mirror of https://gitee.com/bigwinds/arangodb
2294 lines
80 KiB
C++
2294 lines
80 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
/// DISCLAIMER
|
|
///
|
|
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
|
|
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
|
|
///
|
|
/// Licensed under the Apache License, Version 2.0 (the "License");
|
|
/// you may not use this file except in compliance with the License.
|
|
/// You may obtain a copy of the License at
|
|
///
|
|
/// http://www.apache.org/licenses/LICENSE-2.0
|
|
///
|
|
/// Unless required by applicable law or agreed to in writing, software
|
|
/// distributed under the License is distributed on an "AS IS" BASIS,
|
|
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
/// See the License for the specific language governing permissions and
|
|
/// limitations under the License.
|
|
///
|
|
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
|
|
///
|
|
/// @author R. A. Parker
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/* GeoIndex.c - GeoIndex algorithms */
|
|
/* Version 2.1 8.1.2012 R. A. Parker */
|
|
#define _USE_MATH_DEFINES
|
|
#include <math.h>
|
|
|
|
#include "GeoIndex.h"
|
|
|
|
/* Radius of the earth used for distances */
|
|
#define EARTHRADIAN 6371000.0
|
|
|
|
#define GEOSLOTSTART 50
|
|
#define GEOPOTSTART 100
|
|
|
|
#if GeoIndexFIXEDSET == 2
|
|
#define GeoIndexFIXEDPOINTS 2
|
|
#endif
|
|
#if GeoIndexFIXEDSET == 3
|
|
#define GeoIndexFIXEDPOINTS 3
|
|
#endif
|
|
#if GeoIndexFIXEDSET == 4
|
|
#define GeoIndexFIXEDPOINTS 4
|
|
#endif
|
|
#if GeoIndexFIXEDSET == 5
|
|
#define GeoIndexFIXEDPOINTS 5
|
|
#endif
|
|
#if GeoIndexFIXEDSET == 6
|
|
#define GeoIndexFIXEDPOINTS 6
|
|
#endif
|
|
#if GeoIndexFIXEDSET == 8
|
|
#define GeoIndexFIXEDPOINTS 8
|
|
#endif
|
|
#ifndef GeoIndexFIXEDPOINTS
|
|
#define GeoIndexFIXEDPOINTS 1
|
|
#endif
|
|
|
|
/* =================================================== */
|
|
/* GeoIndexFixed structure. */
|
|
/* Only occurs once, and that is in the GeoIx struct */
|
|
/* holds the x,y and z coordinates (between -1 and +1) */
|
|
/* of the fixed points used for pot rejection purposes */
|
|
/* They are computed at GeoIndex_new time and not */
|
|
/* changed after that */
|
|
/* =================================================== */
|
|
typedef struct {
|
|
double x[GeoIndexFIXEDPOINTS];
|
|
double y[GeoIndexFIXEDPOINTS];
|
|
double z[GeoIndexFIXEDPOINTS];
|
|
} GeoIndexFixed;
|
|
/* =================================================== */
|
|
/* GeoPot structure */
|
|
/* These only occur in the main index itself, and the */
|
|
/* GeoIx structure has an array of them. The data */
|
|
/* items are arranged so that the access during a */
|
|
/* search is approximately sequential, which should be */
|
|
/* a little faster on most machines. */
|
|
/* The first two data items are used for several */
|
|
/* different purposes. LorLeaf is zero for a leaf pot */
|
|
/* and the left child for a non-leaf pot. RorPoints */
|
|
/* is the right child for a non-leaf pot, and the */
|
|
/* number of points in the pot for a leaf pot */
|
|
/* The three GeoString values give the bounds (weak) */
|
|
/* for the Hilbert values in this pot. middle is not */
|
|
/* used for a leaf pot. */
|
|
/* maxdist is the maximum, over all points descendent */
|
|
/* from this pot, of the distances to the fixed points */
|
|
/* level is the AVL-level. It is 1 for a leaf pot, */
|
|
/* and always at least 1 more and at most 2 more than */
|
|
/* each of its children, and exactly 1 more than at */
|
|
/* least one of its children, - the AVL spec. */
|
|
/* "points" lists the slotid of the points. This is */
|
|
/* only used for a leaf pot. */
|
|
/* =================================================== */
|
|
typedef struct {
|
|
int LorLeaf;
|
|
int RorPoints;
|
|
GeoString middle;
|
|
GeoFix maxdist[GeoIndexFIXEDPOINTS];
|
|
GeoString start;
|
|
GeoString end;
|
|
int level;
|
|
int points[GeoIndexPOTSIZE];
|
|
} GeoPot;
|
|
/* =================================================== */
|
|
/* GeoIx structure */
|
|
/* This is the REAL GeoIndex structure - the one in */
|
|
/* the GeoIndex.h file is just a sham (it says it is */
|
|
/* a char!) to keep the structure private so that the */
|
|
/* GeoIndex.h is short and contains only data of */
|
|
/* interest to the user. */
|
|
/* The GeoIx structure basically consists of two */
|
|
/* arrays - the slots (the points) and the pots (the */
|
|
/* Balanced (AVL) search tree for finding near points) */
|
|
/* The Fixed-point data is held here also, giving the */
|
|
/* x, y and z coordinates of the fixed points, this */
|
|
/* data being the fastest to use */
|
|
/* potct and slotct are used when the index needs to */
|
|
/* grow (because it has run out of slots or pots) */
|
|
/* There is no provision at present for the index to */
|
|
/* get smaller when the majority of points are deleted */
|
|
/* =================================================== */
|
|
typedef struct {
|
|
GeoIndexFixed fixed; /* fixed point data */
|
|
int potct; /* pots allocated */
|
|
int slotct; /* slots allocated */
|
|
GeoPot* pots; /* the pots themselves */
|
|
GeoCoordinate* gc; /* the slots themselves */
|
|
size_t _memoryUsed; /* the amount of memory currently used */
|
|
} GeoIx;
|
|
/* =================================================== */
|
|
/* GeoDetailedPoint structure */
|
|
/* The routine GeoMkDetail is given a point - really */
|
|
/* just a latitude and longitude, and computes all the */
|
|
/* values in this GeoDetailedPoint structure. */
|
|
/* This is intended to include everything that will be */
|
|
/* needed about the point, and is called both for the */
|
|
/* searches (count and distance) and the updates */
|
|
/* (insert and remove). It is only ever useful */
|
|
/* locally - it is created, populated, used and */
|
|
/* forgotten all within a single user's call */
|
|
/* the GeoIx is noted there to simplify some calls */
|
|
/* The GeoCoordinate (a pointer to the user's one) */
|
|
/* is included. The x, y and z coordinates (between */
|
|
/* 1 and -1) are computed, as is the GeoString - the */
|
|
/* Hilbert curve value used to decide where in the */
|
|
/* index a point belongs. The fixdist array is the */
|
|
/* distance to the fixed points. */
|
|
/* The other two entries (snmd and distrej) are not */
|
|
/* computed by GeoMkDetail, but are put put in place */
|
|
/* later, for the searches only, by GeoSetDistance. */
|
|
/* They basically hold the radius of the circle around */
|
|
/* the target point outside which indexed points will */
|
|
/* be too far to be of interest. This is set once and */
|
|
/* for all in the case of a search-by-distance, but */
|
|
/* for a search-by-count the interesting distance */
|
|
/* decreases as further points are found. */
|
|
/* Anyway, snmd hold the radius in SNMD form (squared */
|
|
/* normalized mole distance) being the distance in */
|
|
/* three-dimensional space between two points passing */
|
|
/* through the earth (as a mole digs!) - this being */
|
|
/* the fastest to compute on the fly, and is used for */
|
|
/* looking at individual points to decide whether to */
|
|
/* include them. The distrej array, on the other hand */
|
|
/* is the array of distances to the fixed points, and */
|
|
/* is used to reject pots (leaf or non-leaf). */
|
|
/* The routine GeoPotJunk is used to test this, */
|
|
/* by comparing the distances in the pot the this array*/
|
|
/* =================================================== */
|
|
typedef struct {
|
|
GeoIx* gix;
|
|
GeoCoordinate* gc;
|
|
double x;
|
|
double y;
|
|
double z;
|
|
GeoString gs;
|
|
GeoFix fixdist[GeoIndexFIXEDPOINTS];
|
|
double snmd;
|
|
GeoFix distrej[GeoIndexFIXEDPOINTS];
|
|
} GeoDetailedPoint;
|
|
/* =================================================== */
|
|
/* GeoResults structure */
|
|
/* During the searches, this structure is used to */
|
|
/* accumulate the points that will be returned */
|
|
/* In the case of a search-by-distance, the results are*/
|
|
/* simply a list, which is grown by about 50% if the */
|
|
/* initial allocation (100) is inadequte. In the case */
|
|
/* of a search-by-count, the exact number needed is */
|
|
/* known from the start, but the structure is not just */
|
|
/* a simple list in this case. Instead it is organized*/
|
|
/* as a "priority queue" to enable large values of the */
|
|
/* <count> parameter to be rapidly processed. In the */
|
|
/* case of count, each value is kept to be larger that */
|
|
/* both of its "children" - at 2n+1 and 2n+2. Hence */
|
|
/* the largest distance is always at position 0 and can*/
|
|
/* be readily found, but if it is to be replaced, there*/
|
|
/* is some procession (no more than log(count) work) */
|
|
/* to do to find the correct place to insert the new */
|
|
/* one in the priority queue. This work is done in the*/
|
|
/* GeoResultsInsertPoint routine (not used by distance)*/
|
|
/* =================================================== */
|
|
typedef struct {
|
|
int pointsct;
|
|
int allocpoints;
|
|
int* slot;
|
|
double* snmd;
|
|
} GeoResults;
|
|
/* =================================================== */
|
|
/* GeoStack structure */
|
|
/* During searches of both kinds, at any time there is */
|
|
/* this "stack" (first-in-last-out) of pots still to be*/
|
|
/* processed. At the start of a search of either type,*/
|
|
/* this structure is populated (by GeoStackSet) by */
|
|
/* starting at the root pot, and selecting a child that*/
|
|
/* could contain the target point. The other pot is */
|
|
/* put on the stack and processing continues. The */
|
|
/* stack is then processed by taking a pot off, */
|
|
/* discarding it if the maximum distance to a fixed */
|
|
/* point is too low, and otherwise putting both the */
|
|
/* children onto the stack (since it is faster to do */
|
|
/* this than suffer the cache miss to determine whether*/
|
|
/* either or both of the children can be rejected) */
|
|
/* =================================================== */
|
|
typedef struct {
|
|
GeoResults* gr;
|
|
GeoDetailedPoint* gd;
|
|
int stacksize;
|
|
int potid[50];
|
|
} GeoStack;
|
|
/* =================================================== */
|
|
/* GeoPath structure */
|
|
/* Similar in many ways to the GeoStack, above, this */
|
|
/* structure is used during insertion and deletion. */
