1
0
Fork 0
arangodb/arangod/Aql/IndexBlock.cpp

628 lines
20 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Jan Steemann
/// @author Michael Hackstein
////////////////////////////////////////////////////////////////////////////////
#include "IndexBlock.h"
#include "Aql/Collection.h"
#include "Aql/Condition.h"
#include "Aql/ExecutionEngine.h"
#include "Aql/Functions.h"
#include "Aql/Index.h"
#include "Basics/ScopeGuard.h"
#include "Basics/json-utilities.h"
#include "Basics/Exceptions.h"
#include "Indexes/IndexIterator.h"
#include "V8/v8-globals.h"
#include "VocBase/vocbase.h"
using namespace triagens::arango;
using namespace triagens::aql;
using Json = triagens::basics::Json;
// uncomment the following to get some debugging information
#if 0
#define ENTER_BLOCK \
try { \
(void)0;
#define LEAVE_BLOCK \
} \
catch (...) { \
std::cout << "caught an exception in " << __FUNCTION__ << ", " << __FILE__ \
<< ":" << __LINE__ << "!\n"; \
throw; \
}
#else
#define ENTER_BLOCK
#define LEAVE_BLOCK
#endif
IndexBlock::IndexBlock(ExecutionEngine* engine, IndexNode const* en)
: ExecutionBlock(engine, en),
_collection(en->collection()),
_posInDocs(0),
_currentIndex(0),
_indexes(en->getIndexes()),
_context(nullptr),
_iterator(nullptr),
_condition(en->_condition->root()),
_hasV8Expression(false) {
_context = new IndexIteratorContext(en->_vocbase);
auto trxCollection = _trx->trxCollection(_collection->cid());
if (trxCollection != nullptr) {
_trx->orderDitch(trxCollection);
}
}
IndexBlock::~IndexBlock() {
delete _iterator;
delete _context;
cleanupNonConstExpressions();
}
////////////////////////////////////////////////////////////////////////////////
/// @brief adds a UNIQUE() to a dynamic IN condition
////////////////////////////////////////////////////////////////////////////////
triagens::aql::AstNode* IndexBlock::makeUnique(
triagens::aql::AstNode* node) const {
if (node->type != triagens::aql::NODE_TYPE_ARRAY ||
(node->type == triagens::aql::NODE_TYPE_ARRAY &&
node->numMembers() >= 2)) {
// an non-array or an array with more than 1 member
auto en = static_cast<IndexNode const*>(getPlanNode());
auto ast = en->_plan->getAst();
auto array = ast->createNodeArray();
array->addMember(node);
if (_indexes[_currentIndex]->isSorted()) {
// the index is sorted. we need to use SORTED_UNIQUE to get the
// result back in index order
return ast->createNodeFunctionCall("SORTED_UNIQUE", array);
}
// a regular UNIQUE will do
return ast->createNodeFunctionCall("UNIQUE", array);
}
// presumably an array with no or a single member
return node;
}
void IndexBlock::executeExpressions() {
TRI_ASSERT(_condition != nullptr);
// The following are needed to evaluate expressions with local data from
// the current incoming item:
AqlItemBlock* cur = _buffer.front();
auto en = static_cast<IndexNode const*>(getPlanNode());
auto ast = en->_plan->getAst();
for (size_t posInExpressions = 0;
posInExpressions < _nonConstExpressions.size(); ++posInExpressions) {
auto& toReplace = _nonConstExpressions[posInExpressions];
auto exp = toReplace->expression;
TRI_document_collection_t const* myCollection = nullptr;
AqlValue a = exp->execute(_trx, cur, _pos, _inVars[posInExpressions],
_inRegs[posInExpressions], &myCollection);
auto jsonified = a.toJson(_trx, myCollection, true);
a.destroy();
AstNode* evaluatedNode = ast->nodeFromJson(jsonified.json(), true);
_condition->getMember(toReplace->orMember)
->getMember(toReplace->andMember)
->changeMember(toReplace->operatorMember, evaluatedNode);
}
}
int IndexBlock::initialize() {
ENTER_BLOCK
int res = ExecutionBlock::initialize();
cleanupNonConstExpressions();
_alreadyReturned.clear();
auto en = static_cast<IndexNode const*>(getPlanNode());
auto ast = en->_plan->getAst();
// instantiate expressions:
auto instantiateExpression =
[&](size_t i, size_t j, size_t k, AstNode* a) -> void {
// all new AstNodes are registered with the Ast in the Query
auto e = std::make_unique<Expression>(ast, a);
TRI_IF_FAILURE("IndexBlock::initialize") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
_hasV8Expression |= e->isV8();
std::unordered_set<Variable const*> inVars;
e->variables(inVars);
auto nce = std::make_unique<NonConstExpression>(i, j, k, e.get());
e.release();
_nonConstExpressions.push_back(nce.get());
nce.release();
// Prepare _inVars and _inRegs:
_inVars.emplace_back();
std::vector<Variable const*>& inVarsCur = _inVars.back();
_inRegs.emplace_back();
std::vector<RegisterId>& inRegsCur = _inRegs.back();
for (auto const& v : inVars) {
inVarsCur.emplace_back(v);
auto it = en->getRegisterPlan()->varInfo.find(v->id);
TRI_ASSERT(it != en->getRegisterPlan()->varInfo.end());
TRI_ASSERT(it->second.registerId < ExecutionNode::MaxRegisterId);
inRegsCur.emplace_back(it->second.registerId);
}
};
if (_condition == nullptr) {
// This Node has no condition. Iterate over the complete index.
