Simple queries can be used if the query condition is straight forward, i.e., a document reference, all documents, a query-by-example, or a simple geo query. In a simple query you can specify exactly one collection and one query criteria. In the following sections we describe the JavaScript shell interface for simple queries, which you can use within the ArangoDB shell and within actions and transactions. For other languages see the corresponding language API documentation.
If a query returns a cursor, then you can use hasNext
and next
to iterate over the result set or toArray
to convert it to an array.
If the number of query results is expected to be big, it is possible to limit the amount of documents transferred between the server and the client to a specific value. This value is called batchSize
. The batchSize
can optionally be set before or when a simple query is executed. If the server has more documents than should be returned in a single batch, the server will set the hasMore
attribute in the result. It will also return the id of the server-side cursor in the id
attribute in the result. This id can be used with the cursor API to fetch any outstanding results from the server and dispose the server-side cursor afterwards.
The initial batchSize
value can be set using the setBatchSize
method that is available for each type of simple query, or when the simple query is executed using its execute
method. If no batchSize
value is specified, the server will pick a reasonable default value.
all()
toArray
, next
, or hasNext
to access the result. The result can be limited using the skip
and limit
operator.
Examples
Use toArray
to get all documents at once:
arango> db.five.all().toArray(); [ { _id : 159896:1798296, _rev : 1798296, doc : 3 }, { _id : 159896:1732760, _rev : 1732760, doc : 2 }, { _id : 159896:1863832, _rev : 1863832, doc : 4 }, { _id : 159896:1667224, _rev : 1667224, doc : 1 }, { _id : 159896:1929368, _rev : 1929368, doc : 5 } ]
Use next
to loop over all documents:
arango> var a = db.five.all(); arango> while (a.hasNext()) print(a.next()); { _id : 159896:1798296, _rev : 1798296, doc : 3 } { _id : 159896:1732760, _rev : 1732760, doc : 2 } { _id : 159896:1863832, _rev : 1863832, doc : 4 } { _id : 159896:1667224, _rev : 1667224, doc : 1 } { _id : 159896:1929368, _rev : 1929368, doc : 5 }
collection.byExample(example)
You can use toArray
, next
, or hasNext
to access the result. The result can be limited using the skip
and limit
operator.
An attribute name of the form a.b
is interpreted as attribute path, not as attribute. If you use
{ a : { c : 1 } }
as example, then you will find all documents, such that the attribute a
contains a document of the form {c : 1 }
. E.g., the document
{ a : { c : 1 }, b : 1 }
will match, but the document
{ a : { c : 1, b : 1 } }
will not.
However, if you use
{ a.c : 1 }
,
then you will find all documents, which contain a sub-document in a
that has an attribute c
of value 1
. E.g., both documents
{ a : { c : 1 }, b : 1 }
and
{ a : { c : 1, b : 1 } }
will match.
collection.byExample(path1, value1, ...)
Examples
Use toArray
to get all documents at once:
arango> db.users.all().toArray(); [ { "_id" : "553063885:554702285", "_rev" : 554702285, "id" : 323, "name" : "Peter" }, { "_id" : "553063885:554636749", "_rev" : 554636749, "id" : 535, "name" : "Peter" }, { "_id" : "553063885:554833357", "_rev" : 554833357, "id" : 25, "name" : "Vladimir" } ] arango> db.users.byExample({ "id" : 323 }).toArray(); [ { "id" : 323, "name" : "Peter", "_id" : "553063885:554702285" } ] arango> db.users.byExample({ "name" : "Peter" }).toArray(); [ { "id" : 323, "name" : "Peter", "_id" : "553063885:554702285" }, { "id" : 535, "name" : "Peter", "_id" : "553063885:554636749" } ] arango> db.users.byExample({ "name" : "Peter", "id" : 535 }).toArray(); [ { "id" : 535, "name" : "Peter", "_id" : "553063885:554636749" } ]
Use next
to loop over all documents:
arango> var a = db.users.select( {"name" : "Peter" } ); arango> while (a.hasNext()) print(a.next()); { "id" : 323, "name" : "Peter", "_id" : "553063885:554702285" } { "id" : 535, "name" : "Peter", "_id" : "553063885:554636749" }
collection.firstExample(example)
null
. The example must be specified as paths and values. See byExample
for details.
collection.firstExample(path1, value1, ...)