|
|
/* Notice that the pots of the index to not contain */
|
|
/* pointers to their parent, since this is not needed */
|
|
/* during a search. During insertion and removal, */
|
|
/* however, it is necessary to move upwards to */
|
|
/* propogate the maximum distances and to balance the */
|
|
/* tree. Hence the GeoFind procedure, called at the */
|
|
/* beginning of insertion and deletion, populates this */
|
|
/* structure so that the full path from the root node */
|
|
/* to the current pot being considered is known, and */
|
|
/* its parent found when needed. */
|
|
/* =================================================== */
|
|
typedef struct {
|
|
GeoIx* gix;
|
|
int pathlength;
|
|
int path[50];
|
|
} GeoPath;
|
|
|
|
/* =================================================== */
|
|
/* GeoIndex_Distance routine */
|
|
/* This is the user-facing routine to compute the */
|
|
/* distance in meters between any two points, given */
|
|
/* by latitude and longitude in a pair of GeoCoordinate*/
|
|
/* structures. It operates by first converting the */
|
|
/* two points into x, y and z coordinates in 3-space, */
|
|
/* then computing the distance between them (again in */
|
|
/* three space) using Pythagoras, computing the angle */
|
|
/* subtended at the earth's centre, between the two */
|
|
/* points, and finally muliply this angle (in radians) */
|
|
/* by the earth's radius to convert it into meters. */
|
|
/* =================================================== */
|
|
double GeoIndex_distance(GeoCoordinate* c1, GeoCoordinate* c2) {
|
|
/* math.h under MacOS defines y1 and j1 as global variable */
|
|
double xx1, yy1, z1, x2, y2, z2, mole;
|
|
z1 = sin(c1->latitude * M_PI / 180.0);
|
|
xx1 = cos(c1->latitude * M_PI / 180.0) * cos(c1->longitude * M_PI / 180.0);
|
|
yy1 = cos(c1->latitude * M_PI / 180.0) * sin(c1->longitude * M_PI / 180.0);
|
|
z2 = sin(c2->latitude * M_PI / 180.0);
|
|
x2 = cos(c2->latitude * M_PI / 180.0) * cos(c2->longitude * M_PI / 180.0);
|
|
y2 = cos(c2->latitude * M_PI / 180.0) * sin(c2->longitude * M_PI / 180.0);
|
|
mole = sqrt((xx1 - x2) * (xx1 - x2) + (yy1 - y2) * (yy1 - y2) +
|
|
(z1 - z2) * (z1 - z2));
|
|
if (mole > 2.0) mole = 2.0; /* make sure arcsin succeeds! */
|
|
return 2.0 * EARTHRADIAN * asin(mole / 2.0);
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndexFreePot */
|
|
/* takes the supplied pot, and puts it back onto the */
|
|
/* free list. */
|
|
/* =================================================== */
|
|
void GeoIndexFreePot(GeoIx* gix, int pot) {
|
|
gix->pots[pot].LorLeaf = gix->pots[0].LorLeaf;
|
|
gix->pots[0].LorLeaf = pot;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndexNewPot */
|
|
/* During insertion, it may happen that a leaf pot */
|
|
/* becomes full. In this case this routine is called */
|
|
/* (always twice, as it happens) to allocate a new */
|
|
/* leaf pot, and a new pot to become the parent of both*/
|
|
/* the old and the new leaf pots. Usually this will */
|
|
/* be a simple matter of taking a pot off the free */
|
|
/* list, but occasionally the free list will be empty, */
|
|
/* in which case the pot array must be realloced. */
|
|
/* NOTICE that in this case, the pots may have moved, */
|
|
/* so it is critically important ot ensure that any */
|
|
/* pointers to pots are re-computed after this routine */
|
|
/* has been called! The GeoIndex_insert routine is */
|
|
/* therefore careful to get the new pots (if any are */
|
|
/* needed) before it gets too far into things. */
|
|
/* =================================================== */
|
|
int GeoIndexNewPot(GeoIx* gix) {
|
|
int j;
|
|
GeoPot* gp;
|
|
if (gix->pots[0].LorLeaf == 0) {
|
|
/* do the growth calculation in long long to make sure it doesn't */
|
|
/* overflow when the size gets to be near 2^31 */
|
|
long long x = gix->potct;
|
|
long long y = 100 + GeoIndexGROW;
|
|
x = x * y + 99;
|
|
y = 100;
|
|
x = x / y;
|
|
if (x > 1000000000L) return -2;
|
|
int newpotct = (int)x;
|
|
gp = static_cast<GeoPot*>(TRI_Reallocate(TRI_UNKNOWN_MEM_ZONE, gix->pots,
|
|
newpotct * sizeof(GeoPot)));
|
|
|
|
if (gp == NULL) {
|
|
return -2;
|
|
}
|
|
gix->pots = gp;
|
|
|
|
// update memory usage
|
|
gix->_memoryUsed -= gix->potct * sizeof(GeoPot);
|
|
gix->_memoryUsed += newpotct * sizeof(GeoPot);
|
|
|
|
for (j = gix->potct; j < newpotct; j++) {
|
|
GeoIndexFreePot(gix, j);
|
|
}
|
|
gix->potct = newpotct;
|
|
}
|
|
j = gix->pots[0].LorLeaf;
|
|
gix->pots[0].LorLeaf = gix->pots[j].LorLeaf;
|
|
return j;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_new routine */
|
|
/* User-facing routine to create a whole new GeoIndex. */
|
|
/* Much of the bulk of the code in this routine is */
|
|
/* populating the fixed points, depending on which */
|
|
/* set of fixed points are in used. */
|
|
/* The first job is to allocate the initial arrays for */
|
|
/* holding the points, and the pots that index them. */
|
|
/* If this fails, no harm is done and the NULL pointer */
|
|
/* is returned. Otherwise all the point and pots are */
|
|
/* put onto their respective free lists. */
|
|
/* The fixed point structure is then set up. */
|
|
/* Finally the root pot (pot 1) is set up to be a leaf */
|
|
/* pot containing no points, but with the start and end*/
|
|
/* GeoString values (points on the Hilbert Curve) set */
|
|
/* to be "low values" and "high values" respectively, */
|
|
/* being slightly outside the range of possible */
|
|
/* GeoString values of real (latitude, longitude) */
|
|
/* points */
|
|
/* =================================================== */
|
|
GeoIdx* GeoIndex_new(void) {
|
|
GeoIx* gix;
|
|
int i, j;
|
|
|
|
gix = static_cast<GeoIx*>(
|
|
TRI_Allocate(TRI_UNKNOWN_MEM_ZONE, sizeof(GeoIx), false));
|
|
|
|
if (gix == NULL) {
|
|
return (GeoIdx*)gix;
|
|
}
|
|
|
|
/* try to allocate all the things we need */
|
|
gix->pots = static_cast<GeoPot*>(
|
|
TRI_Allocate(TRI_UNKNOWN_MEM_ZONE, GEOPOTSTART * sizeof(GeoPot), false));
|
|
gix->gc = static_cast<GeoCoordinate*>(TRI_Allocate(
|
|
TRI_UNKNOWN_MEM_ZONE, GEOSLOTSTART * sizeof(GeoCoordinate), false));
|
|
|
|
/* if any of them fail, free the ones that succeeded */
|
|
/* and then return the NULL pointer for our user */
|
|
if ((gix->pots == NULL) || (gix->gc == NULL)) {
|
|
if (gix->pots != NULL) {
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gix->pots);
|
|
}
|
|
|
|
if (gix->gc != NULL) {
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gix->gc);
|
|
}
|
|
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gix);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// set initial memory usage
|
|
gix->_memoryUsed =
|
|
GEOPOTSTART * sizeof(GeoPot) + GEOSLOTSTART * sizeof(GeoCoordinate);
|
|
|
|
/* initialize chain of empty slots */
|
|
for (i = 0; i < GEOSLOTSTART; i++) {
|
|
if (i < GEOSLOTSTART - 1)
|
|
(gix->gc[i]).latitude = i + 1;
|
|
else
|
|
(gix->gc[i]).latitude = 0;
|
|
}
|
|
|
|
/* similarly set up free chain of empty pots */
|
|
for (i = 0; i < GEOPOTSTART; i++) {
|
|
if (i < GEOPOTSTART - 1)
|
|
gix->pots[i].LorLeaf = i + 1;
|
|
else
|
|
gix->pots[i].LorLeaf = 0;
|
|
}
|
|
|
|
gix->potct = GEOPOTSTART;
|
|
gix->slotct = GEOSLOTSTART;
|
|
|
|
/* set up the fixed points structure */
|
|
|
|
for (i = 0; i < GeoIndexFIXEDPOINTS; i++) {
|
|
double lat = 90.0;
|
|
double lon = 0.0;
|
|
#if GeoIndexFIXEDSET == 2
|
|
if (i == 1) {
|
|
lat = -90.0;
|
|
lon = 0.0;
|
|
}
|
|
#endif
|
|
#if GeoIndexFIXEDSET == 3
|
|
if (i == 1) {
|
|
lat = -30.0;
|
|
lon = 0.0;
|
|
}
|
|
if (i == 2) {
|
|
lat = -30;
|
|
lon = 180.0;
|
|
}
|
|
#endif
|
|
#if GeoIndexFIXEDSET == 4
|
|
if (i == 1) {
|
|
lat = -19.471220634490691369246;
|
|
lon = 180.0;
|
|
}
|
|
if (i == 2) {
|
|
lat = -19.471220634490691369246;
|
|
lon = -60.0;
|
|
}
|
|
if (i == 3) {
|
|
lat = -19.471220634490691369246;
|
|
lon = 60.0;
|
|
}
|
|
#endif
|
|
#if GeoIndexFIXEDSET == 5
|
|
if (i == 1) {
|
|
lat = -90.0;
|
|
lon = 0.0;
|
|
}
|
|
if (i == 2) {
|
|
lat = 0.0;
|
|
lon = 0.0;
|
|
}
|
|
if (i == 3) {
|
|
lat = 0.0;
|
|
lon = 120.0;
|
|
}
|
|
if (i == 4) {
|
|
lat = 0.0;
|
|
lon = -120.0;
|
|
}
|
|
#endif
|
|
#if GeoIndexFIXEDSET == 6
|
|
if (i == 1) {
|
|
lat = -90.0;
|
|
lon = 0.0;
|
|
}
|
|
if (i == 2) {
|
|
lat = 0.0;
|
|
lon = 0.0;
|
|
}
|
|
if (i == 3) {
|
|
lat = 0.0;
|
|
lon = 180.0;
|
|
}
|
|
if (i == 4) {
|
|
lat = 0.0;
|
|
lon = 90.0;
|
|
}
|
|
if (i == 5) {
|
|
lat = 0.0;
|
|
lon = -90.0;
|
|
}
|
|
#endif
|
|
#if GeoIndexFIXEDSET == 8
|
|
if (i == 1) {
|
|
lat = -90.0;
|
|
lon = 0.0;
|
|
}
|
|
if (i == 2) {
|
|
lat = 19.471220634490691369246;
|
|
lon = 0.0;
|
|
}
|
|
if (i == 3) {
|
|
lat = -19.471220634490691369246;
|
|
lon = 180.0;
|
|
}
|
|
if (i == 4) {
|
|
lat = 19.471220634490691369246;
|
|
lon = 120.0;
|
|
}
|
|
if (i == 5) {
|
|
lat = -19.471220634490691369246;
|
|
lon = -60.0;
|
|
}
|
|
if (i == 6) {
|
|
lat = 19.471220634490691369246;
|
|
lon = -120.0;
|
|
}
|
|
if (i == 7) {
|
|
lat = -19.471220634490691369246;
|
|
lon = 60.0;
|
|
}
|
|
#endif
|
|
|
|
double z = sin(lat * M_PI / 180.0);
|
|
double x = cos(lat * M_PI / 180.0) * cos(lon * M_PI / 180.0);
|
|
double y = cos(lat * M_PI / 180.0) * sin(lon * M_PI / 180.0);
|
|
(gix->fixed.x)[i] = x;
|
|
(gix->fixed.y)[i] = y;
|
|
(gix->fixed.z)[i] = z;
|
|
}
|
|
/* set up the root pot */
|
|
|
|
j = GeoIndexNewPot(gix);
|
|
gix->pots[j].LorLeaf = 0; /* leaf pot */
|
|
gix->pots[j].RorPoints = 0; /* with no points in it! */
|
|
gix->pots[j].middle = 0ll;
|
|
gix->pots[j].start = 0ll;
|
|
gix->pots[j].end = 0x1FFFFFFFFFFFFFll;
|
|
gix->pots[j].level = 1;
|
|
for (i = 0; i < GeoIndexFIXEDPOINTS; i++) gix->pots[j].maxdist[i] = 0;
|
|
return (GeoIdx*)gix;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_free routine */
|
|
/* Destroys the GeoIndex, and frees all the memory that*/
|
|
/* this GeoIndex system allocated. Note that any */
|
|
/* objects that may have been pointed to by the user's */
|
|
/* data pointers are (of course) not freed by this call*/
|
|
/* =================================================== */
|
|
void GeoIndex_free(GeoIdx* gi) {
|
|
GeoIx* gix;
|
|
|
|
if (gi == NULL) {
|
|
return;
|
|
}
|
|
|
|
gix = (GeoIx*)gi;
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gix->gc);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gix->pots);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gix);
|
|
}
|
|
