and frees the pointer
////////////////////////////////////////////////////////////////////////////////
void TRI_FreeMultiArray (TRI_memory_zone_t* zone, TRI_multi_array_t* array) {
TRI_DestroyMultiArray(array);
TRI_Free(zone, array);
}
////////////////////////////////////////////////////////////////////////////////
/// @}
////////////////////////////////////////////////////////////////////////////////
// -----------------------------------------------------------------------------
// --SECTION-- public functions
// -----------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// @addtogroup Collections
/// @{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
/// @brief lookups an element given a key
////////////////////////////////////////////////////////////////////////////////
TRI_vector_pointer_t TRI_LookupByKeyMultiArray (TRI_memory_zone_t* zone,
TRI_multi_array_t* array,
void* key) {
TRI_vector_pointer_t result;
uint64_t hash;
uint64_t i;
// initialise the vector which will hold the result if any
TRI_InitVectorPointer(&result, zone);
// compute the hash
hash = array->hashKey(array, key);
i = hash % array->_nrAlloc;
#ifdef TRI_INTERNAL_STATS
// update statistics
array->_nrFinds++;
#endif
// search the table
while (! array->isEmptyElement(array, array->_table + i * array->_elementSize)) {
if (array->isEqualKeyElement(array, key, array->_table + i * array->_elementSize)) {
TRI_PushBackVectorPointer(&result, array->_table + i * array->_elementSize);
}
#ifdef TRI_INTERNAL_STATS
else {
array->_nrProbesF++;
}
#endif
i = TRI_IncModU64(i, array->_nrAlloc);
}
// ...........................................................................
// return whatever we found -- which could be an empty vector list if nothing
// matches. If an out-of-memory occurred than the zone will have a suitable
// marker.
// ...........................................................................
return result;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief lookups an element given an element
////////////////////////////////////////////////////////////////////////////////
TRI_vector_pointer_t TRI_LookupByElementMultiArray (TRI_memory_zone_t* zone,
TRI_multi_array_t* array,
void* element) {
TRI_vector_pointer_t result;
uint64_t hash;
uint64_t i;
// initialise the vector which will hold the result if any
TRI_InitVectorPointer(&result, zone);
// compute the hash
hash = array->hashElement(array, element);
i = hash % array->_nrAlloc;
#ifdef TRI_INTERNAL_STATS
// update statistics
array->_nrFinds++;
#endif
// search the table
while (! array->isEmptyElement(array, array->_table + i * array->_elementSize)) {
if (array->isEqualElementElement(array, element, array->_table + i * array->_elementSize)) {
TRI_PushBackVectorPointer(&result, array->_table + i * array->_elementSize);
}
#ifdef TRI_INTERNAL_STATS
else {
array->_nrProbesF++;
}
#endif
i = TRI_IncModU64(i, array->_nrAlloc);
}
// ...........................................................................
// return whatever we found -- which could be an empty vector list if nothing
// matches. Note that we allow multiple elements (compare with pointer
// impl). If an out-of-memory occurred than the zone will have a suitable
// marker.
// ...........................................................................
return result;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief adds an element to the array
////////////////////////////////////////////////////////////////////////////////
bool TRI_InsertElementMultiArray (TRI_multi_array_t* array, void* element, bool overwrite) {
uint64_t hash;
uint64_t i;
// check for out-of-memory
if (array->_nrAlloc == array->_nrUsed) {
return false;
}
// compute the hash
hash = array->hashElement(array, element);
i = hash % array->_nrAlloc;
#ifdef TRI_INTERNAL_STATS
// update statistics
array->_nrAdds++;
#endif
// search the table
while (! array->isEmptyElement(array, array->_table + i * array->_elementSize)
&& ! array->isEqualElementElement(array, element, array->_table + i * array->_elementSize)) {
i = TRI_IncModU64(i, array->_nrAlloc);
#ifdef TRI_INTERNAL_STATS
array->_nrProbesA++;
#endif
}
// ...........................................................................
// If we found an element, return. While we allow duplicate entries in the hash
// table, we do not allow duplicate elements. Elements would refer to the
// (for example) an actual row in memory. This is different from the
// TRI_InsertElementMultiArray function below where we only have keys to
// differentiate between elements.
