//////////////////////////////////////////////////////////////////////////////// /// DISCLAIMER /// /// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany /// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, software /// distributed under the License is distributed on an "AS IS" BASIS, /// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. /// See the License for the specific language governing permissions and /// limitations under the License. /// /// Copyright holder is ArangoDB GmbH, Cologne, Germany /// /// @author Jan Steemann /// @author Michael Hackstein //////////////////////////////////////////////////////////////////////////////// #include "IndexBlock.h" #include "Aql/Collection.h" #include "Aql/Condition.h" #include "Aql/ExecutionEngine.h" #include "Aql/Functions.h" #include "Aql/Index.h" #include "Basics/ScopeGuard.h" #include "Basics/json-utilities.h" #include "Basics/Exceptions.h" #include "Indexes/IndexIterator.h" #include "V8/v8-globals.h" #include "VocBase/vocbase.h" using namespace triagens::arango; using namespace triagens::aql; using Json = triagens::basics::Json; // uncomment the following to get some debugging information #if 0 #define ENTER_BLOCK \ try { \ (void)0; #define LEAVE_BLOCK \ } \ catch (...) { \ std::cout << "caught an exception in " << __FUNCTION__ << ", " << __FILE__ \ << ":" << __LINE__ << "!\n"; \ throw; \ } #else #define ENTER_BLOCK #define LEAVE_BLOCK #endif IndexBlock::IndexBlock(ExecutionEngine* engine, IndexNode const* en) : ExecutionBlock(engine, en), _collection(en->collection()), _posInDocs(0), _currentIndex(0), _indexes(en->getIndexes()), _context(nullptr), _iterator(nullptr), _condition(en->_condition->root()), _hasV8Expression(false) { _context = new IndexIteratorContext(en->_vocbase); auto trxCollection = _trx->trxCollection(_collection->cid()); if (trxCollection != nullptr) { _trx->orderDitch(trxCollection); } } IndexBlock::~IndexBlock() { delete _iterator; delete _context; cleanupNonConstExpressions(); } //////////////////////////////////////////////////////////////////////////////// /// @brief adds a UNIQUE() to a dynamic IN condition //////////////////////////////////////////////////////////////////////////////// triagens::aql::AstNode* IndexBlock::makeUnique( triagens::aql::AstNode* node) const { if (node->type != triagens::aql::NODE_TYPE_ARRAY || (node->type == triagens::aql::NODE_TYPE_ARRAY && node->numMembers() >= 2)) { // an non-array or an array with more than 1 member auto en = static_cast(getPlanNode()); auto ast = en->_plan->getAst(); auto array = ast->createNodeArray(); array->addMember(node); if (_indexes[_currentIndex]->isSorted()) { // the index is sorted. we need to use SORTED_UNIQUE to get the // result back in index order return ast->createNodeFunctionCall("SORTED_UNIQUE", array); } // a regular UNIQUE will do return ast->createNodeFunctionCall("UNIQUE", array); } // presumably an array with no or a single member return node; } void IndexBlock::executeExpressions() { TRI_ASSERT(_condition != nullptr); // The following are needed to evaluate expressions with local data from // the current incoming item: AqlItemBlock* cur = _buffer.front(); auto en = static_cast(getPlanNode()); auto ast = en->_plan->getAst(); for (size_t posInExpressions = 0; posInExpressions < _nonConstExpressions.size(); ++posInExpressions) { auto& toReplace = _nonConstExpressions[posInExpressions]; auto exp = toReplace->expression; TRI_document_collection_t const* myCollection = nullptr; AqlValue a = exp->execute(_trx, cur, _pos, _inVars[posInExpressions], _inRegs[posInExpressions], &myCollection); auto jsonified = a.toJson(_trx, myCollection, true); a.destroy(); AstNode* evaluatedNode = ast->nodeFromJson(jsonified.json(), true); _condition->getMember(toReplace->orMember) ->getMember(toReplace->andMember) ->changeMember(toReplace->operatorMember, evaluatedNode); } } int IndexBlock::initialize() { ENTER_BLOCK int res = ExecutionBlock::initialize(); cleanupNonConstExpressions(); _alreadyReturned.clear(); auto en = static_cast(getPlanNode()); auto ast = en->_plan->getAst(); // instantiate expressions: auto instantiateExpression = [&](size_t i, size_t j, size_t k, AstNode* a) -> void { // all new AstNodes are registered with the Ast in the Query auto e = std::make_unique(ast, a); TRI_IF_FAILURE("IndexBlock::initialize") { THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG); } _hasV8Expression |= e->isV8(); std::unordered_set inVars; e->variables(inVars); auto nce = std::make_unique(i, j, k, e.get()); e.release(); _nonConstExpressions.push_back(nce.get()); nce.release(); // Prepare _inVars and _inRegs: _inVars.emplace_back(); std::vector& inVarsCur = _inVars.back(); _inRegs.emplace_back(); std::vector& inRegsCur = _inRegs.back(); for (auto const& v : inVars) { inVarsCur.emplace_back(v); auto it = en->getRegisterPlan()->varInfo.find(v->id); TRI_ASSERT(it != en->getRegisterPlan()->varInfo.end()); TRI_ASSERT(it->second.registerId < ExecutionNode::MaxRegisterId); inRegsCur.emplace_back(it->second.registerId); } }; if (_condition == nullptr) { // This Node has no condition. Iterate over the complete index. return TRI_ERROR_NO_ERROR; } auto outVariable = en->outVariable(); for (size_t i = 0; i < _condition->numMembers(); ++i) { auto andCond = _condition->getMemberUnchecked(i); for (size_t j = 0; j < andCond->numMembers(); ++j) { auto leaf = andCond->getMemberUnchecked(j); // We only support binary conditions TRI_ASSERT(leaf->numMembers() == 2); auto lhs = leaf->getMember(0); auto rhs = leaf->getMember(1); if (lhs->isAttributeAccessForVariable(outVariable)) { // Index is responsible for the left side, check if right side has to be // evaluated if (!rhs->isConstant()) { if (leaf->type == NODE_TYPE_OPERATOR_BINARY_IN) { rhs = makeUnique(rhs); } instantiateExpression(i, j, 1, rhs); TRI_IF_FAILURE("IndexBlock::initializeExpressions") { THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG); } } } else { // Index is responsible for the right side, check if left side has to be // evaluated if (!lhs->isConstant()) { instantiateExpression(i, j, 0, lhs); TRI_IF_FAILURE("IndexBlock::initializeExpressions") { THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG); } } } } } return res; LEAVE_BLOCK; } // init the ranges for reading, this should be called once per new incoming // block! // // This is either called every time we get a new incoming block. // If all the bounds are constant, then in the case of hash, primary or edges // indexes it does nothing. In the case of a skiplist index, it creates a // skiplistIterator which is used by readIndex. If at least one bound is // variable, then this this also evaluates the IndexOrCondition required to // determine the values of the bounds. // // It is guaranteed that // _buffer is not empty, in particular _buffer.front() is defined // _pos points to a position in _buffer.front() // Therefore, we can use the register values in _buffer.front() in row // _pos to evaluate the variable bounds. bool IndexBlock::initIndexes() { ENTER_BLOCK // We start with a different context. Return documents found in the previous // context again. _alreadyReturned.clear(); // Find out about the actual values for the bounds in the variable bound case: if (!_nonConstExpressions.empty()) { TRI_ASSERT(_condition != nullptr); if (_hasV8Expression) { bool const isRunningInCluster = triagens::arango::ServerState::instance()->isRunningInCluster(); // must have a V8 context here to protect Expression::execute() auto engine = _engine; triagens::basics::ScopeGuard guard{ [&engine]() -> void { engine->getQuery()->enterContext(); }, [&]() -> void { if (isRunningInCluster) { // must invalidate the expression now as we might be called from // different threads for (auto const& e : _nonConstExpressions) { e->expression->invalidate(); } engine->getQuery()->exitContext(); } }}; ISOLATE; v8::HandleScope scope(isolate); // do not delete this! executeExpressions(); TRI_IF_FAILURE("IndexBlock::executeV8") { THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG); } } else { // no V8 context required! Functions::InitializeThreadContext(); try { executeExpressions(); TRI_IF_FAILURE("IndexBlock::executeExpression") { THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG); } Functions::DestroyThreadContext(); } catch (...) { Functions::DestroyThreadContext(); throw; } } } IndexNode const* node = static_cast(getPlanNode()); if (node->_reverse) { _currentIndex = _indexes.size() - 1; } else { _currentIndex = 0; } delete _iterator; _iterator = nullptr; _iterator = createIterator(); while (_iterator == nullptr) { if (node->_reverse) { --_currentIndex; } else { ++_currentIndex; } if (_currentIndex < _indexes.size()) { // This check will work as long as _indexes.size() < MAX_SIZE_T TRI_ASSERT(_iterator == nullptr); _iterator = createIterator(); } else { // We were not able to initialize any index with this condition return false; } } return true; LEAVE_BLOCK; } //////////////////////////////////////////////////////////////////////////////// /// @brief create an iterator object //////////////////////////////////////////////////////////////////////////////// triagens::arango::IndexIterator* IndexBlock::createIterator() { IndexNode const* node = static_cast(getPlanNode()); auto outVariable = node->outVariable(); auto ast = node->_plan->getAst(); if (_condition == nullptr) { return _indexes[_currentIndex]->getIterator(_trx, _context, ast, nullptr, outVariable, node->_reverse); } TRI_ASSERT(_indexes.size() == _condition->numMembers()); return _indexes[_currentIndex]->getIterator( _trx, _context, ast, _condition->getMember(_currentIndex), outVariable, node->_reverse); } //////////////////////////////////////////////////////////////////////////////// /// @brief Forwards _iterator to the next available index //////////////////////////////////////////////////////////////////////////////// void IndexBlock::startNextIterator() { delete _iterator; _iterator = nullptr; IndexNode const* node = static_cast(getPlanNode()); if (node->_reverse) { --_currentIndex; } else { ++_currentIndex; } if (_currentIndex < _indexes.size()) { // This check will work as long as _indexes.size() < MAX_SIZE_T TRI_ASSERT(_iterator == nullptr); _iterator = createIterator(); } } // this is called every time everything in _documents has been passed on bool IndexBlock::readIndex(size_t atMost) { ENTER_BLOCK; // this is called every time we want more in _documents. // For the primary key index, this only reads the index once, and never // again (although there might be multiple calls to this function). // For the edge, hash or skiplists indexes, initIndexes creates an iterator // and read*Index just reads from the iterator until it is done. // Then initIndexes is read again and so on. This is to avoid reading the // entire index when we only want a small number of documents. if (_documents.empty()) { TRI_IF_FAILURE("IndexBlock::readIndex") { THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG); } _documents.reserve(atMost); } else { _documents.clear(); } if (_iterator == nullptr) { // All indexes exhausted return false; } size_t lastIndexNr = _indexes.size() - 1; bool isReverse = (static_cast(getPlanNode()))->_reverse; bool isLastIndex = (_currentIndex == lastIndexNr && !isReverse) || (_currentIndex == 0 && isReverse); try { size_t nrSent = 0; while (nrSent < atMost && _iterator != nullptr) { TRI_doc_mptr_t* indexElement = _iterator->next(); if (indexElement == nullptr) { startNextIterator(); } else { TRI_IF_FAILURE("IndexBlock::readIndex") { THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG); } if (_alreadyReturned.find(indexElement) == _alreadyReturned.end()) { if (!isLastIndex) { _alreadyReturned.emplace(indexElement); } _documents.emplace_back(*indexElement); ++nrSent; } ++_engine->_stats.scannedIndex; } } } catch (...) { if (_iterator != nullptr) { delete _iterator; _iterator = nullptr; } } _posInDocs = 0; return (!_documents.empty()); LEAVE_BLOCK; } int IndexBlock::initializeCursor(AqlItemBlock* items, size_t pos) { ENTER_BLOCK; int res = ExecutionBlock::initializeCursor(items, pos); if (res != TRI_ERROR_NO_ERROR) { return res; } _pos = 0; _posInDocs = 0; return TRI_ERROR_NO_ERROR; LEAVE_BLOCK; } //////////////////////////////////////////////////////////////////////////////// /// @brief getSome //////////////////////////////////////////////////////////////////////////////// AqlItemBlock* IndexBlock::getSome(size_t atLeast, size_t atMost) { ENTER_BLOCK; if (_done) { return nullptr; } std::unique_ptr res(nullptr); do { // repeatedly try to get more stuff from