/* =================================================== */
|
|
/* GeoMkHilbert routine */
|
|
/* Points in this system are indexed by the "GeoString */
|
|
/* value, which is the distance to the point along the */
|
|
/* Hilbert Curve. This space-filling curve is best */
|
|
/* understood in a square, where the curve joins the */
|
|
/* bottom left to the bottom right. It consists of */
|
|
/* four copies of the Hilbert curve, one in each of the*/
|
|
/* four squares, going via the points half-way up the */
|
|
/* left side, the middle of the (large) square and half*/
|
|
/* way up the right side. Notice that the first and */
|
|
/* last of these are flipped on a diagonal, whereas the*/
|
|
/* middle two, going along the top half, are in the */
|
|
/* original orientation, but at half the size. This */
|
|
/* description matches the code below, except that the */
|
|
/* two hemispheres are imagined to be squares where the*/
|
|
/* poles are the top line and the bottom line of the */
|
|
/* square. */
|
|
/* =================================================== */
|
|
|
|
/* 2^25 / 90 rounded down. Used to convert */
|
|
/* degrees of longitude and latitude into */
|
|
/* integers for use making a GeoString */
|
|
#define STRINGPERDEGREE 372827.01
|
|
/* 2^26 - 1 = 0x3ffffff */
|
|
#define HILBERTMAX 67108863
|
|
GeoString GeoMkHilbert(GeoCoordinate* c) {
|
|
/* math.h under MacOS defines y1 and j1 as global variable */
|
|
double xx1, yy1;
|
|
GeoString z;
|
|
int x, y;
|
|
int i, temp;
|
|
yy1 = c->latitude + 90.0;
|
|
z = 0;
|
|
xx1 = c->longitude;
|
|
if (c->longitude < 0.0) {
|
|
xx1 = c->longitude + 180.0;
|
|
z = 1;
|
|
}
|
|
x = (int)(xx1 * STRINGPERDEGREE);
|
|
y = (int)(yy1 * STRINGPERDEGREE);
|
|
for (i = 0; i < 26; i++) {
|
|
z <<= 2;
|
|
int nz = ((y >> 24) & 2) + (x >> 25);
|
|
x = (x << 1) & (HILBERTMAX);
|
|
y = (y << 1) & (HILBERTMAX);
|
|
if (nz == 0) {
|
|
temp = x;
|
|
x = y;
|
|
y = temp;
|
|
}
|
|
if (nz == 1) {
|
|
temp = HILBERTMAX - x;
|
|
x = HILBERTMAX - y;
|
|
y = temp;
|
|
z += 3;
|
|
}
|
|
if (nz == 2) {
|
|
z += 1;
|
|
}
|
|
if (nz == 3) {
|
|
z += 2;
|
|
}
|
|
}
|
|
return z + 1ll;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoMkDetail routine */
|
|
/* At the beginning of both searches, and also at the */
|
|
/* start of an insert or remove, this routine is called*/
|
|
/* to compute all the detail that can usefully be found*/
|
|
/* once and for all. The timings below were on done on*/
|
|
/* a 2011 ordinary desktop pentium */
|
|
/* 0.94 microseconds is - very approximately - 20% of */
|
|
/* the execution time of searches and/or updates, so */
|
|
/* is an obvious target for future speedups should they*/
|
|
/* be required (possibly by using less-accurate trig. */
|
|
/* it consists of three essentially separate tasks */
|
|
/* 1. Find the GeoString (Hilbert) value. */
|
|
/* 2. compute the x, y and z coordinates */
|
|
/* 3. find the distances to the fixed points */
|
|
/* all of these are needed for all of the operations */
|
|
/* =================================================== */
|
|
#if GEOFIXLEN == 2
|
|
#define ARCSINFIX 41720.0
|
|
/* resolution about 300 meters */
|
|
#endif
|
|
#if GEOFIXLEN == 4
|
|
#define ARCSINFIX 1520000000.0
|
|
/* resolution about 3 cm */
|
|
#endif
|
|
void GeoMkDetail(GeoIx* gix, GeoDetailedPoint* gd, GeoCoordinate* c) {
|
|
/* entire routine takes about 0.94 microseconds */
|
|
/* math.h under MacOS defines y1 and j1 as global variable */
|
|
gd->gix = gix;
|
|
gd->gc = c;
|
|
/* The GeoString computation takes about 0.17 microseconds */
|
|
gd->gs = GeoMkHilbert(c);
|
|
/* This part takes about 0.32 microseconds */
|
|
gd->z = sin(c->latitude * M_PI / 180.0);
|
|
gd->x = cos(c->latitude * M_PI / 180.0) * cos(c->longitude * M_PI / 180.0);
|
|
gd->y = cos(c->latitude * M_PI / 180.0) * sin(c->longitude * M_PI / 180.0);
|
|
/* And this bit takes about 0.45 microseconds */
|
|
for (int i = 0; i < GeoIndexFIXEDPOINTS; i++) {
|
|
double xx1 = (gix->fixed.x)[i];
|
|
double yy1 = (gix->fixed.y)[i];
|
|
double z1 = (gix->fixed.z)[i];
|
|
double snmd = (xx1 - gd->x) * (xx1 - gd->x) + (yy1 - gd->y) * (yy1 - gd->y) +
|
|
(z1 - gd->z) * (z1 - gd->z);
|
|
(gd->fixdist)[i] = (GeoFix)(asin(sqrt(snmd) / 2.0) * ARCSINFIX);
|
|
}
|
|
}
|
|
/* =================================================== */
|
|
/* GeoMetersToSNMD */
|
|
/* When searching for a point "by distance" rather than*/
|
|
/* by count, this routine is used to reverse-engineer */
|
|
/* the distance in meters into a Squared Normalized */
|
|
/* Mole Distance (SNMD), since this is faster to */
|
|
/* compute for each individual point. Hence, rather */
|
|
/* than convert all the distances to meters and compare*/
|
|
/* the system works backwards a bit so that, for each */
|
|
/* point considered, only half of the distance */
|
|
/* calculation needs to be done. This is, of course */
|
|
/* considerably faster. */
|
|
/* =================================================== */
|
|
double GeoMetersToSNMD(double meters) {
|
|
double angle, hnmd;
|
|
angle = 0.5 * meters / EARTHRADIAN;
|
|
hnmd = sin(angle); /* half normalized mole distance */
|
|
if (angle >= M_PI / 2.0)
|
|
return 4.0;
|
|
else
|
|
return hnmd * hnmd * 4.0;
|
|
}
|
|
|
|
double GeoFixtoSNMD(GeoFix gf) {
|
|
double x;
|
|
x = gf;
|
|
x = x / ARCSINFIX;
|
|
x = sin(x);
|
|
x = x * x;
|
|
x = x * 4.0;
|
|
return x;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoSetDistance */
|
|
/* During a search (of either type), the target point */
|
|
/* is first "detailed". When the distance of interest */
|
|
/* to the target point is known (either at the start */
|
|
/* of a search-by-distance or each time a new good */
|
|
/* point is found during a search-by-count) this */
|
|
/* routine is called to set the snmd and distrej valeus*/
|
|
/* so that as much as possible is known to speed up */
|
|
/* consideration of any new points */
|
|
/* =================================================== */
|
|
void GeoSetDistance(GeoDetailedPoint* gd, double snmd) {
|
|
GeoFix gf;
|
|
int i;
|
|
gd->snmd = snmd;
|
|
gf = (GeoFix)(asin(sqrt(snmd) / 2.0) * ARCSINFIX);
|
|
gf++;
|
|
for (i = 0; i < GeoIndexFIXEDPOINTS; i++) {
|
|
if ((gd->fixdist)[i] <= gf)
|
|
(gd->distrej)[i] = 0;
|
|
else
|
|
(gd->distrej)[i] = (gd->fixdist)[i] - gf;
|
|
}
|
|
}
|
|
/* =================================================== */
|
|
/* GeoStackSet routine */
|
|
/* The searches (by count and by distance) both start */
|
|
/* by detailing the point and then calling GeoStackSet */
|
|
/* Starting from the root pot (pot 1) the tree is */
|
|
/* descended towards the (actually the earliest) pot */
|
|
/* that could contain the target point. As the */
|
|
/* descent proceeds, the other child of each parent pot*/
|
|
/* is put onto the stack, so that after the routine */
|
|
/* completes, the pots on the stack are a division of */
|
|
/* the index into a set of (disjoint) intervals with */
|
|
/* a strong tendency for the ones containing near */
|
|
/* points (on the Hilbert curve, anyway) to be on the */
|
|
/* to of the stack and to contain few points */
|
|
/* =================================================== */
|
|
void GeoStackSet(GeoStack* gk, GeoDetailedPoint* gd, GeoResults* gr) {
|
|
int pot;
|
|
GeoIx* gix;
|
|
GeoPot* gp;
|
|
gix = gd->gix;
|
|
gk->gr = gr;
|
|
gk->gd = gd;
|
|
gk->stacksize = 0;
|
|
pot = 1;
|
|
while (1) {
|
|
gp = gix->pots + pot;
|
|
if (gp->LorLeaf == 0) break;
|
|
if (gp->middle > gd->gs) {
|
|
gk->potid[gk->stacksize] = gp->RorPoints;
|
|
pot = gp->LorLeaf;
|
|
} else {
|
|
gk->potid[gk->stacksize] = gp->LorLeaf;
|
|
pot = gp->RorPoints;
|
|
}
|
|
gk->stacksize++;
|
|
}
|
|
gk->potid[gk->stacksize] = pot;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoResultsCons routine */
|
|
/* Constructs (allocates) a new structure suitable for */
|
|
/* holding the results of a search. The GeoResults */
|
|
/* structure just holds the slotid of each point chosen*/
|
|
/* and the (SNMD) distance to the target point */
|
|
/* =================================================== */
|
|
GeoResults* GeoResultsCons(int alloc) {
|
|
GeoResults* gres;
|
|
int* sa;
|
|
double* dd;
|
|
|
|
if (alloc <= 0) {
|
|
return NULL;
|
|
}
|
|
|
|
gres = static_cast<GeoResults*>(
|
|
TRI_Allocate(TRI_UNKNOWN_MEM_ZONE, sizeof(GeoResults), false));
|
|
sa = static_cast<int*>(
|
|
TRI_Allocate(TRI_UNKNOWN_MEM_ZONE, alloc * sizeof(int), false));
|
|
dd = static_cast<double*>(
|
|
TRI_Allocate(TRI_UNKNOWN_MEM_ZONE, alloc * sizeof(double), false));
|
|
if ((gres == NULL) || (sa == NULL) || (dd == NULL)) {
|
|
if (gres != NULL) {
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gres);
|
|
}
|
|
|
|
if (sa != NULL) {
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, sa);
|
|
}
|
|
|
|
if (dd != NULL) {
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, dd);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
gres->pointsct = 0;
|
|
gres->allocpoints = alloc;
|
|
gres->slot = sa;
|
|
gres->snmd = dd;
|
|
/* no need to initialize maxsnmd */
|
|
return gres;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoResultsStartCount */
|
|
/* The GeoResultsCons routine allocates the memory */
|
|
/* but if the search is by count, it is also necessary */
|
|
/* to initialize the results list with "fake" points */
|
|
/* at the impossible SNMD distance of 10, so that any */
|
|
/* real point will be closer than that and be taken */
|
|
/* The GeoResultsStartCount routine does just that */
|
|
/* =================================================== */
|
|
void GeoResultsStartCount(GeoResults* gr) {
|
|
int i;
|
|
for (i = 0; i < gr->allocpoints; i++) {
|
|
gr->slot[i] = 0;
|
|
gr->snmd[i] = 10.0;
|
|
}
|
|
}
|
|
/* =================================================== */
|
|
/* GeoResultsInsertPoint */
|
|
/* when a point is to be considered as a candidate for */
|
|
/* being returned in a search-by-count process, the */
|
|
/* slot and snmd are presented to this routine. If the*/
|
|
/* point is too distant, it is ignored. Otherwise the */
|
|
/* most distant "old" point (which is always at zero */
|
|
/* as the results are maintained as a priority queue */
|
|
/* in this case) is discarded, and the new point must */
|
|
/* be put into its proper place to re-establish the */
|
|
/* priority queue - that every entry n is greater than */
|
|