return TRI_ERROR_NO_ERROR;
}
auto outVariable = en->outVariable();
for (size_t i = 0; i < _condition->numMembers(); ++i) {
auto andCond = _condition->getMemberUnchecked(i);
for (size_t j = 0; j < andCond->numMembers(); ++j) {
auto leaf = andCond->getMemberUnchecked(j);
// We only support binary conditions
TRI_ASSERT(leaf->numMembers() == 2);
auto lhs = leaf->getMember(0);
auto rhs = leaf->getMember(1);
if (lhs->isAttributeAccessForVariable(outVariable)) {
// Index is responsible for the left side, check if right side has to be
// evaluated
if (!rhs->isConstant()) {
if (leaf->type == NODE_TYPE_OPERATOR_BINARY_IN) {
rhs = makeUnique(rhs);
}
instantiateExpression(i, j, 1, rhs);
TRI_IF_FAILURE("IndexBlock::initializeExpressions") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
}
} else {
// Index is responsible for the right side, check if left side has to be
// evaluated
if (!lhs->isConstant()) {
instantiateExpression(i, j, 0, lhs);
TRI_IF_FAILURE("IndexBlock::initializeExpressions") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
}
}
}
}
return res;
LEAVE_BLOCK;
}
// init the ranges for reading, this should be called once per new incoming
// block!
//
// This is either called every time we get a new incoming block.
// If all the bounds are constant, then in the case of hash, primary or edges
// indexes it does nothing. In the case of a skiplist index, it creates a
// skiplistIterator which is used by readIndex. If at least one bound is
// variable, then this this also evaluates the IndexOrCondition required to
// determine the values of the bounds.
//
// It is guaranteed that
// _buffer is not empty, in particular _buffer.front() is defined
// _pos points to a position in _buffer.front()
// Therefore, we can use the register values in _buffer.front() in row
// _pos to evaluate the variable bounds.
bool IndexBlock::initIndexes() {
ENTER_BLOCK
// We start with a different context. Return documents found in the previous
// context again.
_alreadyReturned.clear();
// Find out about the actual values for the bounds in the variable bound case:
if (!_nonConstExpressions.empty()) {
TRI_ASSERT(_condition != nullptr);
if (_hasV8Expression) {
bool const isRunningInCluster =
triagens::arango::ServerState::instance()->isRunningInCluster();
// must have a V8 context here to protect Expression::execute()
auto engine = _engine;
triagens::basics::ScopeGuard guard{
[&engine]() -> void { engine->getQuery()->enterContext(); },
[&]() -> void {
if (isRunningInCluster) {
// must invalidate the expression now as we might be called from
// different threads
for (auto const& e : _nonConstExpressions) {
e->expression->invalidate();
}
engine->getQuery()->exitContext();
}
}};
ISOLATE;
v8::HandleScope scope(isolate); // do not delete this!
executeExpressions();
TRI_IF_FAILURE("IndexBlock::executeV8") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
} else {
// no V8 context required!
