1
0
Fork 0
arangodb/lib/Basics/memory-map-win32.cpp

365 lines
14 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Dr. Oreste Costa-Panaia
////////////////////////////////////////////////////////////////////////////////
#include "memory-map.h"
#ifdef TRI_HAVE_WIN32_MMAP
#include "Basics/tri-strings.h"
#include "Logger/Logger.h"
#include "Windows.h"
using namespace arangodb;
////////////////////////////////////////////////////////////////////////////////
/// @brief flushes changes made in memory back to disk
////////////////////////////////////////////////////////////////////////////////
int TRI_FlushMMFile(int fileDescriptor, void* startingAddress,
size_t numOfBytesToFlush, int flags) {
// ...........................................................................
// Possible flags to send are (based upon the Ubuntu Linux ASM include files:
// #define MS_ASYNC 1 /* sync memory asynchronously */
// #define MS_INVALIDATE 2 /* invalidate the caches */
// #define MS_SYNC 4 /* synchronous memory sync */
// Note: under windows all flushes are achieved synchronously, however
// under windows, there is no guarentee that the underlying disk hardware
// cache has physically written to disk.
// FlushFileBuffers ensures file written to disk
// ...........................................................................
// ...........................................................................
// Whenever we talk to the memory map functions, we require a file handle
// rather than a file descriptor. However, we only store file descriptors for
// now - this may change.
// ...........................................................................
if (fileDescriptor < 0) {
// an invalid file descriptor of course means an invalid handle
return TRI_ERROR_NO_ERROR;
}
// ...........................................................................
// Attempt to convert file descriptor into an operating system file handle
// ...........................................................................
HANDLE fileHandle = (HANDLE)_get_osfhandle(fileDescriptor);
// ...........................................................................
// An invalid file system handle was returned.
// ...........................................................................
if (fileHandle == INVALID_HANDLE_VALUE) {
return TRI_ERROR_SYS_ERROR;
}
BOOL result = FlushViewOfFile(startingAddress, numOfBytesToFlush);
if (result && ((flags & MS_SYNC) == MS_SYNC)) {
result = FlushFileBuffers(fileHandle);
}
if (result) {
return TRI_ERROR_NO_ERROR;
}
return TRI_ERROR_ARANGO_MSYNC_FAILED;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief maps a file on disk onto memory
////////////////////////////////////////////////////////////////////////////////
int TRI_MMFile(void* memoryAddress, size_t numOfBytesToInitialize,
int memoryProtection, int flags, int fileDescriptor,
void** mmHandle, int64_t offset, void** result) {
DWORD objectProtection = PAGE_READONLY;
DWORD viewProtection = FILE_MAP_READ;
LARGE_INTEGER mmLength;
HANDLE fileHandle;
// ...........................................................................
// Set the high and low order 32 bits for using a 64 bit integer
// ...........................................................................
mmLength.QuadPart = numOfBytesToInitialize;
// ...........................................................................
// Whenever we talk to the memory map functions, we require a file handle
// rather than a file descriptor.
// ...........................................................................
if (fileDescriptor < 0) {
// .........................................................................
// An invalid file descriptor of course means an invalid handle.
// Having an invalid handle could mean (i) an error, or more likely,
// (ii) a request for an anonymous memory mapped file. Determine this below
// .........................................................................
fileHandle = INVALID_HANDLE_VALUE;
if ((flags & MAP_ANONYMOUS) != MAP_ANONYMOUS) {
LOG_TOPIC("50bf3", DEBUG, arangodb::Logger::FIXME)
<< "File descriptor is invalid however memory map flag is not "
"anonymous";
return TRI_ERROR_SYS_ERROR;
}
}
else {
// ...........................................................................
// Attempt to convert file descriptor into an operating system file handle
// ...........................................................................
fileHandle = (HANDLE)_get_osfhandle(fileDescriptor);
// ...........................................................................
// An invalid file system handle was returned.