/* or equal, in SNMD distance, than both its children */
|
|
/* which are at 2n+1 and 2n+2 */
|
|
/* =================================================== */
|
|
void GeoResultsInsertPoint(GeoResults* gr, int slot, double snmd) {
|
|
/* math.h under MacOS defines y1 and j1 as global variable */
|
|
int i, temp;
|
|
if (snmd >= gr->snmd[0]) return;
|
|
if (gr->slot[0] == 0) gr->pointsct++;
|
|
i = 0; /* i is now considered empty */
|
|
while (1) {
|
|
int jj1 = 2 * i + 1;
|
|
int jj2 = 2 * i + 2;
|
|
if (jj1 < gr->allocpoints) {
|
|
if (jj2 < gr->allocpoints) {
|
|
if (gr->snmd[jj1] > gr->snmd[jj2]) {
|
|
temp = jj1;
|
|
// jj1=jj2;
|
|
jj2 = temp;
|
|
}
|
|
/* so now jj2 is >= jj1 */
|
|
if (gr->snmd[jj2] <= snmd) {
|
|
gr->snmd[i] = snmd;
|
|
gr->slot[i] = slot;
|
|
return;
|
|
}
|
|
gr->snmd[i] = gr->snmd[jj2];
|
|
gr->slot[i] = gr->slot[jj2];
|
|
i = jj2;
|
|
continue;
|
|
}
|
|
if (gr->snmd[jj1] <= snmd) {
|
|
gr->snmd[i] = snmd;
|
|
gr->slot[i] = slot;
|
|
return;
|
|
}
|
|
gr->snmd[i] = gr->snmd[jj1];
|
|
gr->slot[i] = gr->slot[jj1];
|
|
i = jj1;
|
|
continue;
|
|
}
|
|
gr->snmd[i] = snmd;
|
|
gr->slot[i] = slot;
|
|
return;
|
|
}
|
|
}
|
|
/* =================================================== */
|
|
/* GeoResultsGrow */
|
|
/* During a search-by distance (the search-by-count */
|
|
/* allocates the correct size at the outset) it may be */
|
|
/* necessary to return an unbounded amount of data. */
|
|
/* initially 100 entries are allocted, but this routine*/
|
|
/* ensures that another one is available. If the */
|
|
/* allocation fails, -1 is returned. */
|
|
/* =================================================== */
|
|
int GeoResultsGrow(GeoResults* gr) {
|
|
int newsiz;
|
|
int* sa;
|
|
double* dd;
|
|
if (gr->pointsct < gr->allocpoints) return 0;
|
|
/* otherwise grow by about 50% */
|
|
newsiz = gr->pointsct + (gr->pointsct / 2) + 1;
|
|
if (newsiz > 1000000000) return -1;
|
|
sa = static_cast<int*>(
|
|
TRI_Reallocate(TRI_UNKNOWN_MEM_ZONE, gr->slot, newsiz * sizeof(int)));
|
|
dd = static_cast<double*>(
|
|
TRI_Reallocate(TRI_UNKNOWN_MEM_ZONE, gr->snmd, newsiz * sizeof(double)));
|
|
if ((sa == NULL) || (dd == NULL)) {
|
|
if (sa != NULL) gr->slot = sa;
|
|
if (dd != NULL) gr->snmd = dd;
|
|
return -1;
|
|
}
|
|
|
|
gr->slot = sa;
|
|
gr->snmd = dd;
|
|
gr->allocpoints = newsiz;
|
|
return 0;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoAnswers */
|
|
/* At the end of any search (of either type) the */
|
|
/* GeoResults structure holds the slotid and snmd */
|
|
/* distance of the points to be returned. This routine*/
|
|
/* constructs and populates the GeoCoordinates */
|
|
/* structure with the require data by fetching the */
|
|
/* coodinates from the index, and by convertin the */
|
|
/* snmd distance into meters. It should be noticed */
|
|
/* that the latitude and longitude are copied into the */
|
|
/* new data, so that the GeoCoordinates structure */
|
|
/* remains valid even if the index is subsequently */
|
|
/* updated or even freed. NOTICE also that the */
|
|
/* distances returned may not agree precisely with the */
|
|
/* distances that could be calculated by a separate */
|
|
/* call to GeoIndex_distance because of rounding errors*/
|
|
/* =================================================== */
|
|
GeoCoordinates* GeoAnswers(GeoIx* gix, GeoResults* gr) {
|
|
GeoCoordinates* ans;
|
|
GeoCoordinate* gc;
|
|
int i, j;
|
|
double mole;
|
|
|
|
if (gr->pointsct == 0) {
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gr->slot);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gr->snmd);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gr);
|
|
return NULL;
|
|
}
|
|
|
|
ans = static_cast<GeoCoordinates*>(
|
|
TRI_Allocate(TRI_UNKNOWN_MEM_ZONE, sizeof(GeoCoordinates), false));
|
|
gc = static_cast<GeoCoordinate*>(TRI_Allocate(
|
|
TRI_UNKNOWN_MEM_ZONE, gr->pointsct * sizeof(GeoCoordinate), false));
|
|
|
|
if ((ans == NULL) || (gc == NULL)) {
|
|
if (ans != NULL) {
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, ans);
|
|
}
|
|
if (gc != NULL) {
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gc);
|
|
}
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gr->slot);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gr->snmd);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gr);
|
|
return NULL;
|
|
}
|
|
ans->length = gr->pointsct;
|
|
ans->coordinates = gc;
|
|
j = 0;
|
|
for (i = 0; i < gr->allocpoints; i++) {
|
|
if (j >= gr->pointsct) break;
|
|
int slot = gr->slot[i];
|
|
if (slot == 0) continue;
|
|
ans->coordinates[j].latitude = (gix->gc)[slot].latitude;
|
|
ans->coordinates[j].longitude = (gix->gc)[slot].longitude;
|
|
ans->coordinates[j].data = (gix->gc)[slot].data;
|
|
mole = sqrt(gr->snmd[i]);
|
|
if (mole > 2.0) mole = 2.0; /* make sure arcsin succeeds! */
|
|
gr->snmd[j] = 2.0 * EARTHRADIAN * asin(mole / 2.0);
|
|
j++;
|
|
}
|
|
ans->distances = gr->snmd;
|
|
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gr->slot);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gr);
|
|
|
|
return ans;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoPotJunk */
|
|
/* A detailed point containing the target point set */
|
|
/* with the current distance is compared to a pot */
|
|
/* If any of the fixed points are too close to all the */
|
|
/* descendents of a pot, 1 is returned to indicate that*/
|
|
/* the pot is "junk" = it may be ignored in its */
|
|
/* entirety because it contains no points close enough */
|
|
/* to the target. Otherwise 0 is returned. */
|
|
/* =================================================== */
|
|
int GeoPotJunk(GeoDetailedPoint* gd, int pot) {
|
|
int i;
|
|
GeoPot* gp;
|
|
gp = (gd->gix)->pots + pot;
|
|
for (i = 0; i < GeoIndexFIXEDPOINTS; i++)
|
|
if (gp->maxdist[i] < gd->distrej[i]) return 1;
|
|
return 0;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoSNMD */
|
|
/* Finds the SNMD (Squared NormalizedMole Distance) */
|
|
/* from the point (which must be "detailed" gd, and the*/
|
|
/* ordinary point (just given by lat/longitude) */
|
|
/* The cartesian coordinates of the ordinary point are */
|
|
/* found, and then the differences squared returned. */
|
|
/* =================================================== */
|
|
double GeoSNMD(GeoDetailedPoint* gd, GeoCoordinate* c) {
|
|
double x, y, z;
|
|
z = sin(c->latitude * M_PI / 180.0);
|
|
x = cos(c->latitude * M_PI / 180.0) * cos(c->longitude * M_PI / 180.0);
|
|
y = cos(c->latitude * M_PI / 180.0) * sin(c->longitude * M_PI / 180.0);
|
|
return (x - gd->x) * (x - gd->x) + (y - gd->y) * (y - gd->y) +
|
|
(z - gd->z) * (z - gd->z);
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_PointsWithinRadius */
|
|
/* This is the basic user-visible call to find all the */
|
|
/* the points in the index that are within the */
|
|
/* specified distance of the target point */
|
|
/* First the GeoIndex must be cast to the correct */
|
|
/* (GeoIx) structure so that it can be used! */
|
|
/* the result structure is then set up initially to */
|
|
/* hold up to 100 results points, and the point is then*/
|
|
/* detailed (GeoString, x,y,z and distances to fixed */
|
|
/* points). The stack is then populated with the */
|
|
/* initial descending set of pots ending with the one */
|
|
/* nearest the target point, and the distance set on */
|
|
/* the detailed point by converting the meters into an */
|
|
/* SNMD. The pots on the stack are then considered. */
|
|
/* If the call to GeoPotJunk indicates that there are */
|
|
/* no points in that pot within the required circle, */
|
|
/* the pot is discarded. Otherwise, if the pot is a */
|
|
/* leaf pot, the points are considered individually, */
|
|
/* and notice the recovery to free everything if there */
|
|
/* is a need to grow the results structure and there */
|
|
/* is not enough memory. If the pot is not a leaf pot */
|
|
/* it is replaced on the stack by both its children */
|
|
/* Processing continues until the stack is empty */
|
|
/* At the end, the GeoAnswers routine is used to */
|
|
/* convert the pot/snmd collection of the GeoResults */
|
|
/* structure, into the distance (in meters) and the */
|
|
/* GeoCoordinate data (lat/longitude and data pointer) */
|
|
/* needed for the return to the caller. */
|
|
/* =================================================== */
|
|
GeoCoordinates* GeoIndex_PointsWithinRadius(GeoIdx* gi, GeoCoordinate* c,
|
|
double d) {
|
|
GeoResults* gres;
|
|
GeoCoordinates* answer;
|
|
GeoDetailedPoint gd;
|
|
GeoStack gk;
|
|
GeoPot* gp;
|
|
int r, slot, i;
|
|
double snmd, maxsnmd;
|
|
GeoIx* gix;
|
|
if (c->longitude < -180.0) return NULL;
|
|
if (c->longitude > 180.0) return NULL;
|
|
if (c->latitude < -90.0) return NULL;
|
|
if (c->latitude > 90.0) return NULL;
|
|
gix = (GeoIx*)gi;
|
|
gres = GeoResultsCons(100);
|
|
if (gres == NULL) return NULL;
|
|
GeoMkDetail(gix, &gd, c);
|
|
GeoStackSet(&gk, &gd, gres);
|
|
maxsnmd = GeoMetersToSNMD(d);
|
|
GeoSetDistance(&gd, maxsnmd);
|
|
gk.stacksize++;
|
|
while (gk.stacksize >= 1) {
|
|
gk.stacksize--;
|
|
int pot = gk.potid[gk.stacksize];
|
|
if (GeoPotJunk(&gd, pot)) continue;
|
|
gp = gix->pots + pot;
|
|
if (gp->LorLeaf == 0) {
|
|
for (i = 0; i < gp->RorPoints; i++) {
|
|
slot = gp->points[i];
|
|
snmd = GeoSNMD(&gd, gix->gc + slot);
|
|
if (snmd > (maxsnmd * 1.00000000000001)) continue;
|
|
r = GeoResultsGrow(gres);
|
|
if (r == -1) {
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gres->snmd);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gres->slot);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gres);
|
|
return NULL;
|
|
}
|
|
gres->slot[gres->pointsct] = slot;
|
|
gres->snmd[gres->pointsct] = snmd;
|
|
gres->pointsct++;
|
|
}
|
|
} else {
|
|
gk.potid[gk.stacksize++] = gp->LorLeaf;
|
|
gk.potid[gk.stacksize++] = gp->RorPoints;
|
|
}
|
|
}
|
|
answer = GeoAnswers(gix, gres);
|
|
return answer; /* note - this may be NULL */
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_NearestCountPoints */
|
|
/* The other user-visible search call, which finds the */
|
|
/* nearest <count> points for a user-specified <count> */
|
|
/* processing is not dissimilar to the previous routine*/
|
|
/* but here the results structure is allocated at the */
|
|
/* correct size and used as a priority queue. Since */
|
|
/* it always helps if more points are found (the */
|
|
/* distance of interest drops, so that pots are more */