// ...........................................................................
if (! array->isEmptyElement(array, array->_table + i * array->_elementSize)) {
if (overwrite) {
memcpy(array->_table + i * array->_elementSize, element, array->_elementSize);
}
return false;
}
// add a new element to the associative array
memcpy(array->_table + i * array->_elementSize, element, array->_elementSize);
array->_nrUsed++;
// if we were adding and the table is more than half full, extend it
if (array->_nrAlloc < 2 * array->_nrUsed) {
ResizeMultiArray(array);
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief adds an key/element to the array
////////////////////////////////////////////////////////////////////////////////
bool TRI_InsertKeyMultiArray (TRI_multi_array_t* array, void* key, void* element, bool overwrite) {
uint64_t hash;
uint64_t i;
// check for out-of-memory
if (array->_nrAlloc == array->_nrUsed) {
return false;
}
// compute the hash
hash = array->hashKey(array, key);
i = hash % array->_nrAlloc;
#ifdef TRI_INTERNAL_STATS
// update statistics
array->_nrAdds++;
#endif
// search the table
while (! array->isEmptyElement(array, array->_table + i * array->_elementSize)) {
i = TRI_IncModU64(i, array->_nrAlloc);
#ifdef TRI_INTERNAL_STATS
array->_nrProbesA++;
#endif
}
// ...........................................................................
// We do not look for an element (as opposed to the function above). So whether
// or not there exists a duplicate we do not care.
// ...........................................................................
// add a new element to the associative array
memcpy(array->_table + i * array->_elementSize, element, array->_elementSize);
array->_nrUsed++;
// if we were adding and the table is more than half full, extend it
if (array->_nrAlloc < 2 * array->_nrUsed) {
ResizeMultiArray(array);
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief removes an element from the array
////////////////////////////////////////////////////////////////////////////////
bool TRI_RemoveElementMultiArray (TRI_multi_array_t* array, void* element, void* old) {
uint64_t hash;
uint64_t i;
uint64_t k;
// Obtain the hash
hash = array->hashElement(array, element);
i = hash % array->_nrAlloc;
#ifdef TRI_INTERNAL_STATS
// update statistics
array->_nrRems++;
#endif
// search the table
while (! array->isEmptyElement(array, array->_table + i * array->_elementSize)
&& ! array->isEqualElementElement(array, element, array->_table + i * array->_elementSize)) {
i = TRI_IncModU64(i, array->_nrAlloc);
#ifdef TRI_INTERNAL_STATS
array->_nrProbesD++;
#endif
}
// if we did not find such an item return false
if (array->isEmptyElement(array, array->_table + i * array->_elementSize)) {
if (old != NULL) {
memset(old, 0, array->_elementSize);
}
return false;
}
// remove item
if (old != NULL) {
memcpy(old, array->_table + i * array->_elementSize, array->_elementSize);
}
array->clearElement(array, array->_table + i * array->_elementSize);
array->_nrUsed--;
// and now check the following places for items to move here
k = TRI_IncModU64(i, array->_nrAlloc);
while (! array->isEmptyElement(array, array->_table + k * array->_elementSize)) {
uint64_t j = array->hashElement(array, array->_table + k * array->_elementSize) % array->_nrAlloc;
if ((i < k && !(i < j && j <= k)) || (k < i && !(i < j || j <= k))) {
memcpy(array->_table + i * array->_elementSize, array->_table + k * array->_elementSize, array->_elementSize);
array->clearElement(array, array->_table + k * array->_elementSize);
i = k;
}
k = TRI_IncModU64(k, array->_nrAlloc);
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief removes an key/element to the array
////////////////////////////////////////////////////////////////////////////////
bool TRI_RemoveKeyMultiArray (TRI_multi_array_t* array, void* key, void* old) {
uint64_t hash;
uint64_t i;
uint64_t k;
// generate hash using key
hash = array->hashKey(array, key);
i = hash % array->_nrAlloc;
#ifdef TRI_INTERNAL_STATS
// update statistics
array->_nrRems++;
#endif
// search the table -- we can only match keys
while (! array->isEmptyElement(array, array->_table + i * array->_elementSize)
&& ! array->isEqualKeyElement(array, key, array->_table + i * array->_elementSize)) {