Examples
arango> db.users.firstExample("name", 1237); { "_id" : "100225/83049373", "_rev" : 83049373, "name" : 1237 }
collection.range(attribute, left, right)
You can use toArray
, next
, or hasNext
to access the result. The result can be limited using the skip
and limit
operator.
An attribute name of the form a.b
is interpreted as attribute path, not as attribute.
Examples
Use toArray
to get all documents at once:
arangod> l = db.skip.range("age", 10, 13).toArray(); [ { "_id" : "2097590/4260278", "_rev" : 4260278, "age" : 10 }, { "_id" : "2097590/4325814", "_rev" : 4325814, "age" : 11 }, { "_id" : "2097590/4391350", "_rev" : 4391350, "age" : 12 } ]
collection.count()
Examples
arango> db.users.count(); 10001
collection.toArray()
The ArangoDB allows to select documents based on geographic coordinates. In order for this to work, a geo-spatial index must be defined. This index will use a very elaborate algorithm to lookup neighbors that is a magnitude faster than a simple R* index.
In general a geo coordinate is a pair of latitude and longitude. This can either be an list with two elements like [-10, +30]
(latitude first, followed by longitude) or an object like {lon: -10, lat: +30}
. In order to find all documents within a given radius around a coordinate use the within
operator. In order to find all documents near a given document use the near
operator.
It is possible to define more than one geo-spatial index per collection. In this case you must give a hint using the geo
operator which of indexes should be used in a query.
collection.near(latitude, longitude)
The default will find at most 100 documents near the coordinate (latitude, longitude). The returned list is sorted according to the distance, with the nearest document coming first. If there are near documents of equal distance, documents are chosen randomly from this set until the limit is reached. It is possible to change the limit using the limit operator.
In order to use the near
operator, a geo index must be defined for the collection. This index also defines which attribute holds the coordinates for the document. If you have more then one geo-spatial index, you can use the geo
operator to select a particular index.
near
does not support negative skips. However, you can still use limit
followed to skip
.collection.near(latitude, longitude).limit(limit)
Limits the result to limit documents instead of the default 100.
within
.collection.near(latitude, longitude).distance()
This will add an attribute distance
to all documents returned, which contains the distance between the given point and the document in meter.
collection.near(latitude, longitude).distance(name)
This will add an attribute name to all documents returned, which contains the distance between the given point and the document in meter.
Examples
To get the nearst two locations:
arango> db.geo.near(0,0).limit(2).toArray(); [ { _id : 131840:24773376, _rev : 24773376, name : Name/0/0, loc : [ 0, 0 ] }, { _id : 131840:22348544, _rev : 22348544, name : Name/-10/0, loc : [ -10, 0 ] } ]
If you need the distance as well, then you can use the distance
operator:
arango> db.geo.near(0,0).distance().limit(2).toArray(); [ { _id : 131840:24773376, _rev : 24773376, distance : 0, name : Name/0/0, loc : [ 0, 0 ] }, { _id : 131840:22348544, _rev : 22348544, distance : 1111949.3, name : Name/-10/0, loc : [ -10, 0 ] } ]
collection.within(latitude, longitude, radius)
This will find all documents with in a given radius around the coordinate (latitude, longitude). The returned list is sorted by distance.
In order to use the within
operator, a geo index must be defined for the collection. This index also defines which attribute holds the coordinates for the document. If you have more then one geo-spatial index, you can use the geo
operator to select a particular index.
collection.within(latitude, longitude, radius) .distance()
This will add an attribute _distance
to all documents returned, which contains the distance between the given point and the document in meter.
collection.within(latitude, longitude, radius) .distance(name)
This will add an attribute name to all documents returned, which contains the distance between the given point and the document in meter.