|
|
/* readily rejected) some care is taken when a pot is */
|
|
/* not rejected to put the one most likely to contain */
|
|
/* useful points onto the top of the stack for early */
|
|
/* processing. */
|
|
/* =================================================== */
|
|
GeoCoordinates* GeoIndex_NearestCountPoints(GeoIdx* gi, GeoCoordinate* c,
|
|
int count) {
|
|
GeoResults* gr;
|
|
GeoDetailedPoint gd;
|
|
GeoCoordinates* answer;
|
|
GeoStack gk;
|
|
GeoPot* gp;
|
|
int slot, i, left;
|
|
double snmd;
|
|
GeoIx* gix;
|
|
if (c->longitude < -180.0) return NULL;
|
|
if (c->longitude > 180.0) return NULL;
|
|
if (c->latitude < -90.0) return NULL;
|
|
if (c->latitude > 90.0) return NULL;
|
|
|
|
gix = (GeoIx*)gi;
|
|
gr = GeoResultsCons(count);
|
|
if (gr == NULL) return NULL;
|
|
GeoMkDetail(gix, &gd, c);
|
|
GeoStackSet(&gk, &gd, gr);
|
|
GeoResultsStartCount(gr);
|
|
left = count;
|
|
|
|
while (gk.stacksize >= 0) {
|
|
int pot = gk.potid[gk.stacksize--];
|
|
gp = gix->pots + pot;
|
|
if (left <= 0) {
|
|
GeoSetDistance(&gd, gr->snmd[0]);
|
|
if (GeoPotJunk(&gd, pot)) continue;
|
|
}
|
|
if (gp->LorLeaf == 0) {
|
|
for (i = 0; i < gp->RorPoints; i++) {
|
|
slot = gp->points[i];
|
|
snmd = GeoSNMD(&gd, gix->gc + slot);
|
|
GeoResultsInsertPoint(gr, slot, snmd);
|
|
left--;
|
|
if (left < -1) left = -1;
|
|
}
|
|
} else {
|
|
if (gd.gs > gp->middle) {
|
|
gk.potid[++gk.stacksize] = gp->LorLeaf;
|
|
gk.potid[++gk.stacksize] = gp->RorPoints;
|
|
} else {
|
|
gk.potid[++gk.stacksize] = gp->RorPoints;
|
|
gk.potid[++gk.stacksize] = gp->LorLeaf;
|
|
}
|
|
}
|
|
}
|
|
answer = GeoAnswers(gix, gr);
|
|
return answer; /* note - this may be NULL */
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndexFreeSlot */
|
|
/* return the specified slot to the free list */
|
|
/* =================================================== */
|
|
void GeoIndexFreeSlot(GeoIx* gix, int slot) {
|
|
gix->gc[slot].latitude = gix->gc[0].latitude;
|
|
gix->gc[0].latitude = slot;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndexNewSlot */
|
|
/* If there is a fre slot already on the free list, */
|
|
/* just return its slot number. Otherwise the entire */
|
|
/* slot list is realloc'd. Although this might change */
|
|
/* the physical memory location of all the indexed */
|
|
/* points, this is not a problem since the slotid */
|
|
/* values are not changed. */
|
|
/* The GeoIndexGROW, which specifies the percentage */
|
|
/* of growth to be used, is in GeoIndex.h. Notice also*/
|
|
/* that some care is take to ensure that, in the case */
|
|
/* of memory allocation failure, the index is still */
|
|
/* kept unchanged even though the new point cannot be */
|
|
/* added to the index. */
|
|
/* =================================================== */
|
|
int GeoIndexNewSlot(GeoIx* gix) {
|
|
int j;
|
|
GeoCoordinate* gc;
|
|
if (gix->gc[0].latitude == 0.0) {
|
|
/* do the growth calculation in long long to make sure it doesn't */
|
|
/* overflow when the size gets to be near 2^31 */
|
|
long long x = gix->slotct;
|
|
long long y = 100 + GeoIndexGROW;
|
|
x = x * y + 99;
|
|
y = 100;
|
|
x = x / y;
|
|
if (x > 2000000000L) return -2;
|
|
int newslotct = (int)x;
|
|
gc = static_cast<GeoCoordinate*>(TRI_Reallocate(
|
|
TRI_UNKNOWN_MEM_ZONE, gix->gc, newslotct * sizeof(GeoCoordinate)));
|
|
|
|
if (gc == NULL) {
|
|
return -2;
|
|
}
|
|
gix->gc = gc;
|
|
|
|
// update memory usage
|
|
gix->_memoryUsed -= gix->slotct * sizeof(GeoCoordinate);
|
|
gix->_memoryUsed += newslotct * sizeof(GeoCoordinate);
|
|
|
|
for (j = gix->slotct; j < newslotct; j++) GeoIndexFreeSlot(gix, j);
|
|
gix->slotct = newslotct;
|
|
}
|
|
j = (int)(gix->gc[0].latitude);
|
|
gix->gc[0].latitude = gix->gc[j].latitude;
|
|
return j;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoFind */
|
|
/* This routine is used during insertion and removal, */
|
|
/* but is not used during the searches. */
|
|
/* Find the given point if it is in the index, and set */
|
|
/* the GeoPath data structure to give the path from the*/
|
|
/* root pot (pot 1) to the leaf pot, if any, containing*/
|
|
/* the sepecified (detailed) point, or - if the point */
|
|
/* is not present, to the first leaf pot into which the*/
|
|
/* specified point may be inserted. */
|
|
/* To start with, the index tree is descended, starting*/
|
|
/* with the root (which, rather bizzarly, is at the */
|
|
/* top of this tree!) always taking the right branch if*/
|
|
/* both would do, to reach the rightmost leaf pot that */
|
|
/* could contain the specified point. */
|
|
/* We then proceed leftwards through the points until */
|
|
/* either the specified point is found in the index, or*/
|
|
/* the first leaf pot is found that could contain the */
|
|
/* specified point. It is worth noting that the first */
|
|
/* pot of all has "low-values" as its "start" GeoString*/
|
|
/* so that this process cannot go off the front of the */
|
|
/* index. Notice also that it is not expected to be */
|
|
/* very common that a large number of points with the */
|
|
/* same GeoString (so within 30 centimeters!) will be */
|
|
/* inserted into the index, and that even if there are */
|
|
/* the inefficiency of this code is only moderate, and */
|
|
/* manifests itself only during maintenance */
|
|
/* the return value is 1 if the point is found and 2 */
|
|
/* if it is not found */
|
|
/* =================================================== */
|
|
int GeoFind(GeoPath* gt, GeoDetailedPoint* gd) {
|
|
int pot, pot1;
|
|
int i;
|
|
int slot;
|
|
GeoIx* gix;
|
|
GeoCoordinate* gc;
|
|
GeoPot* gp;
|
|
gix = gd->gix;
|
|
gt->gix = gix;
|
|
pot = 1;
|
|
gt->pathlength = 0;
|
|
while (1) {
|
|
gp = gix->pots + pot;
|
|
gt->path[gt->pathlength] = pot;
|
|
gt->pathlength++;
|
|
if (gp->LorLeaf == 0) break;
|
|
if (gp->middle > gd->gs)
|
|
pot = gp->LorLeaf;
|
|
else
|
|
pot = gp->RorPoints;
|
|
}
|
|
/* so we have a pot such that top is bigger but bottom isn't */
|
|
while (1) /* so look for an exact match */
|
|
{
|
|
for (i = 0; i < gp->RorPoints; i++) {
|
|
slot = gp->points[i];
|
|
gc = gix->gc + slot;
|
|
if (((gd->gc)->latitude == gc->latitude) &&
|
|
((gd->gc)->longitude == gc->longitude) &&
|
|
((gd->gc)->data == gc->data)) {
|
|
gt->path[gt->pathlength] = i;
|
|
return 1;
|
|
}
|
|
}
|
|
if (gp->start < gd->gs) break;
|
|
/* need to find the predecessor of this pot */
|
|
/* this is expected to be a rare event, so */
|
|
/* no time is wasted to simplify this! */
|
|
while (1) {
|
|
gt->pathlength--;
|
|
pot1 = gt->path[gt->pathlength - 1];
|
|
gp = gix->pots + pot1;
|
|
if (pot == gp->RorPoints) break; /* cannot go off the front */
|
|
pot = pot1;
|
|
}
|
|
gp = gix->pots + pot1;
|
|
pot = gp->LorLeaf;
|
|
/* now we have a pot whose iterated right child we want */
|
|
while (1) {
|
|
gp = gix->pots + pot;
|
|
gt->path[gt->pathlength] = pot;
|
|
gt->pathlength++;
|
|
if (gp->LorLeaf == 0) break;
|
|
pot = gp->RorPoints;
|
|
}
|
|
}
|
|
return 2;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoPopulateMaxdist */
|
|
/* During maintencance, when the points in a leaf pot */
|
|
/* have been changed, this routine merely looks at all */
|
|
/* the points in the pot, details them, and rebuilds */
|
|
/* the list of maximum distances. */
|
|
/* =================================================== */
|
|
void GeoPopulateMaxdist(GeoIx* gix, GeoPot* gp, GeoString* gsa) {
|
|
int i, j;
|
|
GeoDetailedPoint gd;
|
|
gsa[0] = 0x1FFFFFFFFFFFFFll;
|
|
gsa[1] = 0ll;
|
|
for (j = 0; j < GeoIndexFIXEDPOINTS; j++) gp->maxdist[j] = 0;
|
|
for (i = 0; i < gp->RorPoints; i++) {
|
|
GeoMkDetail(gix, &gd, gix->gc + gp->points[i]);
|
|
for (j = 0; j < GeoIndexFIXEDPOINTS; j++)
|
|
if (gd.fixdist[j] > gp->maxdist[j]) gp->maxdist[j] = gd.fixdist[j];
|
|
if (gd.gs < gsa[0]) gsa[0] = gd.gs;
|
|
if (gd.gs > gsa[1]) gsa[1] = gd.gs;
|
|
}
|
|
gp->level = 1;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoGetPot */
|
|
/* This routine simply converts a path and a height */
|
|
/* into a pot id. */
|
|
/* =================================================== */
|
|
int GeoGetPot(GeoPath* gt, int height) {
|
|
return gt->path[gt->pathlength - height];
|
|
}
|
|
/* =================================================== */
|
|
/* GeoAdjust */
|
|
/* During insertion and deletion, this routine is used */
|
|
/* to populate the data correctly for the parent pot */
|
|
/* specified (which may not be a leaf pot) by taking */
|
|
/* the data from the child pots. It populates the */
|
|
/* start, middle and end GeoStrings, the level, and */
|
|
/* the maximum distances to the fixed points. */
|
|
/* =================================================== */
|
|
void GeoAdjust(GeoIx* gix, int potx) /* the kids are alright */
|
|
{
|
|
int poty, potz; /* x = (yz) */
|
|
int i;
|
|
GeoPot* gpx;
|
|
GeoPot* gpy;
|
|
GeoPot* gpz;
|
|
gpx = gix->pots + potx;
|
|
poty = gpx->LorLeaf;
|
|
gpy = gix->pots + poty;
|
|
potz = gpx->RorPoints;
|
|
gpz = gix->pots + potz;
|
|
gpx->start = gpy->start;
|
|
gpx->end = gpz->end;
|
|
gpx->middle = gpz->start;
|
|
gpx->level = gpy->level;
|
|
if ((gpz->level) > gpx->level) gpx->level = gpz->level;
|
|
gpx->level++;
|
|
for (i = 0; i < GeoIndexFIXEDPOINTS; i++) {
|
|
gpx->maxdist[i] = gpy->maxdist[i];
|
|
if (gpx->maxdist[i] < gpz->maxdist[i]) gpx->maxdist[i] = gpz->maxdist[i];
|
|
}
|
|
}
|
|
/* =================================================== */
|
|
/* RotateLeft */
|
|
/* The operation used during tree balancing to convert */
|
|
/* A(BC) into (AB)C. To start with, E is A(BC) and */
|
|
/* D is BC. D is then change to be (AB) and */
|
|
/* GeoAdjust is used to re-populate its data. E is */
|
|
/* then set to be DC = (AB)C, and again GeoAdjust is */
|
|
/* used to set the GeoStrings, level and distances to */
|
|
/* the fixed points, taking the data from the children */
|
|
/* in both cases */
|
|
/* =================================================== */
|
|
void RotateLeft(GeoIx* gix, int pote) {
|
|
int pota, potb, potc, potd;
|
|
GeoPot* gpd;
|
|
GeoPot* gpe;
|
|
gpe = gix->pots + pote;
|
|
potd = gpe->RorPoints;
|
|
gpd = gix->pots + potd;
|
|
pota = gpe->LorLeaf;
|
|
potb = gpd->LorLeaf;
|
|
potc = gpd->RorPoints;
|
|
gpd->LorLeaf = pota;
|
|
gpd->RorPoints = potb;
|
|
GeoAdjust(gix, potd);
|
|
gpe->LorLeaf = potd;
|
|
gpe->RorPoints = potc;
|
|
GeoAdjust(gix, pote);
|
|
}
|
|