Functions::InitializeThreadContext();
try {
executeExpressions();
TRI_IF_FAILURE("IndexBlock::executeExpression") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
Functions::DestroyThreadContext();
} catch (...) {
Functions::DestroyThreadContext();
throw;
}
}
}
IndexNode const* node = static_cast<IndexNode const*>(getPlanNode());
if (node->_reverse) {
_currentIndex = _indexes.size() - 1;
} else {
_currentIndex = 0;
}
delete _iterator;
_iterator = nullptr;
_iterator = createIterator();
while (_iterator == nullptr) {
if (node->_reverse) {
--_currentIndex;
} else {
++_currentIndex;
}
if (_currentIndex < _indexes.size()) {
// This check will work as long as _indexes.size() < MAX_SIZE_T
TRI_ASSERT(_iterator == nullptr);
_iterator = createIterator();
} else {
// We were not able to initialize any index with this condition
return false;
}
}
return true;
LEAVE_BLOCK;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief create an iterator object
////////////////////////////////////////////////////////////////////////////////
triagens::arango::IndexIterator* IndexBlock::createIterator() {
IndexNode const* node = static_cast<IndexNode const*>(getPlanNode());
auto outVariable = node->outVariable();
auto ast = node->_plan->getAst();
if (_condition == nullptr) {
return _indexes[_currentIndex]->getIterator(_trx, _context, ast, nullptr,
outVariable, node->_reverse);
}
TRI_ASSERT(_indexes.size() == _condition->numMembers());
return _indexes[_currentIndex]->getIterator(
_trx, _context, ast, _condition->getMember(_currentIndex), outVariable,
node->_reverse);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Forwards _iterator to the next available index
////////////////////////////////////////////////////////////////////////////////
void IndexBlock::startNextIterator() {
delete _iterator;
_iterator = nullptr;
IndexNode const* node = static_cast<IndexNode const*>(getPlanNode());
if (node->_reverse) {
--_currentIndex;
} else {
++_currentIndex;
}
if (_currentIndex < _indexes.size()) {
// This check will work as long as _indexes.size() < MAX_SIZE_T
TRI_ASSERT(_iterator == nullptr);
_iterator = createIterator();
}
}
// this is called every time everything in _documents has been passed on
bool IndexBlock::readIndex(size_t atMost) {
ENTER_BLOCK;
// this is called every time we want more in _documents.
// For the primary key index, this only reads the index once, and never
// again (although there might be multiple calls to this function).
// For the edge, hash or skiplists indexes, initIndexes creates an iterator
// and read*Index just reads from the iterator until it is done.
// Then initIndexes is read again and so on. This is to avoid reading the
// entire index when we only want a small number of documents.
if (_documents.empty()) {
TRI_IF_FAILURE("IndexBlock::readIndex") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
_documents.reserve(atMost);
} else {
_documents.clear();
}
if (_iterator == nullptr) {
// All indexes exhausted
return false;
}
size_t lastIndexNr = _indexes.size() - 1;
bool isReverse = (static_cast<IndexNode const*>(getPlanNode()))->_reverse;
bool isLastIndex = (_currentIndex == lastIndexNr && !isReverse) ||
(_currentIndex == 0 && isReverse);
try {
size_t nrSent = 0;
while (nrSent < atMost && _iterator != nullptr) {
TRI_doc_mptr_t* indexElement = _iterator->next();
if (indexElement == nullptr) {
startNextIterator();
} else {
TRI_IF_FAILURE("IndexBlock::readIndex") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
if (_alreadyReturned.find(indexElement) == _alreadyReturned.end()) {
if (!isLastIndex) {
_alreadyReturned.emplace(indexElement);
}
_documents.emplace_back(*indexElement);
++nrSent;
}
++_engine->_stats.scannedIndex;
}
}
} catch (...) {
if (_iterator != nullptr) {
delete _iterator;
_iterator = nullptr;
}
}
_posInDocs = 0;
return (!_documents.empty());
LEAVE_BLOCK;
}
int IndexBlock::initializeCursor(AqlItemBlock* items, size_t pos) {
ENTER_BLOCK;
int res = ExecutionBlock::initializeCursor(items, pos);
if (res != TRI_ERROR_NO_ERROR) {
return res;
}
_pos = 0;
_posInDocs = 0;
return TRI_ERROR_NO_ERROR;
LEAVE_BLOCK;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief getSome
////////////////////////////////////////////////////////////////////////////////
AqlItemBlock* IndexBlock::getSome(size_t atLeast, size_t atMost) {
ENTER_BLOCK;
if (_done) {
return nullptr;
}
std::unique_ptr<AqlItemBlock> res(nullptr);
do {
// repeatedly try to get more stuff from upstream
// note that the value of the variable we have to loop over
// can contain zero entries, in which case we have to
// try again!
