//////////////////////////////////////////////////////////////////////////////// /// @brief associative multi array implementation /// /// @file /// /// DISCLAIMER /// /// Copyright 2004-2013 triAGENS GmbH, Cologne, Germany /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, software /// distributed under the License is distributed on an "AS IS" BASIS, /// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. /// See the License for the specific language governing permissions and /// limitations under the License. /// /// Copyright holder is triAGENS GmbH, Cologne, Germany /// /// @author Dr. Frank Celler /// @author Martin Schoenert /// @author Copyright 2006-2013, triAGENS GmbH, Cologne, Germany //////////////////////////////////////////////////////////////////////////////// #include "associative-multi.h" #include "BasicsC/prime-numbers.h" // ----------------------------------------------------------------------------- // --SECTION-- ASSOCIATIVE ARRAY // ----------------------------------------------------------------------------- // ----------------------------------------------------------------------------- // --SECTION-- private defines // ----------------------------------------------------------------------------- //////////////////////////////////////////////////////////////////////////////// /// @addtogroup Collections /// @{ //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// /// @brief initial number of elements of a container //////////////////////////////////////////////////////////////////////////////// #define INITIAL_SIZE (64) //////////////////////////////////////////////////////////////////////////////// /// @} //////////////////////////////////////////////////////////////////////////////// // ----------------------------------------------------------------------------- // --SECTION-- private functions // ----------------------------------------------------------------------------- //////////////////////////////////////////////////////////////////////////////// /// @addtogroup Collections /// @{ //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// /// @brief adds a new element /// /// Note: no out-of-memory possible. //////////////////////////////////////////////////////////////////////////////// static void AddNewElement (TRI_multi_array_t* array, void* element) { uint64_t hash; uint64_t i; // compute the hash hash = array->hashElement(array, element); // search the table i = hash % array->_nrAlloc; while (! array->isEmptyElement(array, array->_table + i * array->_elementSize)) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbesR++; #endif } // add a new element to the associative array memcpy(array->_table + i * array->_elementSize, element, array->_elementSize); array->_nrUsed++; } //////////////////////////////////////////////////////////////////////////////// /// @brief resizes the array //////////////////////////////////////////////////////////////////////////////// static void ResizeMultiArray (TRI_multi_array_t* array) { char* oldTable; uint64_t oldAlloc; uint64_t j; oldTable = array->_table; oldAlloc = array->_nrAlloc; array->_nrAlloc = 2 * array->_nrAlloc + 1; array->_table = TRI_Allocate(array->_memoryZone, array->_nrAlloc * array->_elementSize, true); if (array->_table == NULL) { array->_nrAlloc = oldAlloc; array->_table = oldTable; return; } array->_nrUsed = 0; #ifdef TRI_INTERNAL_STATS array->_nrResizes++; #endif for (j = 0; j < oldAlloc; j++) { if (! array->isEmptyElement(array, oldTable + j * array->_elementSize)) { AddNewElement(array, oldTable + j * array->_elementSize); } } TRI_Free(array->_memoryZone, oldTable); } //////////////////////////////////////////////////////////////////////////////// /// @} //////////////////////////////////////////////////////////////////////////////// // ----------------------------------------------------------------------------- // --SECTION-- constructors and destructors // ----------------------------------------------------------------------------- //////////////////////////////////////////////////////////////////////////////// /// @addtogroup Collections /// @{ //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// /// @brief initialises an array //////////////////////////////////////////////////////////////////////////////// int TRI_InitMultiArray(TRI_multi_array_t* array, TRI_memory_zone_t* zone, size_t elementSize, uint64_t (*hashKey) (TRI_multi_array_t*, void*), uint64_t (*hashElement) (TRI_multi_array_t*, void*), void (*clearElement) (TRI_multi_array_t*, void*), bool (*isEmptyElement) (TRI_multi_array_t*, void*), bool (*isEqualKeyElement) (TRI_multi_array_t*, void*, void*), bool (*isEqualElementElement) (TRI_multi_array_t*, void*, void*)) { array->hashKey = hashKey; array->hashElement = hashElement; array->clearElement = clearElement; array->isEmptyElement = isEmptyElement; array->isEqualKeyElement = isEqualKeyElement; array->isEqualElementElement = isEqualElementElement; array->_memoryZone = zone; array->_elementSize = elementSize; array->_nrAlloc = 0; array->_nrUsed = 0; if (NULL == (array->_table = TRI_Allocate(array->_memoryZone, array->_elementSize * INITIAL_SIZE, true))) { return TRI_ERROR_OUT_OF_MEMORY; } array->_nrAlloc = INITIAL_SIZE; #ifdef TRI_INTERNAL_STATS array->_nrFinds = 0; array->_nrAdds = 0; array->_nrRems = 0; array->_nrResizes = 0; array->_nrProbesF = 0; array->_nrProbesA = 0; array->_nrProbesD = 0; array->_nrProbesR = 0; #endif return TRI_ERROR_NO_ERROR; } //////////////////////////////////////////////////////////////////////////////// /// @brief destroys an array, but does not free the pointer //////////////////////////////////////////////////////////////////////////////// void TRI_DestroyMultiArray (TRI_multi_array_t* array) { if (array->_table != NULL) { TRI_Free(array->_memoryZone, array->_table); } } //////////////////////////////////////////////////////////////////////////////// /// @brief destroys an array and frees the pointer //////////////////////////////////////////////////////////////////////////////// void TRI_FreeMultiArray (TRI_memory_zone_t* zone, TRI_multi_array_t* array) { TRI_DestroyMultiArray(array); TRI_Free(zone, array); } //////////////////////////////////////////////////////////////////////////////// /// @} //////////////////////////////////////////////////////////////////////////////// // ----------------------------------------------------------------------------- // --SECTION-- public functions // ----------------------------------------------------------------------------- //////////////////////////////////////////////////////////////////////////////// /// @addtogroup Collections /// @{ //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// /// @brief lookups an element given a key //////////////////////////////////////////////////////////////////////////////// TRI_vector_pointer_t TRI_LookupByKeyMultiArray (TRI_memory_zone_t* zone, TRI_multi_array_t* array, void* key) { TRI_vector_pointer_t result; uint64_t hash; uint64_t i; // initialise the vector which will hold the result if any TRI_InitVectorPointer(&result, zone); // compute the hash hash = array->hashKey(array, key); i = hash % array->_nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrFinds++; #endif // search the table while (! array->isEmptyElement(array, array->_table + i * array->_elementSize)) { if (array->isEqualKeyElement(array, key, array->_table + i * array->_elementSize)) { TRI_PushBackVectorPointer(&result, array->_table + i * array->_elementSize); } #ifdef TRI_INTERNAL_STATS else { array->_nrProbesF++; } #endif i = TRI_IncModU64(i, array->_nrAlloc); } // ........................................................................... // return whatever we found -- which could be an empty vector list if nothing // matches. If an out-of-memory occurred than the zone will have a suitable // marker. // ........................................................................... return result; } //////////////////////////////////////////////////////////////////////////////// /// @brief lookups an element given an element //////////////////////////////////////////////////////////////////////////////// TRI_vector_pointer_t TRI_LookupByElementMultiArray (TRI_memory_zone_t* zone, TRI_multi_array_t* array, void* element) { TRI_vector_pointer_t result; uint64_t hash; uint64_t i; // initialise the vector which will hold the result if any TRI_InitVectorPointer(&result, zone); // compute the hash hash = array->hashElement(array, element); i = hash % array->_nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrFinds++; #endif // search the table while (! array->isEmptyElement(array, array->_table + i * array->_elementSize)) { if (array->isEqualElementElement(array, element, array->_table + i * array->_elementSize)) { TRI_PushBackVectorPointer(&result, array->_table + i * array->_elementSize); } #ifdef TRI_INTERNAL_STATS else { array->_nrProbesF++; } #endif i = TRI_IncModU64(i, array->_nrAlloc); } // ........................................................................... // return whatever we found -- which could be an empty vector list if nothing // matches. Note that we allow multiple elements (compare with pointer // impl). If an out-of-memory occurred than the zone will have a suitable // marker. // ........................................................................... return result; } //////////////////////////////////////////////////////////////////////////////// /// @brief adds an element to the array //////////////////////////////////////////////////////////////////////////////// bool TRI_InsertElementMultiArray (TRI_multi_array_t* array, void* element, bool overwrite) { uint64_t hash; uint64_t i; // check for out-of-memory if (array->_nrAlloc == array->_nrUsed) { return false; } // compute the hash hash = array->hashElement(array, element); i = hash % array->_nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrAdds++; #endif // search the table while (! array->isEmptyElement(array, array->_table + i * array->_elementSize) && ! array->isEqualElementElement(array, element, array->_table + i * array->_elementSize)) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbesA++; #endif } // ........................................................................... // If we found an element, return. While we allow duplicate entries in the hash // table, we do not allow duplicate elements. Elements would refer to the // (for example) an actual row in memory. This is different from the // TRI_InsertElementMultiArray function below where we only have keys to // differentiate between elements. // ........................................................................... if (! array->isEmptyElement(array, array->_table + i * array->_elementSize)) { if (overwrite) { memcpy(array->_table + i * array->_elementSize, element, array->_elementSize); } return false; } // add a new element to the associative array memcpy(array->_table + i * array->_elementSize, element, array->_elementSize); array->_nrUsed++; // if we were adding and the table is more than half full, extend it if (array->_nrAlloc < 2 * array->_nrUsed) { ResizeMultiArray(array); } return true; } //////////////////////////////////////////////////////////////////////////////// /// @brief adds an key/element to the array //////////////////////////////////////////////////////////////////////////////// bool TRI_InsertKeyMultiArray (TRI_multi_array_t* array, void* key, void* element, bool overwrite) { uint64_t hash; uint64_t i; // check for out-of-memory if (array->_nrAlloc == array->_nrUsed) { return false; } // compute the hash hash = array->hashKey(array, key); i = hash % array->_nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrAdds++; #endif // search the table while (! array->isEmptyElement(array, array->_table + i * array->_elementSize)) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbesA++; #endif } // ........................................................................... // We do not look for an element (as opposed to the function above). So whether // or not there exists a duplicate we do not care. // ........................................................................... // add a new element to the associative array memcpy(array->_table + i * array->_elementSize, element, array->_elementSize); array->_nrUsed++; // if we were adding and the table is more than half full, extend it if (array->_nrAlloc < 2 * array->_nrUsed) { ResizeMultiArray(array); } return true; } //////////////////////////////////////////////////////////////////////////////// /// @brief removes an element from the array //////////////////////////////////////////////////////////////////////////////// bool TRI_RemoveElementMultiArray (TRI_multi_array_t* array, void* element, void* old) { uint64_t hash; uint64_t i; uint64_t k; // Obtain the hash hash = array->hashElement(array, element); i = hash % array->_nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrRems++; #endif // search the table while (! array->isEmptyElement(array, array->_table + i * array->_elementSize) && ! array->isEqualElementElement(array, element, array->_table + i * array->_elementSize)) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbesD++; #endif } // if we did not find such an item return false if (array->isEmptyElement(array, array->_table + i * array->_elementSize)) { if (old != NULL) { memset(old, 0, array->_elementSize); } return false; } // remove item if (old != NULL) { memcpy(old, array->_table + i * array->_elementSize, array->_elementSize); } array->clearElement(array, array->_table + i * array->_elementSize); array->_nrUsed--; // and now check the following places for items to move here k = TRI_IncModU64(i, array->_nrAlloc); while (! array->isEmptyElement(array, array->_table + k * array->_elementSize)) { uint64_t j = array->hashElement(array, array->_table + k * array->_elementSize) % array->_nrAlloc; if ((i < k && !