/* =================================================== */
|
|
/* RotateRight */
|
|
/* The mirror-image or inverse of RotateLeft. */
|
|
/* Changes (AB)C into A(BC). The given parent pot is */
|
|
/* E = (AB)C and D is AB. D is then reused to be BC */
|
|
/* and GeoAdjusted, and then E set to be AD = A(BC) and*/
|
|
/* also GeoAdjusted */
|
|
/* =================================================== */
|
|
void RotateRight(GeoIx* gix, int pote) {
|
|
int pota, potb, potc, potd;
|
|
GeoPot* gpd;
|
|
GeoPot* gpe;
|
|
gpe = gix->pots + pote;
|
|
potd = gpe->LorLeaf;
|
|
gpd = gix->pots + potd;
|
|
pota = gpd->LorLeaf;
|
|
potb = gpd->RorPoints;
|
|
potc = gpe->RorPoints;
|
|
gpd->LorLeaf = potb;
|
|
gpd->RorPoints = potc;
|
|
GeoAdjust(gix, potd);
|
|
gpe->LorLeaf = pota;
|
|
gpe->RorPoints = potd;
|
|
GeoAdjust(gix, pote);
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_insert */
|
|
/* The user-facing routine to insert a new point into */
|
|
/* the index. First the index is cast into a GeoIx */
|
|
/* so that it can be used, and then the point is */
|
|
/* sanity checked. The point is then detailed and the */
|
|
/* GeoFind routine called. If the point is found, this*/
|
|
/* is an error. Otherwise a new slot is populated with*/
|
|
/* the data from the point, and then the point is put */
|
|
/* into the first leaf pot into which it may go based */
|
|
/* on its GeoString value. If there is no room in that*/
|
|
/* pot, the pot is split into two (necessitating a tree*/
|
|
/* balancing operation) which starts by obtaining the */
|
|
/* two new pots. . . continued below */
|
|
/* =================================================== */
|
|
int GeoIndex_insert(GeoIdx* gi, GeoCoordinate* c) {
|
|
int i, j, slot, pot, pot1;
|
|
int pota, poty, potz;
|
|
int lva, lvy, lvz;
|
|
int height, rebalance;
|
|
GeoDetailedPoint gd;
|
|
GeoPath gt;
|
|
GeoPot* gp;
|
|
GeoPot* gp1;
|
|
GeoPot* gp2;
|
|
GeoPot* gpx;
|
|
GeoPot* gpy;
|
|
GeoPot* gpz;
|
|
GeoPot* gpa;
|
|
GeoString gsa[2];
|
|
GeoIx* gix;
|
|
gix = (GeoIx*)gi;
|
|
rebalance = 0;
|
|
if (c->longitude < -180.0) return -3;
|
|
if (c->longitude > 180.0) return -3;
|
|
if (c->latitude < -90.0) return -3;
|
|
if (c->latitude > 90.0) return -3;
|
|
GeoMkDetail(gix, &gd, c);
|
|
i = GeoFind(>, &gd);
|
|
if (i == 1) return -1;
|
|
pot = gt.path[gt.pathlength - 1];
|
|
gp = gix->pots + pot;
|
|
/* new point, so we try to put it in */
|
|
slot = GeoIndexNewSlot(gix);
|
|
if (slot == -2) return -2; /* no room :( */
|
|
gix->gc[slot].latitude = c->latitude;
|
|
gix->gc[slot].longitude = c->longitude;
|
|
gix->gc[slot].data = c->data;
|
|
/* check first if we are going to need two new pots, and */
|
|
/* if we are, go get them now before we get too tangled */
|
|
if (gp->RorPoints == GeoIndexPOTSIZE) {
|
|
rebalance = 1;
|
|
pot1 = GeoIndexNewPot(gix);
|
|
int pot2 = GeoIndexNewPot(gix);
|
|
gp = gix->pots + pot; /* may have re-alloced! */
|
|
if ((pot1 == -2) || (pot2 == -2)) {
|
|
GeoIndexFreeSlot(gix, slot);
|
|
if (pot1 != -2) GeoIndexFreePot(gix, pot1);
|
|
if (pot2 != -2) GeoIndexFreePot(gix, pot2);
|
|
return -2;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_insert continued */
|
|
/* New pots are pot1 and pot2 which will be the new */
|
|
/* leaf pots with half the points each, and the old */
|
|
/* pot will become the parent of both of them */
|
|
/* After moving all the points to pot2, the half with */
|
|
/* the lowest GeoString are moved into pot1. The two */
|
|
/* pots are then inspected with GeoPopulateMaxdist */
|
|
/* to ascertain what the actual distances and GeoString*/
|
|
/* values are. The GeoString boundary between the two */
|
|
/* pots is set at the midpoint between the current */
|
|
/* actual boundaries and finally the current pot is */
|
|
/* set to be either pot1 or pot2 depending on where the*/
|
|
/* new point (which has still not been inserted) shoud */
|
|
/* go. Continued below . . . . */
|
|
/* =================================================== */
|
|
gp1 = gix->pots + pot1;
|
|
gp2 = gix->pots + pot2;
|
|
/* pot is old one, pot1 and pot2 are the new ones */
|
|
gp1->LorLeaf = 0; /* leaf pot */
|
|
gp1->RorPoints = 0; /* no points in it yet */
|
|
/* first move the points from pot to pot2 */
|
|
gp2->LorLeaf = 0; /* leaf pot */
|
|
gp2->RorPoints = gp->RorPoints;
|
|
for (i = 0; i < gp->RorPoints; i++) gp2->points[i] = gp->points[i];
|
|
/* move the first half of the points from pot2 to pot1 */
|
|
GeoString mings;
|
|
for (i = 0; i < (GeoIndexPOTSIZE / 2); i++) {
|
|
mings = 0x1FFFFFFFFFFFFFll;
|
|
int js = 0;
|
|
for (j = 0; j < gp2->RorPoints; j++) {
|
|
GeoString gs = GeoMkHilbert(gix->gc + gp2->points[j]);
|
|
if (gs < mings) {
|
|
mings = gs;
|
|
js = j;
|
|
}
|
|
}
|
|
gp1->points[gp1->RorPoints] = gp2->points[js];
|
|
gp2->points[js] = gp2->points[gp2->RorPoints - 1];
|
|
gp2->RorPoints--;
|
|
gp1->RorPoints++;
|
|
}
|
|
GeoPopulateMaxdist(gix, gp2, gsa);
|
|
mings = gsa[0];
|
|
GeoPopulateMaxdist(gix, gp1, gsa);
|
|
mings = (mings + gsa[1]) / 2ll;
|
|
gp1->start = gp->start;
|
|
gp1->end = mings;
|
|
gp2->start = mings;
|
|
gp2->end = gp->end;
|
|
gp->LorLeaf = pot1;
|
|
gp->RorPoints = pot2;
|
|
GeoAdjust(gix, pot);
|
|
gt.pathlength++;
|
|
if (gd.gs < mings) {
|
|
gp = gp1;
|
|
gt.path[gt.pathlength - 1] = pot1;
|
|
} else {
|
|
gp = gp2;
|
|
gt.path[gt.pathlength - 1] = pot2;
|
|
}
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_insert continued */
|
|
/* finally the new point is inserted into the pot, and */
|
|
/* the maximum distances to the fixed points propogated*/
|
|
/* up as far as necessary. The rebalancing of the tree*/
|
|
/* is then done, but only if the pot splitting happend */
|
|
/* to rebalance, the sequence of pots going back up is */
|
|
/* traversed using the path structure, and the standard*/
|
|
/* AVL balancing is used by doing the necessary */
|
|
/* rotations and level changes necessary to ensure that*/
|
|
/* every parent has at least one child one level lower */
|
|
/* and the other child is either also one level lower, */
|
|
/* or two levels lower. The details are also given in */
|
|
/* the accompanying documentation */
|
|
/* =================================================== */
|
|
/* so we have a pot and a path we can use */
|
|
/* gp is the pot, gt set correctly */
|
|
gp->points[gp->RorPoints] = slot;
|
|
gp->RorPoints++;
|
|
/* now propagate the maxdistances */
|
|
for (i = 0; i < GeoIndexFIXEDPOINTS; i++) {
|
|
j = gt.pathlength - 1;
|
|
while (j >= 0) {
|
|
if (gd.fixdist[i] > gix->pots[gt.path[j]].maxdist[i])
|
|
gix->pots[gt.path[j]].maxdist[i] = gd.fixdist[i];
|
|
else
|
|
break;
|
|
j--;
|
|
}
|
|
}
|
|
/* just need to balance the tree */
|
|
if (rebalance == 0) return 0;
|
|
height = 2;
|
|
while (true) {
|
|
int potx = GeoGetPot(>, height);
|
|
gpx = gix->pots + potx;
|
|
int lvx = gpx->level;
|
|
if (potx == 1) break;
|
|
/* root pot ? */
|
|
pot1 = GeoGetPot(>, height + 1); /* pot1=parent(x) */
|
|
gp1 = gix->pots + pot1;
|
|
int lv1 = gp1->level;
|
|
if (lv1 > lvx) break;
|
|
if (gp1->LorLeaf == potx) /* gpx is the left child? */
|
|
{
|
|
pota = gp1->RorPoints; /* 1 = (xa) */
|
|
gpa = gix->pots + pota;
|
|
lva = gpa->level;
|
|
if ((lva + 1) == lv1) /* so it is legal to up lev(1) */
|
|
{
|
|
gp1->level++;
|
|
height++;
|
|
continue;
|
|
}
|
|
poty = gpx->RorPoints;
|
|
gpy = gix->pots + poty;
|
|
lvy = gpy->level;
|
|
potz = gpx->LorLeaf;
|
|
gpz = gix->pots + potz;
|
|
lvz = gpz->level;
|
|
if (lvy <= lvz) {
|
|
RotateRight(gix, pot1);
|
|
height++;
|
|
continue;
|
|
}
|
|
RotateLeft(gix, potx);
|
|
RotateRight(gix, pot1);
|
|
} else /* gpx is the right child */
|
|
{
|
|
pota = gp1->LorLeaf; /* 1 = (ax) */
|
|
gpa = gix->pots + pota;
|
|
lva = gpa->level;
|
|
if ((lva + 1) == lv1) /* so it is legal to up lev(1) */
|
|
{
|
|
gp1->level++;
|
|
height++;
|
|
continue;
|
|
}
|
|
poty = gpx->LorLeaf;
|
|
gpy = gix->pots + poty;
|
|
lvy = gpy->level;
|
|
potz = gpx->RorPoints;
|
|
gpz = gix->pots + potz;
|
|
lvz = gpz->level;
|
|
if (lvy <= lvz) {
|
|
RotateLeft(gix, pot1);
|
|
height++;
|
|
continue;
|
|
}
|
|
RotateRight(gix, potx);
|
|
RotateLeft(gix, pot1);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_remove */
|
|
/* As a user-facing routine, this starts by casting the*/
|
|
/* GeoIndex structure to a GeoIx, so that its members */
|
|
/* can be accessed. The point is then detailed, and */
|
|
/* GeoFind is used to check whether it is there. If */
|
|
/* not, this is an error. Otherwise the point is */
|
|
/* removed from the pot and the distances recalculated */
|
|
/* using the GeoPopulateMaxdist routine. It is then */
|
|
/* checked whether there are now too few points in the */
|
|
/* pot that used to contain the point, and if so there */
|
|
/* are eight cases as to what is to be done. In four */
|
|
/* of them, a point is moved from the adjacent leaf pot*/
|
|
/* which may be at the same level or one lower, and may*/
|
|
/* be either side of the current one. This is done if */
|
|
/* there are too many points in the two leaf pots to */
|
|
/* amalgamate them. In the other four cases the two */
|
|
/* leaf pots are amalgamated, which results in the */
|
|
/* releasing of two pots (which are put back into the */
|
|
/* free chain using GeoIndexFreePot) Continued . . . . */
|
|
/* =================================================== */
|
|
int GeoIndex_remove(GeoIdx* gi, GeoCoordinate* c) {
|
|
GeoDetailedPoint gd;
|
|
int rebalance;
|
|
int levn, levc;
|
|
GeoPot* gp;
|
|
int potp;
|
|
GeoPot* gpp;
|
|
int potb;
|
|
GeoPot* gpb;
|
|
int potn;
|
|
GeoPot* gpn;
|
|
int potc;
|
|
GeoPot* gpc;
|
|
GeoPath gt;
|
|
GeoString gsa[2];
|
|
int i, pot, potix, slot, pathix;
|
|
GeoIx* gix;
|
|
if (c->longitude < -180.0) return -3;
|
|
if (c->longitude > 180.0) return -3;
|
|
if (c->latitude < -90.0) return -3;
|
|
if (c->latitude > 90.0) return -3;
|
|
gix = (GeoIx*)gi;
|
|
GeoMkDetail(gix, &gd, c);
|
|
i = GeoFind(>, &gd);
|
|
if (i != 1) return -1;
|
|
pot = gt.path[gt.pathlength - 1];
|
|
gp = gix->pots + pot;
|
|
potix = gt.path[gt.pathlength];
|
|
slot = gp->points[potix];
|
|
GeoIndexFreeSlot(gix, slot);
|
|
gp->points[potix] = gp->points[gp->RorPoints - 1];
|
|
gp->RorPoints--;
|
|
GeoPopulateMaxdist(gix, gp, gsa);
|
|
if (pot == 1) return 0; /* just allow root pot to have fewer points */
|
|
rebalance = 0;
|
|
if ((2 * gp->RorPoints) < GeoIndexPOTSIZE) {