// ...........................................................................
if (fileHandle == INVALID_HANDLE_VALUE) {
LOG_TOPIC("f8d53", DEBUG, arangodb::Logger::FIXME)
<< "File descriptor converted to an invalid handle";
return TRI_ERROR_SYS_ERROR;
}
}
// ...........................................................................
// There are two steps for mapping a file:
// Create the handle and then bring the memory mapped file into 'view'
// ...........................................................................
// ...........................................................................
// Create the memory-mapped file object. For windows there is no PROT_NONE
// so we assume no execution and only read access
// ...........................................................................
// res = TRI_MMFile(0, maximalSize, PROT_WRITE | PROT_READ, MAP_SHARED, &fd,
// &mmHandle, 0, &data);
// ...........................................................................
// If the fileHandle (or file descriptor) is set to NULL, then the are not
// memory mapping a real file, rather the file resides in virtual memory
// ...........................................................................
if ((flags & PROT_READ) == PROT_READ) {
if ((flags & PROT_EXEC) == PROT_EXEC) {
if ((flags & PROT_WRITE) == PROT_WRITE) {
objectProtection = PAGE_EXECUTE_READWRITE;
viewProtection = FILE_MAP_ALL_ACCESS | FILE_MAP_EXECUTE;
} else {
objectProtection = PAGE_EXECUTE_READ;
viewProtection = FILE_MAP_READ | FILE_MAP_EXECUTE;
}
}
else if ((flags & PROT_WRITE) == PROT_WRITE) {
objectProtection = PAGE_READWRITE;
viewProtection = FILE_MAP_ALL_ACCESS;
}
else {
objectProtection = PAGE_READONLY;
}
} // end of PROT_READ
else if ((flags & PROT_EXEC) == PROT_EXEC) {
if ((flags & PROT_WRITE) == PROT_WRITE) {
objectProtection = PAGE_EXECUTE_READWRITE;
viewProtection = FILE_MAP_ALL_ACCESS | FILE_MAP_EXECUTE;
} else {
objectProtection = PAGE_EXECUTE_READ;
viewProtection = FILE_MAP_READ | FILE_MAP_EXECUTE;
}
} // end of PROT_EXEC
else if ((flags & PROT_WRITE) == PROT_WRITE) {
objectProtection = PAGE_READWRITE;
viewProtection = FILE_MAP_ALL_ACCESS;
}
// ...........................................................................
// TODO: determine the correct memory protection and then uncomment
// ...........................................................................
// *mmHandle = CreateFileMapping(fileHandle, NULL, objectProtection,
// mmLength.HighPart, mmLength.LowPart, NULL);
*mmHandle = CreateFileMapping(fileHandle, NULL, PAGE_READWRITE,
mmLength.HighPart, mmLength.LowPart, NULL);
// ...........................................................................
// If we have failed for some reason return system error for now.
// TODO: map windows error codes to triagens.
// We do however output some trace information with the errorcode
// ...........................................................................
if (*mmHandle == nullptr) {
DWORD errorCode = GetLastError();
LOG_TOPIC("fdeff", DEBUG, arangodb::Logger::FIXME)
<< "File descriptor converted to an invalid handle: " << errorCode;
return TRI_ERROR_SYS_ERROR;
}
// ........................................................................
// We have a valid mm handle, now map the view. We let the OS decide
// where this view is placed in memory.
// ........................................................................
// TODO: fix the viewProtection above *result = MapViewOfFile(*mmHandle,
// viewProtection, 0, 0, 0);
*result = MapViewOfFile(*mmHandle, FILE_MAP_ALL_ACCESS, 0, 0, numOfBytesToInitialize);
// ........................................................................
// The map view of file has failed.
