1
0
Fork 0
arangodb/arangod/Indexes/SkiplistIndexAttributeMatch...

505 lines
18 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2018 ArangoDB GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Jan Steemann
////////////////////////////////////////////////////////////////////////////////
#include "SkiplistIndexAttributeMatcher.h"
#include "Aql/Ast.h"
#include "Aql/AstNode.h"
#include "Aql/SortCondition.h"
#include "Aql/Variable.h"
#include "Basics/StringRef.h"
#include "Indexes/Index.h"
#include "Indexes/SimpleAttributeEqualityMatcher.h"
#include "VocBase/vocbase.h"
using namespace arangodb;
bool SkiplistIndexAttributeMatcher::accessFitsIndex(
arangodb::Index const* idx, arangodb::aql::AstNode const* access,
arangodb::aql::AstNode const* other, arangodb::aql::AstNode const* op,
arangodb::aql::Variable const* reference,
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>>& found,
std::unordered_set<std::string>& nonNullAttributes, bool isExecution) {
if (!idx->canUseConditionPart(access, other, op, reference, nonNullAttributes, isExecution)) {
return false;
}
arangodb::aql::AstNode const* what = access;
std::pair<arangodb::aql::Variable const*, std::vector<arangodb::basics::AttributeName>> attributeData;
if (op->type != arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
if (!what->isAttributeAccessForVariable(attributeData) || attributeData.first != reference) {
// this access is not referencing this collection
return false;
}
if (arangodb::basics::TRI_AttributeNamesHaveExpansion(attributeData.second)) {
// doc.value[*] == 'value'
return false;
}
if (idx->isAttributeExpanded(attributeData.second)) {
// doc.value == 'value' (with an array index)
return false;
}
} else {
// ok, we do have an IN here... check if it's something like 'value' IN
// doc.value[*]
TRI_ASSERT(op->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN);
bool canUse = false;
if (what->isAttributeAccessForVariable(attributeData) && attributeData.first == reference &&
!arangodb::basics::TRI_AttributeNamesHaveExpansion(attributeData.second) &&
idx->attributeMatches(attributeData.second)) {
// doc.value IN 'value'
// can use this index
canUse = true;
} else {
// check for 'value' IN doc.value AND 'value' IN doc.value[*]
what = other;
if (what->isAttributeAccessForVariable(attributeData) && attributeData.first == reference &&
idx->isAttributeExpanded(attributeData.second) &&
idx->attributeMatches(attributeData.second)) {
canUse = true;
}
}
if (!canUse) {
return false;
}
}
std::vector<arangodb::basics::AttributeName> const& fieldNames = attributeData.second;
for (size_t i = 0; i < idx->fields().size(); ++i) {
if (idx->fields()[i].size() != fieldNames.size()) {
// attribute path length differs
continue;
}
if (idx->isAttributeExpanded(i) && op->type != arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
// If this attribute is correct or not, it could only serve for IN
continue;
}
bool match = arangodb::basics::AttributeName::isIdentical(idx->fields()[i],
fieldNames, true);
if (match) {
// mark ith attribute as being covered
found[i].emplace_back(op);
TRI_IF_FAILURE("PersistentIndex::accessFitsIndex") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
TRI_IF_FAILURE("SkiplistIndex::accessFitsIndex") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
TRI_IF_FAILURE("HashIndex::accessFitsIndex") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
return true;
}
}
return false;
}
void SkiplistIndexAttributeMatcher::matchAttributes(
arangodb::Index const* idx, arangodb::aql::AstNode const* node,
arangodb::aql::Variable const* reference,
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>>& found,
size_t& values, std::unordered_set<std::string>& nonNullAttributes, bool isExecution) {
for (size_t i = 0; i < node->numMembers(); ++i) {
auto op = node->getMember(i);
switch (op->type) {
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_NE:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
TRI_ASSERT(op->numMembers() == 2);
accessFitsIndex(idx, op->getMember(0), op->getMember(1), op, reference,
found, nonNullAttributes, isExecution);
accessFitsIndex(idx, op->getMember(1), op->getMember(0), op, reference,
found, nonNullAttributes, isExecution);
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN:
if (accessFitsIndex(idx, op->getMember(0), op->getMember(1), op,
reference, found, nonNullAttributes, isExecution)) {
if (op->getMember(1)->isAttributeAccessForVariable(reference, false)) {
// 'abc' IN doc.attr[*]
++values;
} else {
size_t av = SimpleAttributeEqualityMatcher::estimateNumberOfArrayMembers(
op->getMember(1));
if (av > 1) {
// attr IN [ a, b, c ] => this will produce multiple items, so
// count them!