|
|
int j, js;
|
|
GeoString mings, gs;
|
|
potp = gt.path[gt.pathlength - 2];
|
|
gpp = gix->pots + potp;
|
|
if (gpp->LorLeaf == pot) {
|
|
/* Left */
|
|
potb = gpp->RorPoints;
|
|
gpb = gix->pots + potb;
|
|
if (gpb->LorLeaf == 0) {
|
|
/* Left Brother */
|
|
if ((gpb->RorPoints + gp->RorPoints) > GeoIndexPOTSIZE) {
|
|
/* Left Brother Lots */
|
|
mings = 0x1FFFFFFFFFFFFFll;
|
|
js = 0;
|
|
for (j = 0; j < gpb->RorPoints; j++) {
|
|
gs = GeoMkHilbert(gix->gc + gpb->points[j]);
|
|
if (gs < mings) {
|
|
mings = gs;
|
|
js = j;
|
|
}
|
|
}
|
|
gp->points[gp->RorPoints] = gpb->points[js];
|
|
gpb->points[js] = gpb->points[gpb->RorPoints - 1];
|
|
gpb->RorPoints--;
|
|
gp->RorPoints++;
|
|
GeoPopulateMaxdist(gix, gp, gsa);
|
|
mings = gsa[1];
|
|
GeoPopulateMaxdist(gix, gpb, gsa);
|
|
mings = (mings + gsa[0]) / 2ll;
|
|
gp->end = mings;
|
|
gpb->start = mings;
|
|
gpp->middle = mings;
|
|
GeoAdjust(gix, potp);
|
|
} else {
|
|
/* Left Brother Few */
|
|
gpp->LorLeaf = 0;
|
|
i = 0;
|
|
for (j = 0; j < gpb->RorPoints; j++)
|
|
gpp->points[i++] = gpb->points[j];
|
|
for (j = 0; j < gp->RorPoints; j++) gpp->points[i++] = gp->points[j];
|
|
gpp->RorPoints = i;
|
|
GeoIndexFreePot(gix, pot);
|
|
GeoIndexFreePot(gix, potb);
|
|
GeoPopulateMaxdist(gix, gpp, gsa);
|
|
gt.pathlength--;
|
|
rebalance = 1;
|
|
}
|
|
} else {
|
|
/* Left Nephew */
|
|
potn = gpb->LorLeaf;
|
|
gpn = gix->pots + potn;
|
|
if ((gpn->RorPoints + gp->RorPoints) > GeoIndexPOTSIZE) {
|
|
/* Left Nephew Lots */
|
|
mings = 0x1FFFFFFFFFFFFFll;
|
|
js = 0;
|
|
for (j = 0; j < gpn->RorPoints; j++) {
|
|
gs = GeoMkHilbert(gix->gc + gpn->points[j]);
|
|
if (gs < mings) {
|
|
mings = gs;
|
|
js = j;
|
|
}
|
|
}
|
|
gp->points[gp->RorPoints] = gpn->points[js];
|
|
gpn->points[js] = gpn->points[gpn->RorPoints - 1];
|
|
gpn->RorPoints--;
|
|
gp->RorPoints++;
|
|
GeoPopulateMaxdist(gix, gp, gsa);
|
|
mings = gsa[1];
|
|
GeoPopulateMaxdist(gix, gpn, gsa);
|
|
mings = (mings + gsa[0]) / 2ll;
|
|
gp->end = mings;
|
|
gpn->start = mings;
|
|
gpb->start = mings;
|
|
gpp->middle = mings;
|
|
GeoAdjust(gix, potb);
|
|
GeoAdjust(gix, potp);
|
|
} else {
|
|
/* Left Nephew Few */
|
|
potc = gpb->RorPoints;
|
|
i = gp->RorPoints;
|
|
for (j = 0; j < gpn->RorPoints; j++) gp->points[i++] = gpn->points[j];
|
|
gp->RorPoints = i;
|
|
gpp->RorPoints = potc;
|
|
gpp->middle = gpb->middle;
|
|
gp->end = gpp->middle;
|
|
GeoIndexFreePot(gix, potn);
|
|
GeoIndexFreePot(gix, potb);
|
|
GeoPopulateMaxdist(gix, gp, gsa);
|
|
GeoAdjust(gix, potp);
|
|
gt.pathlength--;
|
|
rebalance = 1;
|
|
}
|
|
}
|
|
} else {
|
|
/* Right */
|
|
potb = gpp->LorLeaf;
|
|
gpb = gix->pots + potb;
|
|
if (gpb->LorLeaf == 0) {
|
|
/* Right Brother */
|
|
if ((gpb->RorPoints + gp->RorPoints) > GeoIndexPOTSIZE) {
|
|
/* Right Brother Lots */
|
|
mings = 0ll;
|
|
js = 0;
|
|
for (j = 0; j < gpb->RorPoints; j++) {
|
|
gs = GeoMkHilbert(gix->gc + gpb->points[j]);
|
|
if (gs > mings) {
|
|
mings = gs;
|
|
js = j;
|
|
}
|
|
}
|
|
gp->points[gp->RorPoints] = gpb->points[js];
|
|
gpb->points[js] = gpb->points[gpb->RorPoints - 1];
|
|
gpb->RorPoints--;
|
|
gp->RorPoints++;
|
|
GeoPopulateMaxdist(gix, gp, gsa);
|
|
mings = gsa[0];
|
|
GeoPopulateMaxdist(gix, gpb, gsa);
|
|
mings = (mings + gsa[1]) / 2ll;
|
|
gp->start = mings;
|
|
gpb->end = mings;
|
|
gpp->middle = mings;
|
|
GeoAdjust(gix, potp);
|
|
} else {
|
|
/* Right Brother Few */
|
|
/* observe this is identical to Left Brother Few */
|
|
gpp->LorLeaf = 0;
|
|
i = 0;
|
|
for (j = 0; j < gpb->RorPoints; j++)
|
|
gpp->points[i++] = gpb->points[j];
|
|
for (j = 0; j < gp->RorPoints; j++) gpp->points[i++] = gp->points[j];
|
|
gpp->RorPoints = i;
|
|
GeoIndexFreePot(gix, pot);
|
|
GeoIndexFreePot(gix, potb);
|
|
GeoPopulateMaxdist(gix, gpp, gsa);
|
|
gt.pathlength--;
|
|
rebalance = 1;
|
|
}
|
|
} else {
|
|
/* Right Nephew */
|
|
potn = gpb->RorPoints;
|
|
gpn = gix->pots + potn;
|
|
if ((gpn->RorPoints + gp->RorPoints) > GeoIndexPOTSIZE) {
|
|
/* Right Nephew Lots */
|
|
mings = 0ll;
|
|
js = 0;
|
|
for (j = 0; j < gpn->RorPoints; j++) {
|
|
gs = GeoMkHilbert(gix->gc + gpn->points[j]);
|
|
if (gs > mings) {
|
|
mings = gs;
|
|
js = j;
|
|
}
|
|
}
|
|
gp->points[gp->RorPoints] = gpn->points[js];
|
|
gpn->points[js] = gpn->points[gpn->RorPoints - 1];
|
|
gpn->RorPoints--;
|
|
gp->RorPoints++;
|
|
GeoPopulateMaxdist(gix, gp, gsa);
|
|
mings = gsa[0];
|
|
GeoPopulateMaxdist(gix, gpn, gsa);
|
|
mings = (mings + gsa[1]) / 2ll;
|
|
gp->start = mings;
|
|
gpn->end = mings;
|
|
gpb->end = mings;
|
|
gpp->middle = mings;
|
|
GeoAdjust(gix, potb);
|
|
GeoAdjust(gix, potp);
|
|
} else {
|
|
/* Right Nephew Few */
|
|
potc = gpb->LorLeaf;
|
|
i = gp->RorPoints;
|
|
for (j = 0; j < gpn->RorPoints; j++) gp->points[i++] = gpn->points[j];
|
|
gp->RorPoints = i;
|
|
gpp->LorLeaf = potc;
|
|
gpp->middle = gpb->middle;
|
|
gp->start = gpb->middle;
|
|
GeoIndexFreePot(gix, potn);
|
|
GeoIndexFreePot(gix, potb);
|
|
GeoPopulateMaxdist(gix, gp, gsa);
|
|
GeoAdjust(gix, potp);
|
|
gt.pathlength--;
|
|
rebalance = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_remove continued */
|
|
/* Again the balancing of the tree is fairly standard */
|
|
/* and documented in the associated documentation to */
|
|
/* this routine. At every stage in this process the */
|
|
/* parent potp of the current pot may not be balanced */
|
|
/* as pot has just had its level reduced. To tell what*/
|
|
/* to do, the product i of the level differences is */
|
|
/* calculated. This should be 1 or 2, but may be 3 or */
|
|
/* 4, and in each case some further investigation soon */
|
|
/* shows what rotations and further upward balancing */
|
|
/* may be needed. continued . . . */
|
|
/* =================================================== */
|
|
pathix = gt.pathlength - 1;
|
|
while ((pathix > 0) && (rebalance == 1)) {
|
|
/* Deletion rebalancing */
|
|
rebalance = 0;
|
|
pathix--;
|
|
potp = gt.path[pathix];
|
|
gpp = gix->pots + potp;
|
|
int levp = gpp->level;
|
|
pot = gpp->LorLeaf;
|
|
potb = gpp->RorPoints;
|
|
gp = gix->pots + pot;
|
|
gpb = gix->pots + potb;
|
|
int lev = gp->level;
|
|
int levb = gpb->level;
|
|
i = (levp - lev) * (levp - levb);
|
|
if (i == 4) {
|
|
gpp->level--;
|
|
rebalance = 1;
|
|
}
|
|
if (i == 3) {
|
|
if ((levp - lev) == 3) {
|
|
potn = gpb->LorLeaf;
|
|
gpn = gix->pots + potn;
|
|
potc = gpb->RorPoints;
|
|
gpc = gix->pots + potc;
|
|
levn = gpn->level;
|
|
levc = gpc->level;
|
|
if (levn <= levc) {
|
|
RotateLeft(gix, potp);
|
|
if (levn < levc) rebalance = 1;
|
|
} else {
|
|
RotateRight(gix, potb);
|
|
RotateLeft(gix, potp);
|
|
rebalance = 1;
|
|
}
|
|
} else {
|
|
potn = gp->LorLeaf;
|
|
gpn = gix->pots + potn;
|
|
potc = gp->RorPoints;
|
|
gpc = gix->pots + potc;
|
|
levn = gpn->level;
|
|
levc = gpc->level;
|
|
if (levn >= levc) {
|
|
RotateRight(gix, potp);
|
|
if (levn > levc) rebalance = 1;
|
|
} else {
|
|
RotateLeft(gix, pot);
|
|
RotateRight(gix, potp);
|
|
rebalance = 1;
|
|
}
|
|
}
|
|
}
|
|
GeoAdjust(gix, potp);
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_remove continued */
|
|
/* In the case of deletion, it is not so easy to see */
|
|
/* what the new maximum distances are given the point */
|
|
/* deleted, so the GeoAdjust routine is used all the */
|
|
/* way up. */
|
|
/* =================================================== */
|
|
while (pathix > 0) {
|
|
pathix--;
|
|
pot = gt.path[pathix];
|
|
GeoAdjust(gix, pot);
|
|
}
|
|
return 0;
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_CoordinatesFree */
|
|
/* The user-facing routine that must be called by the */
|
|
/* user when the results of a search are finished with */
|
|
/* =================================================== */
|
|
void GeoIndex_CoordinatesFree(GeoCoordinates* clist) {
|
|
if (clist == nullptr) {
|
|
return;
|
|
}
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, clist->coordinates);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, clist->distances);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, clist);
|
|
}
|
|
/* =================================================== */
|
|
/* GeoIndex_hint does nothing! */
|
|
/* it is here for possible future compatibilty */
|
|
/* =================================================== */
|
|
int GeoIndex_hint(GeoIdx* gi, int hint) { return 0; }
|
|
|
|
/* =================================================== */
|
|
/* GeoCr structure */
|
|
/* This is the REAL GeoCursor structure - the one in */
|
|
/* the GeoIndex.h file is just a sham (it says it is */
|
|
/* a char!) to keep the structure private so that the */
|
|
/* GeoIndex.h is short and contains only data of */
|
|
/* interest to the user. */
|
|
/* =================================================== */
|
|
|
|
typedef struct {
|
|
int pot;
|
|
GeoFix dist;
|
|
} hpot; // pot for putting on the heap
|
|
|
|
bool hpotcompare(hpot a, hpot b) { return (a.dist > b.dist); }
|
|
|
|
typedef struct {
|
|
int slot;
|
|
double snmd;
|
|
} hslot; // pot for putting on the heap
|
|
|
|
bool hslotcompare(hslot a, hslot b) {
|
|
if (a.snmd > b.snmd)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
typedef struct {
|
|
GeoIx* Ix; /* GeoIndex */
|
|
GeoDetailedPoint gd;
|
|
double potsnmd;
|
|
double slotsnmd;
|
|
std::vector<hpot> potheap;
|
|
std::vector<hslot> slotheap;
|
|
} GeoCr;
|
|
|
|
GeoFix makedist(GeoPot* pot, GeoDetailedPoint* gd) {
|
|
GeoFix dist, d1;
|
|
int i;
|
|
dist = 0;
|
|
for (i = 0; i < GeoIndexFIXEDPOINTS; i++) {
|
|
if (gd->fixdist[i] > pot->maxdist[i])
|
|
d1 = gd->fixdist[i] - pot->maxdist[i];
|
|
else
|
|
d1 = 0;
|
|
if (d1 > dist) dist = d1;
|
|
}
|
|
return dist;
|
|
}
|
|
|
|
GeoCursor* GeoIndex_NewCursor(GeoIdx* gi, GeoCoordinate* c) {
|
|
GeoIx* gix;
|
|
hpot hp;
|
|
if (c->longitude < -180.0) return nullptr;
|
|
if (c->longitude > 180.0) return nullptr;
|
|
if (c->latitude < -90.0) return nullptr;
|
|
if (c->latitude > 90.0) return nullptr;
|
|
gix = (GeoIx*)gi;
|
|
GeoCr* gcr = nullptr;
|
|
|
|
try {
|
|
gcr = new GeoCr;
|
|
} catch (...) {
|
|
}
|
|
|
|
if (gcr == nullptr) {
|
|
return (GeoCursor*)gcr;
|
|
}
|
|
gcr->Ix = gix;
|
|
|
|
std::vector<hpot>* p = new (&gcr->potheap) std::vector<hpot>();
|
|
std::vector<hslot>* q = new (&gcr->slotheap) std::vector<hslot>();
|
|
(void)p; // avoid compiler warnings - I just want to call
|
|
(void)q; // the constructors and have no use for p,q.