// ........................................................................
if (*result == nullptr) {
DWORD errorCode = GetLastError();
CloseHandle(*mmHandle);
// we have failure for some reason
// TODO: map the error codes of windows to the TRI_ERROR (see function DWORD
// WINAPI GetLastError(void) );
if (errorCode == ERROR_NOT_ENOUGH_MEMORY) {
LOG_TOPIC("0d5c4", DEBUG, arangodb::Logger::FIXME)
<< "MapViewOfFile failed with out of memory error " << errorCode;
return TRI_ERROR_OUT_OF_MEMORY;
}
LOG_TOPIC("d8a79", DEBUG, arangodb::Logger::FIXME)
<< "MapViewOfFile failed with error code = " << errorCode;
return TRI_ERROR_SYS_ERROR;
}
LOG_TOPIC("048dd", DEBUG, Logger::MMAP)
<< "memory-mapped range " << Logger::RANGE(*result, numOfBytesToInitialize)
<< ", file-descriptor " << fileDescriptor;
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief 'unmaps' or removes memory associated with a memory mapped file
////////////////////////////////////////////////////////////////////////////////
int TRI_UNMMFile(void* memoryAddress, size_t numOfBytesToUnMap,
int fileDescriptor, void** mmHandle) {
// UnmapViewOfFile: If the function succeeds, the return value is nonzero.
bool ok = (UnmapViewOfFile(memoryAddress) != 0);
if (!ok) {
DWORD errorCode = GetLastError();
LOG_TOPIC("40bfe", WARN, arangodb::Logger::FIXME)
<< "UnmapViewOfFile returned an error: " << errorCode;
}
if (CloseHandle(*mmHandle) == 0) {
DWORD errorCode = GetLastError();
LOG_TOPIC("01945", WARN, arangodb::Logger::FIXME)
<< "CloseHandle returned an error: " << errorCode;
ok = false;
}
if (!ok) {
return TRI_ERROR_SYS_ERROR;
}
LOG_TOPIC("447d8", DEBUG, Logger::MMAP) << "memory-unmapped range "
<< Logger::RANGE(memoryAddress, numOfBytesToUnMap)
<< ", file-descriptor " << fileDescriptor;
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief sets various protection levels with the memory mapped file
////////////////////////////////////////////////////////////////////////////////
int TRI_ProtectMMFile(void* memoryAddress, size_t numOfBytesToProtect,
int flags, int fileDescriptor) {
DWORD objectProtection = PAGE_READONLY;
DWORD viewProtection = FILE_MAP_READ;
if ((flags & PROT_READ) == PROT_READ) {
if ((flags & PROT_EXEC) == PROT_EXEC) {
if ((flags & PROT_WRITE) == PROT_WRITE) {
objectProtection = PAGE_EXECUTE_READWRITE;
viewProtection = FILE_MAP_ALL_ACCESS | FILE_MAP_EXECUTE;
} else {
objectProtection = PAGE_EXECUTE_READ;
viewProtection = FILE_MAP_READ | FILE_MAP_EXECUTE;
}
}
else if ((flags & PROT_WRITE) == PROT_WRITE) {
objectProtection = PAGE_READWRITE;
viewProtection = FILE_MAP_ALL_ACCESS;
}
else {
objectProtection = PAGE_READONLY;
}
} // end of PROT_READ
else if ((flags & PROT_EXEC) == PROT_EXEC) {
if ((flags & PROT_WRITE) == PROT_WRITE) {
objectProtection = PAGE_EXECUTE_READWRITE;
viewProtection = FILE_MAP_ALL_ACCESS | FILE_MAP_EXECUTE;
} else {
objectProtection = PAGE_EXECUTE_READ;
viewProtection = FILE_MAP_READ | FILE_MAP_EXECUTE;
}
} // end of PROT_EXEC
else if ((flags & PROT_WRITE) == PROT_WRITE) {
objectProtection = PAGE_READWRITE;
viewProtection = FILE_MAP_ALL_ACCESS;
}
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief gives hints about upcoming sequential memory usage
////////////////////////////////////////////////////////////////////////////////
int TRI_MMFileAdvise(void*, size_t, int) {
// Not on Windows
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief locks a region in memory
////////////////////////////////////////////////////////////////////////////////
int TRI_MMFileLock(void* memoryAddress, size_t numOfBytes) {
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief unlocks a mapped region from memory
////////////////////////////////////////////////////////////////////////////////
int TRI_MMFileUnlock(void* memoryAddress, size_t numOfBytes) {
return TRI_ERROR_NO_ERROR;
}
#endif