if (_buffer.empty()) {
size_t toFetch = (std::min)(DefaultBatchSize, atMost);
if (!ExecutionBlock::getBlock(toFetch, toFetch) || (!initIndexes())) {
_done = true;
return nullptr;
}
_pos = 0; // this is in the first block
// This is a new item, so let's read the index (it is already
// initialized).
readIndex(atMost);
} else if (_posInDocs >= _documents.size()) {
// we have exhausted our local documents buffer,
if (!readIndex(atMost)) { // no more output from this version of the
// index
AqlItemBlock* cur = _buffer.front();
if (++_pos >= cur->size()) {
_buffer.pop_front(); // does not throw
delete cur;
_pos = 0;
}
if (_buffer.empty()) {
if (!ExecutionBlock::getBlock(DefaultBatchSize, DefaultBatchSize)) {
_done = true;
return nullptr;
}
_pos = 0; // this is in the first block
}
if (!initIndexes()) {
_done = true;
return nullptr;
}
readIndex(atMost);
}
}
// If we get here, we do have _buffer.front() and _pos points into it
AqlItemBlock* cur = _buffer.front();
size_t const curRegs = cur->getNrRegs();
size_t available = _documents.size() - _posInDocs;
size_t toSend = (std::min)(atMost, available);
if (toSend > 0) {
res.reset(new AqlItemBlock(
toSend,
getPlanNode()->getRegisterPlan()->nrRegs[getPlanNode()->getDepth()]));
// automatically freed should we throw
TRI_ASSERT(curRegs <= res->getNrRegs());
// only copy 1st row of registers inherited from previous frame(s)
inheritRegisters(cur, res.get(), _pos);
// set our collection for our output register
res->setDocumentCollection(
static_cast<triagens::aql::RegisterId>(curRegs),
_trx->documentCollection(_collection->cid()));
for (size_t j = 0; j < toSend; j++) {
if (j > 0) {
// re-use already copied aqlvalues
for (RegisterId i = 0; i < curRegs; i++) {
res->setValue(j, i, res->getValueReference(0, i));
// Note: if this throws, then all values will be deleted
// properly since the first one is.
}
}
// The result is in the first variable of this depth,
// we do not need to do a lookup in
// getPlanNode()->_registerPlan->varInfo,
// but can just take cur->getNrRegs() as registerId:
res->setValue(j, static_cast<triagens::aql::RegisterId>(curRegs),
AqlValue(reinterpret_cast<TRI_df_marker_t const*>(
_documents[_posInDocs++].getDataPtr())));
// No harm done, if the setValue throws!
}
}
} while (res.get() == nullptr);
// Clear out registers no longer needed later:
clearRegisters(res.get());
return res.release();
LEAVE_BLOCK;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief skipSome
////////////////////////////////////////////////////////////////////////////////
size_t IndexBlock::skipSome(size_t atLeast, size_t atMost) {
if (_done) {
return 0;
}
size_t skipped = 0;
while (skipped < atLeast) {
if (_buffer.empty()) {
size_t toFetch = (std::min)(DefaultBatchSize, atMost);
if (!ExecutionBlock::getBlock(toFetch, toFetch) || (!initIndexes())) {
_done = true;
return skipped;
}
_pos = 0; // this is in the first block
// This is a new item, so let's read the index if bounds are variable:
readIndex(atMost);
}
size_t available = _documents.size() - _posInDocs;
size_t toSkip = (std::min)(atMost - skipped, available);
_posInDocs += toSkip;
skipped += toSkip;
// Advance read position:
if (_posInDocs >= _documents.size()) {
// we have exhausted our local documents buffer,
if (!readIndex(atMost)) {
// If we get here, we do have _buffer.front() and _pos points into it
AqlItemBlock* cur = _buffer.front();
if (++_pos >= cur->size()) {
_buffer.pop_front(); // does not throw
delete cur;
_pos = 0;
}
// let's read the index if bounds are variable:
if (!_buffer.empty()) {
if (!initIndexes()) {
_done = true;
return skipped;
}
readIndex(atMost);
}
}
// If _buffer is empty, then we will fetch a new block in the next round
// and then read the index.
}
}
return skipped;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief frees the memory for all non-constant expressions
////////////////////////////////////////////////////////////////////////////////
void IndexBlock::cleanupNonConstExpressions() {
for (auto& it : _nonConstExpressions) {
delete it;
}
_nonConstExpressions.clear();
}