|
|
GeoMkDetail(gix, &(gcr->gd), c);
|
|
hp.pot = 1;
|
|
hp.dist = makedist(gix->pots + 1, &(gcr->gd));
|
|
gcr->potsnmd = GeoFixtoSNMD(hp.dist);
|
|
gcr->slotsnmd = 20.0;
|
|
gcr->potheap.push_back(hp);
|
|
std::push_heap(gcr->potheap.begin(), gcr->potheap.end(), hpotcompare);
|
|
return (GeoCursor*)gcr;
|
|
}
|
|
|
|
GeoCoordinates* GeoIndex_ReadCursor(GeoCursor* gc, int count) {
|
|
int i, j, r;
|
|
GeoCoordinate* ct;
|
|
GeoResults* gr;
|
|
GeoCoordinates* gcts;
|
|
GeoCr* gcr;
|
|
GeoPot pot;
|
|
int slox;
|
|
double tsnmd;
|
|
hslot hs;
|
|
hpot hp;
|
|
gcr = (GeoCr*)gc;
|
|
gr = GeoResultsCons(count);
|
|
if (gr == NULL) return NULL;
|
|
while (gr->pointsct < count) {
|
|
if (gcr->potsnmd < gcr->slotsnmd * 1.000001) {
|
|
// smash top pot - if there is one
|
|
if (gcr->potheap.size() == 0) break; // that's all there is
|
|
pot = *((gcr->Ix)->pots + (gcr->potheap.front().pot));
|
|
// anyway remove top from heap
|
|
std::pop_heap(gcr->potheap.begin(), gcr->potheap.end(), hpotcompare);
|
|
gcr->potheap.pop_back();
|
|
if (pot.LorLeaf == 0) {
|
|
// leaf pot - put all the points into the points heap
|
|
for (i = 0; i < pot.RorPoints; i++) {
|
|
j = pot.points[i];
|
|
ct = ((gcr->Ix)->gc + j);
|
|
hs.slot = j;
|
|
hs.snmd = GeoSNMD(&(gcr->gd), ct);
|
|
gcr->slotheap.push_back(hs);
|
|
std::push_heap(gcr->slotheap.begin(), gcr->slotheap.end(),
|
|
hslotcompare);
|
|
}
|
|
if (gcr->slotheap.size() != 0) {
|
|
slox = gcr->slotheap.front().slot;
|
|
gcr->slotsnmd = GeoSNMD(&gcr->gd, (gcr->Ix)->gc + slox);
|
|
}
|
|
} else {
|
|
hp.pot = pot.LorLeaf;
|
|
hp.dist = makedist((gcr->Ix)->pots + pot.LorLeaf, &(gcr->gd));
|
|
gcr->potheap.push_back(hp);
|
|
std::push_heap(gcr->potheap.begin(), gcr->potheap.end(), hpotcompare);
|
|
hp.pot = pot.RorPoints;
|
|
hp.dist = makedist((gcr->Ix)->pots + pot.RorPoints, &(gcr->gd));
|
|
gcr->potheap.push_back(hp);
|
|
std::push_heap(gcr->potheap.begin(), gcr->potheap.end(), hpotcompare);
|
|
}
|
|
gcr->potsnmd = 10.0;
|
|
if (gcr->potheap.size() != 0) {
|
|
pot = *((gcr->Ix)->pots + (gcr->potheap.front().pot));
|
|
gcr->potsnmd = GeoFixtoSNMD(makedist(&pot, &(gcr->gd)));
|
|
}
|
|
} else {
|
|
if (gcr->slotheap.size() == 0) break; // that's all there is
|
|
slox = gcr->slotheap.front().slot;
|
|
tsnmd = GeoSNMD(&gcr->gd, (gcr->Ix)->gc + slox);
|
|
r = GeoResultsGrow(gr);
|
|
if (r == -1) {
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gr->snmd);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gr->slot);
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, gr);
|
|
return NULL;
|
|
}
|
|
gr->slot[gr->pointsct] = slox;
|
|
gr->snmd[gr->pointsct] = tsnmd;
|
|
gr->pointsct++;
|
|
gcr->slotsnmd = 5.0;
|
|
std::pop_heap(gcr->slotheap.begin(), gcr->slotheap.end(), hslotcompare);
|
|
gcr->slotheap.pop_back();
|
|
if (gcr->slotheap.size() != 0) {
|
|
slox = gcr->slotheap.front().slot;
|
|
gcr->slotsnmd = GeoSNMD(&gcr->gd, (gcr->Ix)->gc + slox);
|
|
}
|
|
}
|
|
}
|
|
gcts = GeoAnswers(gcr->Ix, gr);
|
|
return gcts;
|
|
}
|
|
|
|
void GeoIndex_CursorFree(GeoCursor* gc) {
|
|
if (gc == nullptr) {
|
|
return;
|
|
}
|
|
GeoCr* cr = reinterpret_cast<GeoCr*>(gc);
|
|
delete cr;
|
|
}
|
|
|
|
/* =================================================== */
|
|
/* The remaining routines are usually */
|
|
/* only compiled in for debugging purposes. They allow*/
|
|
/* the dumping of the index (to a specified file) and */
|
|
/* a self-check to see whether the index itself seems */
|
|
/* to be correct. */
|
|
/* =================================================== */
|
|
#ifdef TRI_GEO_DEBUG
|
|
|
|
void RecursivePotDump(GeoIx* gix, FILE* f, int pot) {
|
|
int i;
|
|
GeoPot* gp;
|
|
gp = gix->pots + pot;
|
|
fprintf(f, "GP. pot %d level %d Kids %d %d\n", pot, gp->level, gp->LorLeaf,
|
|
gp->RorPoints);
|
|
fprintf(f, "strings %llx %llx %llx\n", gp->start, gp->middle, gp->end);
|
|
fprintf(f, "maxdists ");
|
|
for (i = 0; i < GeoIndexFIXEDPOINTS; i++) fprintf(f, " %x", gp->maxdist[i]);
|
|
fprintf(f, "\n");
|
|
if (gp->LorLeaf == 0) {
|
|
fprintf(f, "Leaf pot containing %d points . . .\n", gp->RorPoints);
|
|
for (i = 0; i < gp->RorPoints; i++) {
|
|
fprintf(f, "Child %d Point %d ", i, gp->points[i]);
|
|
GeoCoordinate* gc = gix->gc + gp->points[i];
|
|
fprintf(f, "Lat. %9.4f, Long. %9.4f", gc->latitude, gc->longitude);
|
|
#if TRI_GEO_DEBUG == 2
|
|
fprintf(f, " %s", (char*)gc->data);
|
|
#endif
|
|
fprintf(f, "\n");
|
|
}
|
|
} else {
|
|
fprintf(f, "\nPot %d - Left Child of pot %d\n", gp->LorLeaf, pot);
|
|
RecursivePotDump(gix, f, gp->LorLeaf);
|
|
fprintf(f, "\nPot %d - Right Child of pot %d\n", gp->RorPoints, pot);
|
|
RecursivePotDump(gix, f, gp->RorPoints);
|
|
}
|
|
}
|
|
|
|
void GeoIndex_INDEXDUMP(GeoIdx* gi, FILE* f) {
|
|
GeoIx* gix;
|
|
gix = (GeoIx*)gi;
|
|
fprintf(f, "Dump of entire index. %d pots and %d slots allocated\n",
|
|
gix->potct, gix->slotct);
|
|
RecursivePotDump(gix, f, 1);
|
|
}
|
|
|
|
int RecursivePotValidate(GeoIx* gix, int pot, int* usage) {
|
|
int i, j;
|
|
GeoPot* gp;
|
|
GeoDetailedPoint gd;
|
|
GeoFix maxdist[GeoIndexFIXEDPOINTS];
|
|
GeoPot *gpa, *gpb;
|
|
gp = gix->pots + pot;
|
|
usage[0]++;
|
|
if (gp->LorLeaf == 0) {
|
|
if ((pot != 1) && (2 * gp->RorPoints < GeoIndexPOTSIZE)) return 1;
|
|
for (j = 0; j < GeoIndexFIXEDPOINTS; j++) maxdist[j] = 0;
|
|
if (gp->level != 1) return 10;
|
|
for (i = 0; i < gp->RorPoints; i++) {
|
|
GeoMkDetail(gix, &gd, gix->gc + gp->points[i]);
|
|
for (j = 0; j < GeoIndexFIXEDPOINTS; j++)
|
|
if (maxdist[j] < gd.fixdist[j]) maxdist[j] = gd.fixdist[j];
|
|
if (gd.gs < gp->start) return 8;
|
|
if (gd.gs > gp->end) return 9;
|
|
}
|
|
for (j = 0; j < GeoIndexFIXEDPOINTS; j++)
|
|
if (maxdist[j] != gp->maxdist[j]) return 7;
|
|
usage[1] += gp->RorPoints;
|
|
return 0;
|
|
} else {
|
|
int pota = gp->LorLeaf;
|
|
int potb = gp->RorPoints;
|
|
gpa = gix->pots + pota;
|
|
gpb = gix->pots + potb;
|
|
int lev = gp->level;
|
|
int leva = gpa->level;
|
|
int levb = gpb->level;
|
|
if (leva >= lev) return 2;
|
|
if (levb >= lev) return 3;
|
|
i = (lev - leva) * (lev - levb);
|
|
if (i > 2) return 4;
|
|
if (gp->middle != gpa->end) return 5;
|
|
if (gp->middle != gpb->start) return 6;
|
|
if (gp->start != gpa->start) return 11;
|
|
if (gp->end != gpb->end) return 12;
|
|
for (j = 0; j < GeoIndexFIXEDPOINTS; j++) maxdist[j] = gpa->maxdist[j];
|
|
for (j = 0; j < GeoIndexFIXEDPOINTS; j++)
|
|
if (maxdist[j] < gpb->maxdist[j]) maxdist[j] = gpb->maxdist[j];
|
|
for (j = 0; j < GeoIndexFIXEDPOINTS; j++)
|
|
if (maxdist[j] != gp->maxdist[j]) return 13;
|
|
i = RecursivePotValidate(gix, gp->LorLeaf, usage);
|
|
if (i != 0) return i;
|
|
i = RecursivePotValidate(gix, gp->RorPoints, usage);
|
|
if (i != 0) return i;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int GeoIndex_INDEXVALID(GeoIdx* gi) {
|
|
int usage[2]; // pots and slots
|
|
int j, pot, slot;
|
|
GeoIx* gix;
|
|
GeoPot* gp;
|
|
gix = (GeoIx*)gi;
|
|
usage[0] = 0;
|
|
usage[1] = 0;
|
|
j = RecursivePotValidate(gix, 1, usage);
|
|
if (j != 0) return j;
|
|
pot = 0;
|
|
gp = gix->pots + pot;
|
|
pot = gp->LorLeaf;
|
|
usage[0]++;
|
|
while (pot != 0) {
|
|
gp = gix->pots + pot;
|
|
pot = gp->LorLeaf;
|
|
usage[0]++;
|
|
}
|
|
if (usage[0] != gix->potct) return 14;
|
|
gp = gix->pots + 1;
|
|
if (gp->start != 0) return 15;
|
|
if (gp->end != 0x1FFFFFFFFFFFFFll) return 16;
|
|
slot = 0;
|
|
usage[1]++;
|
|
slot = (int)((gix->gc[slot]).latitude);
|
|
while (slot != 0) {
|
|
usage[1]++;
|
|
slot = (int)((gix->gc[slot]).latitude);
|
|
}
|
|
if (usage[1] != gix->slotct) return 17;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
size_t GeoIndex_MemoryUsage(void* theIndex) {
|
|
GeoIx* geoIndex = (GeoIx*)theIndex;
|
|
if (geoIndex != NULL) {
|
|
return geoIndex->_memoryUsed;
|
|
}
|
|
return 0;
|
|
}
|
|
/* end of GeoIndex.c */
|