mirror of https://gitee.com/bigwinds/arangodb
88 lines
2.8 KiB
C++
88 lines
2.8 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
/// DISCLAIMER
|
|
///
|
|
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
|
|
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
|
|
///
|
|
/// Licensed under the Apache License, Version 2.0 (the "License");
|
|
/// you may not use this file except in compliance with the License.
|
|
/// You may obtain a copy of the License at
|
|
///
|
|
/// http://www.apache.org/licenses/LICENSE-2.0
|
|
///
|
|
/// Unless required by applicable law or agreed to in writing, software
|
|
/// distributed under the License is distributed on an "AS IS" BASIS,
|
|
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
/// See the License for the specific language governing permissions and
|
|
/// limitations under the License.
|
|
///
|
|
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
|
|
///
|
|
/// @author Dr. Frank Celler
|
|
/// @author Benjamin Pritchard (ben@bennyp.org)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "levenshtein.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief calculate the levenshtein distance of the two strings
|
|
/// @author Benjamin Pritchard (ben@bennyp.org)
|
|
/// copyright 2013 Benjamin Pritchard. Released under the MIT License
|
|
/// copyright The MIT License
|
|
/// From
|
|
/// https://raw.githubusercontent.com/bennybp/stringmatch/master/stringmatch.cpp
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int TRI_Levenshtein(std::string const& str1, std::string const& str2) {
|
|
// for all i and j, d[i,j] will hold the Levenshtein distance between
|
|
// the first i characters of s and the first j characters of t;
|
|
// note that d has (m+1)x(n+1) values
|
|
size_t m = str1.size();
|
|
size_t n = str2.size();
|
|
|
|
int** d = new int* [m + 1];
|
|
for (size_t i = 0; i <= m; i++) {
|
|
d[i] = new int[n + 1];
|
|
}
|
|
|
|
for (size_t i = 0; i <= m; i++) {
|
|
d[i][0] = static_cast<int>(
|
|
i); // the distance of any first string to an empty second string
|
|
}
|
|
|
|
for (size_t j = 0; j <= n; j++) {
|
|
d[0][j] = static_cast<int>(
|
|
j); // the distance of any second string to an empty first string
|
|
}
|
|
|
|
int min;
|
|
|
|
for (size_t j = 1; j <= n; j++) {
|
|
for (size_t i = 1; i <= m; i++) {
|
|
if (str1[i - 1] == str2[j - 1]) {
|
|
d[i][j] = d[i - 1][j - 1]; // no operation required
|
|
} else {
|
|
// find a minimum
|
|
min = d[i - 1][j] + /*1*/ 3; // a deletion
|
|
if ((d[i][j - 1] + 1) < min) { // an insertion
|
|
min = (d[i][j - 1] + 1);
|
|
}
|
|
if ((d[i - 1][j - 1] + 1) < min) { // a substitution
|
|
min = (d[i - 1][j - 1] + /*1*/ 2);
|
|
}
|
|
|
|
d[i][j] = min;
|
|
}
|
|
}
|
|
}
|
|
|
|
int result = d[m][n];
|
|
|
|
for (size_t i = 0; i <= m; i++) {
|
|
delete[] d[i];
|
|
}
|
|
delete[] d;
|
|
|
|
return result;
|
|
}
|