upstream // note that the value of the variable we have to loop over // can contain zero entries, in which case we have to // try again! if (_buffer.empty()) { size_t toFetch = (std::min)(DefaultBatchSize, atMost); if (!ExecutionBlock::getBlock(toFetch, toFetch) || (!initIndexes())) { _done = true; return nullptr; } _pos = 0; // this is in the first block // This is a new item, so let's read the index (it is already // initialized). readIndex(atMost); } else if (_posInDocs >= _documents.size()) { // we have exhausted our local documents buffer, if (!readIndex(atMost)) { // no more output from this version of the // index AqlItemBlock* cur = _buffer.front(); if (++_pos >= cur->size()) { _buffer.pop_front(); // does not throw delete cur; _pos = 0; } if (_buffer.empty()) { if (!ExecutionBlock::getBlock(DefaultBatchSize, DefaultBatchSize)) { _done = true; return nullptr; } _pos = 0; // this is in the first block } if (!initIndexes()) { _done = true; return nullptr; } readIndex(atMost); } } // If we get here, we do have _buffer.front() and _pos points into it AqlItemBlock* cur = _buffer.front(); size_t const curRegs = cur->getNrRegs(); size_t available = _documents.size() - _posInDocs; size_t toSend = (std::min)(atMost, available); if (toSend > 0) { res.reset(new AqlItemBlock( toSend, getPlanNode()->getRegisterPlan()->nrRegs[getPlanNode()->getDepth()])); // automatically freed should we throw TRI_ASSERT(curRegs <= res->getNrRegs()); // only copy 1st row of registers inherited from previous frame(s) inheritRegisters(cur, res.get(), _pos); // set our collection for our output register res->setDocumentCollection( static_cast(curRegs), _trx->documentCollection(_collection->cid())); for (size_t j = 0; j < toSend; j++) { if (j > 0) { // re-use already copied aqlvalues for (RegisterId i = 0; i < curRegs; i++) { res->setValue(j, i, res->getValueReference(0, i)); // Note: if this throws, then all values will be deleted // properly since the first one is. } } // The result is in the first variable of this depth, // we do not need to do a lookup in // getPlanNode()->_registerPlan->varInfo, // but can just take cur->getNrRegs() as registerId: res->setValue(j, static_cast(curRegs), AqlValue(reinterpret_cast( _documents[_posInDocs++].getDataPtr()))); // No harm done, if the setValue throws! } } } while (res.get() == nullptr); // Clear out registers no longer needed later: clearRegisters(res.get()); return res.release(); LEAVE_BLOCK; } //////////////////////////////////////////////////////////////////////////////// /// @brief skipSome //////////////////////////////////////////////////////////////////////////////// size_t IndexBlock::skipSome(size_t atLeast, size_t atMost) { if (_done) { return 0; } size_t skipped = 0; while (skipped < atLeast) { if (_buffer.empty()) { size_t toFetch = (std::min)(DefaultBatchSize, atMost); if (!ExecutionBlock::getBlock(toFetch, toFetch) || (!initIndexes())) { _done = true; return skipped; } _pos = 0; // this is in the first block // This is a new item, so let's read the index if bounds are variable: readIndex(atMost); } size_t available = _documents.size() - _posInDocs; size_t toSkip = (std::min)(atMost - skipped, available); _posInDocs += toSkip; skipped += toSkip; // Advance read position: if (_posInDocs >= _documents.size()) { // we have exhausted our local documents buffer, if (!readIndex(atMost)) { // If we get here, we do have _buffer.front() and _pos points into it AqlItemBlock* cur = _buffer.front(); if (++_pos >= cur->size()) { _buffer.pop_front(); // does not throw delete cur; _pos = 0; } // let's read the index if bounds are variable: if (!_buffer.empty()) { if (!initIndexes()) { _done = true; return skipped; } readIndex(atMost); } } // If _buffer is empty, then we will fetch a new block in the next round // and then read the index. } } return skipped; } //////////////////////////////////////////////////////////////////////////////// /// @brief frees the memory for all non-constant expressions //////////////////////////////////////////////////////////////////////////////// void IndexBlock::cleanupNonConstExpressions() { for (auto& it : _nonConstExpressions) { delete it; } _nonConstExpressions.clear(); }