i = TRI_IncModU64(i, array->_nrAlloc);
#ifdef TRI_INTERNAL_STATS
array->_nrProbesD++;
#endif
}
// if we did not find such an item return false
if (array->isEmptyElement(array, array->_table + i * array->_elementSize)) {
if (old != NULL) {
memset(old, 0, array->_elementSize);
}
return false;
}
// remove item
if (old != NULL) {
memcpy(old, array->_table + i * array->_elementSize, array->_elementSize);
}
array->clearElement(array, array->_table + i * array->_elementSize);
array->_nrUsed--;
// and now check the following places for items to move here
k = TRI_IncModU64(i, array->_nrAlloc);
while (! array->isEmptyElement(array, array->_table + k * array->_elementSize)) {
uint64_t j = array->hashElement(array, array->_table + k * array->_elementSize) % array->_nrAlloc;
if ((i < k && !(i < j && j <= k)) || (k < i && !(i < j || j <= k))) {
memcpy(array->_table + i * array->_elementSize, array->_table + k * array->_elementSize, array->_elementSize);
array->clearElement(array, array->_table + k * array->_elementSize);
i = k;
}
k = TRI_IncModU64(k, array->_nrAlloc);
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/// @}
////////////////////////////////////////////////////////////////////////////////
// -----------------------------------------------------------------------------
// --SECTION-- ASSOCIATIVE POINTERS
// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
// --SECTION-- constructors and destructors
// -----------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// @addtogroup Collections
/// @{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
/// @brief initialises an array
////////////////////////////////////////////////////////////////////////////////
int TRI_InitMultiPointer (TRI_multi_pointer_t* array,
TRI_memory_zone_t* zone,
uint64_t (*hashKey) (TRI_multi_pointer_t*, void const*),
uint64_t (*hashElement) (TRI_multi_pointer_t*, void const*),
bool (*isEqualKeyElement) (TRI_multi_pointer_t*, void const*, void const*),
bool (*isEqualElementElement) (TRI_multi_pointer_t*, void const*, void const*)) {
array->hashKey = hashKey;
array->hashElement = hashElement;
array->isEqualKeyElement = isEqualKeyElement;
array->isEqualElementElement = isEqualElementElement;
array->_memoryZone = zone;
array->_nrUsed = 0;
array->_nrAlloc = 0;
if (NULL == (array->_table = TRI_Allocate(zone,
sizeof(TRI_multi_pointer_entry_t) * INITIAL_SIZE, true))) {
return TRI_ERROR_OUT_OF_MEMORY;
}
array->_nrAlloc = INITIAL_SIZE;
#ifdef TRI_INTERNAL_STATS
array->_nrFinds = 0;
array->_nrAdds = 0;
array->_nrRems = 0;
array->_nrResizes = 0;
array->_nrProbesF = 0;
array->_nrProbesA = 0;
array->_nrProbesD = 0;
array->_nrProbesR = 0;
#endif
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief destroys an array, but does not free the pointer
////////////////////////////////////////////////////////////////////////////////
void TRI_DestroyMultiPointer (TRI_multi_pointer_t* array) {
if (array->_table != NULL) {
TRI_Free(array->_memoryZone, array->_table);
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief destroys an array and frees the pointer
////////////////////////////////////////////////////////////////////////////////
void TRI_FreeMultiPointer (TRI_memory_zone_t* zone, TRI_multi_pointer_t* array) {
TRI_DestroyMultiPointer(array);
TRI_Free(zone, array);
}
////////////////////////////////////////////////////////////////////////////////
/// @}
////////////////////////////////////////////////////////////////////////////////
// -----------------------------------------------------------------------------
// --SECTION-- private functions
// -----------------------------------------------------------------------------
static inline uint64_t FindElementPlace (TRI_multi_pointer_t* array,
void* element,
bool checkEquality) {
// This either finds a place to store element or an entry in the table
// that is equal to element. If checkEquality is set to false, the caller
// guarantees that there is no entry that compares equal to element
// in the table, which saves a lot of element comparisons. This function
// always returns a pointer into the table, which is either empty or
// points to an entry that compares equal to element.