Examples
To find all documents within a radius of 2000 km use:
arango> db.geo.within(0, 0, 2000 * 1000).distance().toArray(); [ { _id : 131840:24773376, _rev : 24773376, distance : 0, name : Name/0/0, loc : [ 0, 0 ] }, { _id : 131840:24707840, _rev : 24707840, distance : 1111949.3, name : Name/0/-10, loc : [ 0, -10 ] }, { _id : 131840:24838912, _rev : 24838912, distance : 1111949.3, name : Name/0/10, loc : [ 0, 10 ] }, { _id : 131840:22348544, _rev : 22348544, distance : 1111949.3, name : Name/-10/0, loc : [ -10, 0 ] }, { _id : 131840:27198208, _rev : 27198208, distance : 1111949.3, name : Name/10/0, loc : [ 10, 0 ] }, { _id : 131840:22414080, _rev : 22414080, distance : 1568520.6, name : Name/-10/10, loc : [ -10, 10 ] }, { _id : 131840:27263744, _rev : 27263744, distance : 1568520.6, name : Name/10/10, loc : [ 10, 10 ] }, { _id : 131840:22283008, _rev : 22283008, distance : 1568520.6, name : Name/-10/-10, loc : [ -10, -10 ] }, { _id : 131840:27132672, _rev : 27132672, distance : 1568520.6, name : Name/10/-10, loc : [ 10, -10 ] } ]
collection.geo(location)
The next near
or within
operator will use the specific geo-spatial index.
collection.geo(location, true
)
The next near
or within
operator will use the specific geo-spatial index.
collection.geo(latitude, longitude)
The next near
or within
operator will use the specific geo-spatial index.
Examples
Assume you have a location stored as list in the attribute home
and a destination stored in the attribute work
. Than you can use the geo
operator to select, which coordinates to use in a near query.
arango> for (i = -90; i <= 90; i += 10) { .......> for (j = -180; j <= 180; j += 10) { .......> db.complex.save({ name : "Name/" + i + "/" + j, .......> home : [ i, j ], .......> work : [ -i, -j ] }); .......> } .......> } arango> db.complex.near(0, 170).limit(5); exception in file '/simple-query' at 1018,5: an geo-index must be known arango> db.complex.ensureGeoIndex("home"); arango> db.complex.near(0, 170).limit(5).toArray(); [ { _id : 48834092:74655276, _rev : 74655276, name : Name/0/170, home : [ 0, 170 ], work : [ 0, -170 ] }, { _id : 48834092:74720812, _rev : 74720812, name : Name/0/180, home : [ 0, 180 ], work : [ 0, -180 ] }, { _id : 48834092:77080108, _rev : 77080108, name : Name/10/170, home : [ 10, 170 ], work : [ -10, -170 ] }, { _id : 48834092:72230444, _rev : 72230444, name : Name/-10/170, home : [ -10, 170 ], work : [ 10, -170 ] }, { _id : 48834092:72361516, _rev : 72361516, name : Name/0/-180, home : [ 0, -180 ], work : [ 0, 180 ] } ] arango> db.complex.geo("work").near(0, 170).limit(5); exception in file '/simple-query' at 1018,5: an geo-index must be known arango> db.complex.ensureGeoIndex("work"); arango> db.complex.geo("work").near(0, 170).limit(5).toArray(); [ { _id : 48834092:72427052, _rev : 72427052, name : Name/0/-170, home : [ 0, -170 ], work : [ 0, 170 ] }, { _id : 48834092:72361516, _rev : 72361516, name : Name/0/-180, home : [ 0, -180 ], work : [ 0, 180 ] }, { _id : 48834092:70002220, _rev : 70002220, name : Name/-10/-170, home : [ -10, -170 ], work : [ 10, 170 ] }, { _id : 48834092:74851884, _rev : 74851884, name : Name/10/-170, home : [ 10, -170 ], work : [ -10, 170 ] }, { _id : 48834092:74720812, _rev : 74720812, name : Name/0/180, home : [ 0, 180 ], work : [ 0, -180 ] } ]
If, for example, you display the result of a user search, then you are in general not interested in the completed result set, but only the first 10 or so documents. Or maybe the next 10 documents for the second page. In this case, you can the skip
and limit
operators. These operators work like LIMIT in MySQL.
skip
used together with limit
can be used to implement pagination. The skip
operator skips over the first n documents. So, in order to create result pages with 10 result documents per page, you can use skip(n * 10).limit(10)
to access the 10 documents on the n.th page. This result should be sorted, so that the pagination works in a predicable way.
query.limit(number)
0
returns no documents at all. If you do not need a limit, just do not add the limit operator. The limit must be non-negative.