values += av - 1;
}
}
}
break;
default:
break;
}
}
}
bool SkiplistIndexAttributeMatcher::supportsFilterCondition(
std::vector<std::shared_ptr<arangodb::Index>> const& allIndexes,
arangodb::Index const* idx, arangodb::aql::AstNode const* node,
arangodb::aql::Variable const* reference, size_t itemsInIndex,
size_t& estimatedItems, double& estimatedCost) {
// mmfiles failure point compat
if (idx->type() == Index::TRI_IDX_TYPE_HASH_INDEX) {
TRI_IF_FAILURE("SimpleAttributeMatcher::accessFitsIndex") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
}
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>> found;
std::unordered_set<std::string> nonNullAttributes;
size_t values = 0;
matchAttributes(idx, node, reference, found, values, nonNullAttributes, false);
bool lastContainsEquality = true;
size_t attributesCovered = 0;
size_t attributesCoveredByEquality = 0;
double equalityReductionFactor = 20.0;
estimatedCost = static_cast<double>(itemsInIndex);
for (size_t i = 0; i < idx->fields().size(); ++i) {
auto it = found.find(i);
if (it == found.end()) {
// index attribute not covered by condition
break;
}
// check if the current condition contains an equality condition
auto const& nodes = (*it).second;
bool containsEquality = false;
for (size_t j = 0; j < nodes.size(); ++j) {
if (nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ ||
nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
containsEquality = true;
break;
}
}
if (!lastContainsEquality) {
// unsupported condition. must abort
break;
}
++attributesCovered;
if (containsEquality) {
++attributesCoveredByEquality;
estimatedCost /= equalityReductionFactor;
// decrease the effect of the equality reduction factor
equalityReductionFactor *= 0.25;
if (equalityReductionFactor < 2.0) {
// equalityReductionFactor shouldn't get too low
equalityReductionFactor = 2.0;
}
} else {
// quick estimate for the potential reductions caused by the conditions
if (nodes.size() >= 2) {
// at least two (non-equality) conditions. probably a range with lower
// and upper bound defined
estimatedCost /= 7.5;
} else {
// one (non-equality). this is either a lower or a higher bound
estimatedCost /= 2.0;
}
}
lastContainsEquality = containsEquality;
}
if (values == 0) {
values = 1;
}
if (attributesCoveredByEquality == idx->fields().size() &&
(idx->unique() || idx->implicitlyUnique())) {
// index is unique and condition covers all attributes by equality
if (itemsInIndex == 0) {
estimatedItems = 0;
estimatedCost = 0.0;
return true;
}
estimatedItems = values;
// ALTERNATIVE: estimatedCost = static_cast<double>(estimatedItems * values);
estimatedCost = (std::max)(static_cast<double>(1),
std::log2(static_cast<double>(itemsInIndex)) * values);
// cost is already low... now slightly prioritize unique indexes
estimatedCost *= 0.995 - 0.05 * (idx->fields().size() - 1);
return true;
}
if (attributesCovered > 0 &&
(!idx->sparse() || attributesCovered == idx->fields().size())) {
// if the condition contains at least one index attribute and is not sparse,
// or the index is sparse and all attributes are covered by the condition,
// then it can be used (note: additional checks for condition parts in
// sparse indexes are contained in Index::canUseConditionPart)
estimatedItems = static_cast<size_t>(
(std::max)(static_cast<size_t>(estimatedCost * values), static_cast<size_t>(1)));
// check if the index has a selectivity estimate ready
if (idx->hasSelectivityEstimate() &&
attributesCoveredByEquality == idx->fields().size()) {
double estimate = idx->selectivityEstimate();
if (estimate > 0.0) {
estimatedItems = static_cast<size_t>(1.0 / estimate);
}
} else if (attributesCoveredByEquality > 0) {
TRI_ASSERT(attributesCovered > 0);
// the index either does not have a selectivity estimate, or not all
// of its attributes are covered by the condition using an equality lookup
// however, if the search condition uses equality lookups on the prefix
// of the index, then we can check if there is another index which is just
// indexing the prefix, and "steal" the selectivity estimate from that index
// for example, if the condition is "doc.a == 1 && doc.b > 2", and the current
// index is created on ["a", "b"], then we will not use the selectivity
// estimate of the current index (due to the range condition used for the second
// index attribute). however, if there is another index on just "a", we know
// that the current index is at least as selective as the index on the single
// attribute. and that the extra condition we have will make it even more
// selectivity. so in this case we will re-use the selectivity estimate from
// the other index, and are happy.
for (auto const& otherIdx : allIndexes) {
auto const* other = otherIdx.get();
if (other == idx || !other->hasSelectivityEstimate()) {
continue;
}
auto const& otherFields = other->fields();
if (otherFields.size() >= attributesCovered) {
// other index has more fields than we have, or the same amount.