uint64_t hash;
uint64_t i;
hash = array->hashElement(array, element);
i = hash % array->_nrAlloc;
while (array->_table[i].ptr != NULL &&
(! checkEquality ||
! array->isEqualElementElement(array, element,
array->_table[i].ptr))) {
i = TRI_IncModU64(i, array->_nrAlloc);
#ifdef TRI_INTERNAL_STATS
array->_nrProbesA++;
#endif
}
return i;
}
// -----------------------------------------------------------------------------
// --SECTION-- public functions
// -----------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// @addtogroup Collections
/// @{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
/// @brief adds a key/element to the array
////////////////////////////////////////////////////////////////////////////////
void* TRI_InsertElementMultiPointer (TRI_multi_pointer_t* array,
void* element,
const bool overwrite,
const bool checkEquality) {
// if the checkEquality flag is not set, we do not check for element
// equality we use this flag to speed up initial insertion into the
// index, i.e. when the index is built for a collection and we know
// for sure no duplicate elements will be inserted
uint64_t hash;
uint64_t i, j, k;
void* old;
#ifdef TRI_INTERNAL_STATS
// update statistics
array->_nrAdds++;
#endif
// compute the hash of the key first
hash = array->hashKey(array, element);
i = hash % array->_nrAlloc;
// If this slot is free, just use it:
if (NULL == array->_table[i].ptr) {
array->_table[i].ptr = element;
array->_table[i].next = NULL;
array->_table[i].prev = NULL;
return NULL;
}
// Now find the first slot with an entry with the same key or a free slot:
while (array->_table[i].ptr != NULL &&
! array->isEqualKeyElement(array, element, array->_table[i].ptr)) {
i = TRI_IncModU64(i, array->_nrAlloc);
}
// If this is free, we are the first with this key:
if (NULL == array->_table[i].ptr) {
array->_table[i].ptr = element;
array->_table[i].next = NULL;
array->_table[i].prev = NULL;
return NULL;
}
// Otherwise, entry i points to the beginning of the linked list of which
// we want to make element a member. Perhaps an equal element is right here:
if (checkEquality && array->isEqualElementElement(array, element,
array->_table[i].ptr)) {
old = array->_table[i].ptr;
if (overwrite) {
array->_table[i].ptr = element;
}
return old;
}
// Now find a new home for element in this linked list:
j = FindElementPlace(array, element, checkEquality);
old = array->_table[j].ptr;
// if we found an element, return
if (old != NULL) {
if (overwrite) {
array->_table[i].ptr = element;
}
return old;
}
// add a new element to the associative array and linked list (in pos 2):
array->_table[j].ptr = element;
array->_table[j].next = array->_table[i].next;
array->_table[j].prev = array->_table[i].ptr;
array->_table[i].next = array->_table[j].ptr;
// Finally, we need to find the successor to patch it up:
if (array->_table[j].next != NULL) {
k = FindElementPlace(array, array->_table[j].next, true);
array->_table[k].prev = element;
}
array->_nrUsed++;
// if we were adding and the table is more than half full, extend it
if (array->_nrAlloc < 2 * array->_nrUsed) {
TRI_ResizeMultiPointer(array, 2 * array->_nrAlloc + 1);
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief lookups an element given a key
////////////////////////////////////////////////////////////////////////////////
TRI_vector_pointer_t TRI_LookupByKeyMultiPointer (TRI_memory_zone_t* zone,
TRI_multi_pointer_t* array,
void const* key) {
TRI_vector_pointer_t result;
uint64_t hash;
uint64_t i;
#if 0
// initialises the result vector
TRI_InitVectorPointer(&result, zone);
// compute the hash
hash = array->hashKey(array, key);
i = hash % array->_nrAlloc;
#ifdef TRI_INTERNAL_STATS
// update statistics