In general the input to limit
should be sorted. Otherwise it will be unclear which documents are used in the result set.
Examples
arango> db.five.all().toArray(); [ { _id : 159896:1798296, _rev : 1798296, doc : 3 }, { _id : 159896:1732760, _rev : 1732760, doc : 2 }, { _id : 159896:1863832, _rev : 1863832, doc : 4 }, { _id : 159896:1667224, _rev : 1667224, doc : 1 }, { _id : 159896:1929368, _rev : 1929368, doc : 5 } ] arango> db.five.all().limit(2).toArray(); [ { _id : 159896:1798296, _rev : 1798296, doc : 3 }, { _id : 159896:1732760, _rev : 1732760, doc : 2 } ] arango> db.five.all().limit(-2); [ { _id : 159896:1667224, _rev : 1667224, doc : 1 }, { _id : 159896:1929368, _rev : 1929368, doc : 5 } ]
query.skip(number)
In general the input to limit
should be sorted. Otherwise it will be unclear which documents are used in the result set.
Examples
arango> db.five.all().toArray(); [ { _id : 159896:1798296, _rev : 1798296, doc : 3 }, { _id : 159896:1732760, _rev : 1732760, doc : 2 }, { _id : 159896:1863832, _rev : 1863832, doc : 4 }, { _id : 159896:1667224, _rev : 1667224, doc : 1 }, { _id : 159896:1929368, _rev : 1929368, doc : 5 } ] arango> db.five.all().skip(3).toArray(); [ { _id : 159896:1667224, _rev : 1667224, doc : 1 }, { _id : 159896:1929368, _rev : 1929368, doc : 5 } ]
cursor.hasNext()
hasNext
operator returns true
, then the cursor still has documents. In this case the next document can be accessed using the next
operator, which will advance the cursor.
Examples
arango> var a = db.five.all(); arango> while (a.hasNext()) print(a.next()); { _id : 159896:1798296, _rev : 1798296, doc : 3 } { _id : 159896:1732760, _rev : 1732760, doc : 2 } { _id : 159896:1863832, _rev : 1863832, doc : 4 } { _id : 159896:1667224, _rev : 1667224, doc : 1 } { _id : 159896:1929368, _rev : 1929368, doc : 5 }
cursor.next()
hasNext
operator returns true
, then the underlying cursor of the simple query still has documents. In this case the next document can be accessed using the next
operator, which will advance the underlying cursor. If you use next
on an exhausted cursor, then undefined
is returned.
Examples
arango> db.five.all().next(); { _id : 159896:1798296, _rev : 1798296, doc : 3 }
cursor.setBatchSize(number)
cursor.getBatchSize()
query.execute(batchSize)
batchSize
values in one roundtrip. The batchSize cannot be adjusted after the query is first executed.
Note that there is no need to explicitly call the execute method if another means of fetching the query results is chosen. The following two approaches lead to the same result:
result = db.users.all().toArray();
q = db.users.all(); q.execute(); result = [ ]; while (q.hasNext()) { result.push(q.next()); }
The following two alternatives both use a batchSize and return the same result:
q = db.users.all(); q.setBatchSize(20); q.execute(); while (q.hasNext()) { print(q.next()); } q = db.users.all(); q.execute(20); while (q.hasNext()) { print(q.next()); }
cursor.dispose()
dispose
in order to free any resources associated with the cursor. After calling dispose
you can no longer access the cursor.
cursor.count()
count
operator counts the number of document in the result set and returns that number. The count
operator ignores any limits and returns the total number of documents found.
null
is returned.cursor.count(true
)
limit
operator or documents were skiped using the skip
operator, the count
operator with argument true
will use the number of elements in the final result set - after applying limit
and skip
.
null
is returned.Examples
Ignore any limit:
arango> db.five.all().limit(2).count(); 5
Counting any limit or skip:
arango> db.five.all().limit(2).count(true); 2