// then it will not be helpful
continue;
}
size_t matches = 0;
for (size_t i = 0; i < otherFields.size(); ++i) {
if (otherFields[i] != idx->fields()[i]) {
break;
}
++matches;
}
if (matches == otherFields.size()) {
double estimate = other->selectivityEstimate();
if (estimate > 0.0) {
// reuse the estimate from the other index
estimatedItems = static_cast<size_t>(1.0 / estimate);
break;
}
}
}
}
if (itemsInIndex == 0) {
estimatedCost = 0.0;
} else {
// lookup cost is O(log(n))
estimatedCost = (std::max)(static_cast<double>(1),
std::log2(static_cast<double>(itemsInIndex)) * values);
// slightly prefer indexes that cover more attributes
estimatedCost -= (attributesCovered - 1) * 0.02;
}
return true;
}
// index does not help for this condition
estimatedItems = itemsInIndex;
estimatedCost = static_cast<double>(estimatedItems);
return false;
}
bool SkiplistIndexAttributeMatcher::supportsSortCondition(
arangodb::Index const* idx, arangodb::aql::SortCondition const* sortCondition,
arangodb::aql::Variable const* reference, size_t itemsInIndex,
double& estimatedCost, size_t& coveredAttributes) {
TRI_ASSERT(sortCondition != nullptr);
if (!idx->sparse()) {
// only non-sparse indexes can be used for sorting
if (!idx->hasExpansion() && sortCondition->isUnidirectional() &&
sortCondition->isOnlyAttributeAccess()) {
coveredAttributes = sortCondition->coveredAttributes(reference, idx->fields());
if (coveredAttributes >= sortCondition->numAttributes()) {
// sort is fully covered by index. no additional sort costs!
estimatedCost = 0.0;
return true;
} else if (coveredAttributes > 0) {
estimatedCost = (itemsInIndex / coveredAttributes) *
std::log2(static_cast<double>(itemsInIndex));
return true;
}
}
}
coveredAttributes = 0;
// by default no sort conditions are supported
if (itemsInIndex > 0) {
estimatedCost = itemsInIndex * std::log2(static_cast<double>(itemsInIndex));
} else {
estimatedCost = 0.0;
}
return false;
}
/// @brief specializes the condition for use with the index
arangodb::aql::AstNode* SkiplistIndexAttributeMatcher::specializeCondition(
arangodb::Index const* idx, arangodb::aql::AstNode* node,
arangodb::aql::Variable const* reference) {
// mmfiles failure compat
if (idx->type() == Index::TRI_IDX_TYPE_HASH_INDEX) {
TRI_IF_FAILURE("SimpleAttributeMatcher::specializeAllChildrenEQ") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
TRI_IF_FAILURE("SimpleAttributeMatcher::specializeAllChildrenIN") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
}
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>> found;
std::unordered_set<std::string> nonNullAttributes;
size_t values = 0;
matchAttributes(idx, node, reference, found, values, nonNullAttributes, false);
std::vector<arangodb::aql::AstNode const*> children;
bool lastContainsEquality = true;
for (size_t i = 0; i < idx->fields().size(); ++i) {
auto it = found.find(i);
if (it == found.end()) {
// index attribute not covered by condition
break;
}
if (!lastContainsEquality) {
// unsupported condition. must abort
break;
}
// check if the current condition contains an equality condition
auto& nodes = (*it).second;
lastContainsEquality =
(std::find_if(nodes.begin(), nodes.end(), [](arangodb::aql::AstNode const* node) {
return (node->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ ||
node->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN);
}) != nodes.end());
std::sort(nodes.begin(), nodes.end(),
[](arangodb::aql::AstNode const* lhs, arangodb::aql::AstNode const* rhs) -> bool {
return Index::sortWeight(lhs) < Index::sortWeight(rhs);
});
std::unordered_set<int> operatorsFound;
for (auto& it : nodes) {
if (it->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_NE) {
// ignore all != operators here
continue;
}
// do not let duplicate or related operators pass
if (isDuplicateOperator(it, operatorsFound)) {
continue;
}
TRI_ASSERT(it->type != arangodb::aql::NODE_TYPE_OPERATOR_BINARY_NE);
operatorsFound.emplace(static_cast<int>(it->type));
children.emplace_back(it);
}
}
// must edit in place, no access to AST; TODO change so we can replace with
// copy
TEMPORARILY_UNLOCK_NODE(node);
node->removeMembers();
for (auto& it : children) {
TRI_ASSERT(it->type != arangodb::aql::NODE_TYPE_OPERATOR_BINARY_NE);
node->addMember(it);
}
return node;
}
bool SkiplistIndexAttributeMatcher::isDuplicateOperator(arangodb::aql::AstNode const* node,
std::unordered_set<int> const& operatorsFound) {
auto type = node->type;
if (operatorsFound.find(static_cast<int>(type)) != operatorsFound.end()) {
// duplicate operator
return true;
}
if (operatorsFound.find(static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ)) !=
operatorsFound.end() ||
operatorsFound.find(static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN)) !=
operatorsFound.end()) {
return true;
}
bool duplicate = false;
switch (type) {
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
duplicate = operatorsFound.find(static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
duplicate = operatorsFound.find(static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
duplicate = operatorsFound.find(static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
duplicate = operatorsFound.find(static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ:
duplicate = operatorsFound.find(static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN:
duplicate = operatorsFound.find(static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ)) !=
operatorsFound.end();
break;
default: {
// ignore
}
}
return duplicate;
}