(i < j && j <= k)) || (k < i && !(i < j || j <= k))) { memcpy(array->_table + i * array->_elementSize, array->_table + k * array->_elementSize, array->_elementSize); array->clearElement(array, array->_table + k * array->_elementSize); i = k; } k = TRI_IncModU64(k, array->_nrAlloc); } return true; } //////////////////////////////////////////////////////////////////////////////// /// @brief removes an key/element to the array //////////////////////////////////////////////////////////////////////////////// bool TRI_RemoveKeyMultiArray (TRI_multi_array_t* array, void* key, void* old) { uint64_t hash; uint64_t i; uint64_t k; // generate hash using key hash = array->hashKey(array, key); i = hash % array->_nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrRems++; #endif // search the table -- we can only match keys while (! array->isEmptyElement(array, array->_table + i * array->_elementSize) && ! array->isEqualKeyElement(array, key, array->_table + i * array->_elementSize)) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbesD++; #endif } // if we did not find such an item return false if (array->isEmptyElement(array, array->_table + i * array->_elementSize)) { if (old != NULL) { memset(old, 0, array->_elementSize); } return false; } // remove item if (old != NULL) { memcpy(old, array->_table + i * array->_elementSize, array->_elementSize); } array->clearElement(array, array->_table + i * array->_elementSize); array->_nrUsed--; // and now check the following places for items to move here k = TRI_IncModU64(i, array->_nrAlloc); while (! array->isEmptyElement(array, array->_table + k * array->_elementSize)) { uint64_t j = array->hashElement(array, array->_table + k * array->_elementSize) % array->_nrAlloc; if ((i < k && !(i < j && j <= k)) || (k < i && !(i < j || j <= k))) { memcpy(array->_table + i * array->_elementSize, array->_table + k * array->_elementSize, array->_elementSize); array->clearElement(array, array->_table + k * array->_elementSize); i = k; } k = TRI_IncModU64(k, array->_nrAlloc); } return true; } //////////////////////////////////////////////////////////////////////////////// /// @} //////////////////////////////////////////////////////////////////////////////// // ----------------------------------------------------------------------------- // --SECTION-- ASSOCIATIVE POINTERS // ----------------------------------------------------------------------------- // ----------------------------------------------------------------------------- // --SECTION-- constructors and destructors // ----------------------------------------------------------------------------- //////////////////////////////////////////////////////////////////////////////// /// @addtogroup Collections /// @{ //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// /// @brief initialises an array //////////////////////////////////////////////////////////////////////////////// int TRI_InitMultiPointer (TRI_multi_pointer_t* array, TRI_memory_zone_t* zone, uint64_t (*hashKey) (TRI_multi_pointer_t*, void const*), uint64_t (*hashElement) (TRI_multi_pointer_t*, void const*), bool (*isEqualKeyElement) (TRI_multi_pointer_t*, void const*, void const*), bool (*isEqualElementElement) (TRI_multi_pointer_t*, void const*, void const*)) { array->hashKey = hashKey; array->hashElement = hashElement; array->isEqualKeyElement = isEqualKeyElement; array->isEqualElementElement = isEqualElementElement; array->_memoryZone = zone; array->_nrUsed = 0; array->_nrAlloc = 0; if (NULL == (array->_table = TRI_Allocate(zone, sizeof(TRI_multi_pointer_entry_t) * INITIAL_SIZE, true))) { return TRI_ERROR_OUT_OF_MEMORY; } array->_nrAlloc = INITIAL_SIZE; #ifdef TRI_INTERNAL_STATS array->_nrFinds = 0; array->_nrAdds = 0; array->_nrRems = 0; array->_nrResizes = 0; array->_nrProbesF = 0; array->_nrProbesA = 0; array->_nrProbesD = 0; array->_nrProbesR = 0; #endif return TRI_ERROR_NO_ERROR; } //////////////////////////////////////////////////////////////////////////////// /// @brief destroys an array, but does not free the pointer //////////////////////////////////////////////////////////////////////////////// void TRI_DestroyMultiPointer (TRI_multi_pointer_t* array) { if (array->_table != NULL) { TRI_Free(array->_memoryZone, array->_table); } } //////////////////////////////////////////////////////////////////////////////// /// @brief destroys an array and frees the pointer //////////////////////////////////////////////////////////////////////////////// void TRI_FreeMultiPointer (TRI_memory_zone_t* zone, TRI_multi_pointer_t* array) { TRI_DestroyMultiPointer(array); TRI_Free(zone, array); } //////////////////////////////////////////////////////////////////////////////// /// @} //////////////////////////////////////////////////////////////////////////////// // ----------------------------------------------------------------------------- // --SECTION-- private functions // ----------------------------------------------------------------------------- static inline uint64_t FindElementPlace (TRI_multi_pointer_t* array, void* element, bool checkEquality) { // This either finds a place to store element or an entry in the table // that is equal to element. If checkEquality is set to false, the caller // guarantees that there is no entry that compares equal to element // in the table, which saves a lot of element comparisons. This function // always returns a pointer into the table, which is either empty or // points to an entry that compares equal to element. uint64_t hash; uint64_t i; hash = array->hashElement(array, element); i = hash % array->_nrAlloc; while (array->_table[i].ptr != NULL && (! checkEquality || ! array->isEqualElementElement(array, element, array->_table[i].ptr))) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbesA++; #endif } return i; } // ----------------------------------------------------------------------------- // --SECTION-- public functions // ----------------------------------------------------------------------------- //////////////////////////////////////////////////////////////////////////////// /// @addtogroup Collections /// @{ //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// /// @brief adds a key/element to the array //////////////////////////////////////////////////////////////////////////////// void* TRI_InsertElementMultiPointer (TRI_multi_pointer_t* array, void* element, const bool overwrite, const bool checkEquality) { // if the checkEquality flag is not set, we do not check for element // equality we use this flag to speed up initial insertion into the // index, i.e. when the index is built for a collection and we know // for sure no duplicate elements will be inserted uint64_t hash; uint64_t i, j, k; void* old; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrAdds++; #endif // compute the hash of the key first hash = array->hashKey(array, element); i = hash % array->_nrAlloc; // If this slot is free, just use it: if (NULL == array->_table[i].ptr) { array->_table[i].ptr = element; array->_table[i].next = NULL; array->_table[i].prev = NULL; return NULL; } // Now find the first slot with an entry with the same key or a free slot: while (array->_table[i].ptr != NULL && ! array->isEqualKeyElement(array, element, array->_table[i].ptr)) { i = TRI_IncModU64(i, array->_nrAlloc); } // If this is free, we are the first with this key: if (NULL == array->_table[i].ptr) { array->_table[i].ptr = element; array->_table[i].next = NULL; array->_table[i].prev = NULL; return NULL; } // Otherwise, entry i points to the beginning of the linked list of which // we want to make element a member. Perhaps an equal element is right here: if (checkEquality && array->isEqualElementElement(array, element, array->_table[i].ptr)) { old = array->_table[i].ptr; if (overwrite) { array->_table[i].ptr = element; } return old; } // Now find a new home for element in this linked list: j = FindElementPlace(array, element, checkEquality); old = array->_table[j].ptr; // if we found an element, return if (old != NULL) { if (overwrite) { array->_table[i].ptr = element; } return old; } // add a new element to the associative array and linked list (in pos 2): array->_table[j].ptr = element; array->_table[j].next = array->_table[i].next; array->_table[j].prev = array->_table[i].ptr; array->_table[i].next = array->_table[j].ptr; // Finally, we need to find the successor to patch it up: if (array->_table[j].next != NULL) { k = FindElementPlace(array, array->_table[j].next, true); array->_table[k].prev = element; } array->_nrUsed++; // if we were adding and the table is more than half full, extend it if (array->_nrAlloc < 2 * array->_nrUsed) { TRI_ResizeMultiPointer(array, 2 * array->_nrAlloc + 1); } return NULL; } //////////////////////////////////////////////////////////////////////////////// /// @brief lookups an element given a key //////////////////////////////////////////////////////////////////////////////// TRI_vector_pointer_t TRI_LookupByKeyMultiPointer (TRI_memory_zone_t* zone, TRI_multi_pointer_t* array, void const* key) { TRI_vector_pointer_t result; uint64_t hash; uint64_t i; #if 0 // initialises the result vector TRI_InitVectorPointer(&result, zone); // compute the hash hash = array->hashKey(array, key); i = hash % array->_nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrFinds++; #endif // search the table while (array->_table[i].ptr != NULL) { if (array->isEqualKeyElement(array, key, array->_table[i])) { TRI_PushBackVectorPointer(&result, array->_table[i]); } #ifdef TRI_INTERNAL_STATS else { array->_nrProbesF++; } #endif i = TRI_IncModU64(i, array->_nrAlloc); } #endif // return whatever we found return result; } //////////////////////////////////////////////////////////////////////////////// /// @brief lookups an element given an element //////////////////////////////////////////////////////////////////////////////// void* TRI_LookupByElementMultiPointer (TRI_multi_pointer_t* array, void const* element) { uint64_t hash; uint64_t i; #if 0 // compute the hash hash = array->hashElement(array, element); i = hash % array->_nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrFinds++; #endif // search the table while (array->_table[i] != NULL && ! array->isEqualElementElement(array, element, array->_table[i])) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbesF++; #endif } // return whatever we found return array->_table[i]; #endif return NULL; } //////////////////////////////////////////////////////////////////////////////// /// @brief removes an element from the array //////////////////////////////////////////////////////////////////////////////// void* TRI_RemoveElementMultiPointer (TRI_multi_pointer_t* array, void const* element) { uint64_t hash; uint64_t i; uint64_t k; void* old; #if 0 hash = array->hashElement(array, element); i = hash % array->_nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrRems++; #endif // search the table while (array->_table[i] != NULL && ! array->isEqualElementElement(array, element, array->_table[i])) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbesD++; #endif } // if we did not find such an item return 0 if (array->_table[i] == NULL) { return NULL; } // remove item old = array->_table[i]; array->_table[i] = NULL; array->_nrUsed--; // and now check the following places for items to move here k = TRI_IncModU64(i, array->_nrAlloc); while (array->_table[k] != NULL) { uint64_t j = array->hashElement(array, array->_table[k]) % array->_nrAlloc; if ((i < k && !(i < j && j <= k)) || (k < i && !(i < j || j <= k))) { array->_table[i] = array->_table[k]; array->_table[k] = NULL; i = k; } k = TRI_IncModU64(k, array->_nrAlloc); } // return success return old; #endif return NULL; } //////////////////////////////////////////////////////////////////////////////// /// @brief resize the array //////////////////////////////////////////////////////////////////////////////// int TRI_ResizeMultiPointer (TRI_multi_pointer_t* array, size_t size) { TRI_multi_pointer_entry_t* oldTable; uint64_t oldAlloc; uint64_t j; if (size < 2*array->_nrUsed) { return TRI_ERROR_BAD_PARAMETER; } oldTable = array->_table; oldAlloc = array->_nrAlloc; array->_nrAlloc = TRI_NextPrime((uint64_t) size*2); array->_table = TRI_Allocate(array->_memoryZone, array->_nrAlloc * sizeof(TRI_multi_pointer_t), true); if (array->_table == NULL) { array->_nrAlloc = oldAlloc; array->_table = oldTable; return TRI_ERROR_OUT_OF_MEMORY; } array->_nrUsed = 0; #ifdef TRI_INTERNAL_STATS array->_nrResizes++; #endif // table is already clear by allocate, copy old data for (j = 0; j < oldAlloc; j++) { if (oldTable[j].ptr != NULL) { TRI_InsertElementMultiPointer(array, oldTable[j].ptr, true, false); } } TRI_Free(array->_memoryZone, oldTable); return TRI_ERROR_NO_ERROR; } //////////////////////////////////////////////////////////////////////////////// /// @} //////////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: outline-minor // outline-regexp: "/// @brief\\|/// {@inheritDoc}\\|/// @addtogroup\\|/// @page\\|// --SECTION--\\|/// @\\}" // End: