//////////////////////////////////////////////////////////////////////////////// /// DISCLAIMER /// /// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany /// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, software /// distributed under the License is distributed on an "AS IS" BASIS, /// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. /// See the License for the specific language governing permissions and /// limitations under the License. /// /// Copyright holder is ArangoDB GmbH, Cologne, Germany /// /// @author Dr. Frank Celler /// @author Benjamin Pritchard (ben@bennyp.org) //////////////////////////////////////////////////////////////////////////////// #include "levenshtein.h" //////////////////////////////////////////////////////////////////////////////// /// @brief calculate the levenshtein distance of the two strings /// @author Benjamin Pritchard (ben@bennyp.org) /// copyright 2013 Benjamin Pritchard. Released under the MIT License /// copyright The MIT License /// From /// https://raw.githubusercontent.com/bennybp/stringmatch/master/stringmatch.cpp //////////////////////////////////////////////////////////////////////////////// int TRI_Levenshtein(std::string const& str1, std::string const& str2) { // for all i and j, d[i,j] will hold the Levenshtein distance between // the first i characters of s and the first j characters of t; // note that d has (m+1)x(n+1) values size_t m = str1.size(); size_t n = str2.size(); int** d = new int* [m + 1]; for (size_t i = 0; i <= m; i++) { d[i] = new int[n + 1]; } for (size_t i = 0; i <= m; i++) { d[i][0] = static_cast( i); // the distance of any first string to an empty second string } for (size_t j = 0; j <= n; j++) { d[0][j] = static_cast( j); // the distance of any second string to an empty first string } int min; for (size_t j = 1; j <= n; j++) { for (size_t i = 1; i <= m; i++) { if (str1[i - 1] == str2[j - 1]) { d[i][j] = d[i - 1][j - 1]; // no operation required } else { // find a minimum min = d[i - 1][j] + /*1*/ 3; // a deletion if ((d[i][j - 1] + 1) < min) { // an insertion min = (d[i][j - 1] + 1); } if ((d[i - 1][j - 1] + 1) < min) { // a substitution min = (d[i - 1][j - 1] + /*1*/ 2); } d[i][j] = min; } } } int result = d[m][n]; for (size_t i = 0; i <= m; i++) { delete[] d[i]; } delete[] d; return result; }