array->_nrFinds++;
#endif
// search the table
while (array->_table[i].ptr != NULL) {
if (array->isEqualKeyElement(array, key, array->_table[i])) {
TRI_PushBackVectorPointer(&result, array->_table[i]);
}
#ifdef TRI_INTERNAL_STATS
else {
array->_nrProbesF++;
}
#endif
i = TRI_IncModU64(i, array->_nrAlloc);
}
#endif
// return whatever we found
return result;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief lookups an element given an element
////////////////////////////////////////////////////////////////////////////////
void* TRI_LookupByElementMultiPointer (TRI_multi_pointer_t* array, void const* element) {
uint64_t hash;
uint64_t i;
#if 0
// compute the hash
hash = array->hashElement(array, element);
i = hash % array->_nrAlloc;
#ifdef TRI_INTERNAL_STATS
// update statistics
array->_nrFinds++;
#endif
// search the table
while (array->_table[i] != NULL && ! array->isEqualElementElement(array, element, array->_table[i])) {
i = TRI_IncModU64(i, array->_nrAlloc);
#ifdef TRI_INTERNAL_STATS
array->_nrProbesF++;
#endif
}
// return whatever we found
return array->_table[i];
#endif
return NULL;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief removes an element from the array
////////////////////////////////////////////////////////////////////////////////
void* TRI_RemoveElementMultiPointer (TRI_multi_pointer_t* array, void const* element) {
uint64_t hash;
uint64_t i;
uint64_t k;
void* old;
#if 0
hash = array->hashElement(array, element);
i = hash % array->_nrAlloc;
#ifdef TRI_INTERNAL_STATS
// update statistics
array->_nrRems++;
#endif
// search the table
while (array->_table[i] != NULL && ! array->isEqualElementElement(array, element, array->_table[i])) {
i = TRI_IncModU64(i, array->_nrAlloc);
#ifdef TRI_INTERNAL_STATS
array->_nrProbesD++;
#endif
}
// if we did not find such an item return 0
if (array->_table[i] == NULL) {
return NULL;
}
// remove item
old = array->_table[i];
array->_table[i] = NULL;
array->_nrUsed--;
// and now check the following places for items to move here
k = TRI_IncModU64(i, array->_nrAlloc);
while (array->_table[k] != NULL) {
uint64_t j = array->hashElement(array, array->_table[k]) % array->_nrAlloc;
if ((i < k && !(i < j && j <= k)) || (k < i && !(i < j || j <= k))) {
array->_table[i] = array->_table[k];
array->_table[k] = NULL;
i = k;
}
k = TRI_IncModU64(k, array->_nrAlloc);
}
// return success
return old;
#endif
return NULL;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief resize the array
////////////////////////////////////////////////////////////////////////////////
int TRI_ResizeMultiPointer (TRI_multi_pointer_t* array, size_t size) {
TRI_multi_pointer_entry_t* oldTable;
uint64_t oldAlloc;
uint64_t j;
if (size < 2*array->_nrUsed) {
return TRI_ERROR_BAD_PARAMETER;
}
oldTable = array->_table;
oldAlloc = array->_nrAlloc;
array->_nrAlloc = TRI_NextPrime((uint64_t) size*2);
array->_table = TRI_Allocate(array->_memoryZone,
array->_nrAlloc * sizeof(TRI_multi_pointer_t), true);
if (array->_table == NULL) {
array->_nrAlloc = oldAlloc;
array->_table = oldTable;
return TRI_ERROR_OUT_OF_MEMORY;
}
array->_nrUsed = 0;
#ifdef TRI_INTERNAL_STATS
array->_nrResizes++;
#endif
// table is already clear by allocate, copy old data
for (j = 0; j < oldAlloc; j++) {
if (oldTable[j].ptr != NULL) {
TRI_InsertElementMultiPointer(array, oldTable[j].ptr, true, false);
}
}
TRI_Free(array->_memoryZone, oldTable);
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @}
////////////////////////////////////////////////////////////////////////////////
// Local Variables:
// mode: outline-minor
// outline-regexp: "/// @brief\\|/// {@inheritDoc}\\|/// @addtogroup\\|/// @page\\|// --SECTION--\\|/// @\\}"
// End: