mirror of https://gitee.com/bigwinds/arangodb
1380 lines
48 KiB
C++
1380 lines
48 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
/// DISCLAIMER
|
|
///
|
|
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
|
|
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
|
|
///
|
|
/// Licensed under the Apache License, Version 2.0 (the "License");
|
|
/// you may not use this file except in compliance with the License.
|
|
/// You may obtain a copy of the License at
|
|
///
|
|
/// http://www.apache.org/licenses/LICENSE-2.0
|
|
///
|
|
/// Unless required by applicable law or agreed to in writing, software
|
|
/// distributed under the License is distributed on an "AS IS" BASIS,
|
|
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
/// See the License for the specific language governing permissions and
|
|
/// limitations under the License.
|
|
///
|
|
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
|
|
///
|
|
/// @author Michael Hackstein
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef ARANGODB_BASICS_TRAVERSER_H
|
|
#define ARANGODB_BASICS_TRAVERSER_H 1
|
|
|
|
#include "Basics/Common.h"
|
|
#include "Basics/Exceptions.h"
|
|
#include "Basics/Mutex.h"
|
|
#include "Basics/MutexLocker.h"
|
|
|
|
#include <deque>
|
|
#include <stack>
|
|
#include <thread>
|
|
|
|
namespace arangodb {
|
|
namespace basics {
|
|
|
|
template <typename Key, typename Value, typename Weight>
|
|
class PriorityQueue {
|
|
// This class implements a data structure that is a key/value
|
|
// store with the additional property that every Value has a
|
|
// positive Weight (provided by the weight() and setWeight(w)
|
|
// methods), which is a numerical type, and for which operator<
|
|
// is defined. With respect to this weight the data structure
|
|
// is at the same time a priority queue in that it is possible
|
|
// to ask for (one of) the value(s) with the smallest weight and
|
|
// remove this efficiently.
|
|
// All methods only work with pointers to Values for efficiency
|
|
// reasons. This class deletes all Value* that are stored on
|
|
// destruction.
|
|
// The Value type must have a method getKey that returns a Key
|
|
// const&.
|
|
// This data structure makes the following complexity promises
|
|
// (amortized), where n is the number of key/value pairs stored
|
|
// in the queue:
|
|
// insert: O(log(n)) (but see below)
|
|
// lookup value by key: O(1)
|
|
// get smallest: O(1)
|
|
// get and erase smallest: O(log(n)) (but see below)
|
|
// lower weight by key O(log(n)) (but see below)
|
|
// Additionally, if we only ever insert pairs whose value is not
|
|
// smaller than any other value that is already in the structure,
|
|
// and if we do not use lower weight by key, then we even get:
|
|
// insert: O(1)
|
|
// get and erase smallest: O(1)
|
|
// With the "get and erase smallest" operation one has the option
|
|
// of retaining the erased value in the key/value store. It can then
|
|
// still be looked up but will no longer be considered for the
|
|
// priority queue.
|
|
|
|
public:
|
|
PriorityQueue() : _popped(0), _isHeap(false), _maxWeight(0) {}
|
|
|
|
~PriorityQueue() {
|
|
for (Value* v : _heap) {
|
|
delete v;
|
|
}
|
|
for (Value* v : _history) {
|
|
delete v;
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief empty
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool empty() { return _heap.empty(); }
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief size
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
size_t size() { return _heap.size(); }
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief insert, data will be copied, returns true, if the key did not
|
|
/// yet exist, and false, in which case nothing else is changed.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool insert(Key const& k, Value* v) {
|
|
auto it = _lookup.find(k);
|
|
if (it != _lookup.end()) {
|
|
return false;
|
|
}
|
|
|
|
// Are we still in the simple case of a deque?
|
|
if (!_isHeap) {
|
|
Weight w = v->weight();
|
|
if (w < _maxWeight) {
|
|
// Oh dear, we have to upgrade to heap:
|
|
_isHeap = true;
|
|
// fall through intentionally
|
|
} else {
|
|
if (w > _maxWeight) {
|
|
_maxWeight = w;
|
|
}
|
|
_heap.push_back(v);
|
|
try {
|
|
_lookup.insert(std::make_pair(
|
|
k, static_cast<ssize_t>(_heap.size() - 1 + _popped)));
|
|
} catch (...) {
|
|
_heap.pop_back();
|
|
throw;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
// If we get here, we have to insert into a proper binary heap:
|
|
_heap.push_back(v);
|
|
try {
|
|
size_t newpos = _heap.size() - 1;
|
|
_lookup.insert(std::make_pair(k, static_cast<ssize_t>(newpos + _popped)));
|
|
repairUp(newpos);
|
|
} catch (...) {
|
|
_heap.pop_back();
|
|
throw;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief find, note that the resulting pointer is only valid until the
|
|
/// the next modification of the data structure happens (insert or lowerWeight
|
|
/// or popMinimal). The weight in the Value type must not be modified other
|
|
/// than via lowerWeight, otherwise the queue order could be violated.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
Value* find(Key const& k) {
|
|
auto it = _lookup.find(k);
|
|
|
|
if (it == _lookup.end()) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (it->second >= 0) { // still in the queue
|
|
return _heap.at(static_cast<size_t>(it->second) - _popped);
|
|
} else { // already in the history
|
|
return _history.at(static_cast<size_t>(-it->second) - 1);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief erase, returns whether the key was found
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool lowerWeight(Key const& k, Weight newWeight) {
|
|
if (!_isHeap) {
|
|
_isHeap = true;
|
|
}
|
|
auto it = _lookup.find(k);
|
|
if (it == _lookup.end()) {
|
|
return false;
|
|
}
|
|
if (it->second >= 0) { // still in the queue
|
|
size_t pos = static_cast<size_t>(it->second) - _popped;
|
|
_heap[pos]->setWeight(newWeight);
|
|
repairUp(pos);
|
|
} else { // already in the history
|
|
size_t pos = static_cast<size_t>(-it->second) - 1;
|
|
_history[pos]->setWeight(newWeight);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief getMinimal, note that the resulting pointer is only valid until the
|
|
/// the next modification of the data structure happens (insert or lowerWeight
|
|
/// or popMinimal). The weight in the Value type must not be modified other
|
|
/// than via lowerWeight, otherwise the queue order could be violated.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
Value* getMinimal() {
|
|
if (_heap.empty()) {
|
|
return nullptr;
|
|
}
|
|
return _heap[0];
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief popMinimal, returns true if something was returned and false
|
|
/// if the structure is empty. Key and Value are stored in k and v.
|
|
/// If keepForLookup is true then the Value is kept for lookup in the
|
|
/// hash table but removed from the priority queue.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool popMinimal(Key& k, Value*& v, bool keepForLookup = false) {
|
|
if (_heap.empty()) {
|
|
return false;
|
|
}
|
|
k = _heap[0]->getKey();
|
|
v = _heap[0];
|
|
if (!_isHeap) {
|
|
auto it = _lookup.find(k);
|
|
TRI_ASSERT(it != _lookup.end());
|
|
if (keepForLookup) {
|
|
_history.push_back(_heap[0]);
|
|
it->second = -static_cast<ssize_t>(_history.size());
|
|
// Note: This is intentionally one too large to shift by 1
|
|
} else {
|
|
_lookup.erase(it);
|
|
}
|
|
_heap.pop_front();
|
|
_popped++;
|
|
} else {
|
|
removeFromHeap(keepForLookup);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief swap, two positions in the heap, adjusts the _lookup table
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
void swap(size_t p, size_t q) {
|
|
Value* v = _heap[p];
|
|
_heap[p] = _heap[q];
|
|
_heap[q] = v;
|
|
|
|
// Now fix the lookup:
|
|
Key const& keyp(_heap[p]->getKey());
|
|
auto it = _lookup.find(keyp);
|
|
TRI_ASSERT(it != _lookup.end());
|
|
TRI_ASSERT(it->second - _popped == q);
|
|
it->second = static_cast<ssize_t>(p) + static_cast<ssize_t>(_popped);
|
|
|
|
Key const& keyq(_heap[q]->getKey());
|
|
it = _lookup.find(keyq);
|
|
TRI_ASSERT(it != _lookup.end());
|
|
TRI_ASSERT(it->second - _popped == p);
|
|
it->second = static_cast<ssize_t>(q) + static_cast<ssize_t>(_popped);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief parent, find the parent node in heap
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
size_t parent(size_t pos) { return ((pos + 1) >> 1) - 1; }
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief lchild, find the node of the left child in the heap
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
size_t lchild(size_t pos) { return 2 * (pos + 1) - 1; }
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief rchild, find the node of the right child in the heap
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
size_t rchild(size_t pos) { return 2 * (pos + 1); }
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief repairUp, fix the heap property between position pos and its parent
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
void repairUp(size_t pos) {
|
|
while (pos > 0) {
|
|
size_t par = parent(pos);
|
|
Weight wpos = _heap[pos]->weight();
|
|
Weight wpar = _heap[par]->weight();
|
|
if (wpos < wpar) {
|
|
swap(pos, par);
|
|
pos = par;
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief repairDown, fix the heap property between position pos and its
|
|
/// children.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
void repairDown() {
|
|
size_t pos = 0;
|
|
while (pos < _heap.size()) {
|
|
size_t lchi = lchild(pos);
|
|
if (lchi >= _heap.size()) {
|
|
return;
|
|
}
|
|
Weight wpos = _heap[pos]->weight();
|
|
Weight wlchi = _heap[lchi]->weight();
|
|
size_t rchi = rchild(pos);
|
|
if (rchi >= _heap.size()) {
|
|
if (wpos > wlchi) {
|
|
swap(pos, lchi);
|
|
}
|
|
return;
|
|
}
|
|
Weight wrchi = _heap[rchi]->weight();
|
|
if (wlchi <= wrchi) {
|
|
if (wpos <= wlchi) {
|
|
return;
|
|
}
|
|
swap(pos, lchi);
|
|
pos = lchi;
|
|
} else {
|
|
if (wpos <= wrchi) {
|
|
return;
|
|
}
|
|
swap(pos, rchi);
|
|
pos = rchi;
|
|
}
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief removeFromHeap, remove first position in the heap
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
void removeFromHeap(bool keepForLookup) {
|
|
auto it = _lookup.find(_heap[0]->getKey());
|
|
TRI_ASSERT(it != _lookup.end());
|
|
if (keepForLookup) {
|
|
_history.push_back(_heap[0]);
|
|
it->second = -static_cast<ssize_t>(_history.size());
|
|
// Note: This is intentionally one too large to shift by 1
|
|
} else {
|
|
_lookup.erase(it);
|
|
}
|
|
if (_heap.size() == 1) {
|
|
_heap.clear();
|
|
_popped = 0;
|
|
_isHeap = false;
|
|
_maxWeight = 0;
|
|
return;
|
|
}
|
|
// Move one in front:
|
|
_heap[0] = _heap.back();
|
|
_heap.pop_back();
|
|
it = _lookup.find(_heap[0]->getKey());
|
|
TRI_ASSERT(it != _lookup.end());
|
|
it->second = static_cast<ssize_t>(_popped);
|
|
repairDown();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief _popped, number of elements that have been popped from the
|
|
/// beginning
|
|
/// of the deque, this is necessary to interpret positions stored in the
|
|
/// unordered_map _lookup
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
private:
|
|
size_t _popped;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief _lookup, this provides O(1) lookup by Key
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
std::unordered_map<Key, ssize_t> _lookup;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief _isHeap, starts as false, in which case we only use a deque,
|
|
/// if true, then _heap is an actual binary heap and we do no longer modify
|
|
/// _popped.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool _isHeap;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief _heap, the actual data
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
std::deque<Value*> _heap;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief _maxWeight, the current maximal weight ever seen
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
Weight _maxWeight;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief _history, the actual data that is only in the key/value store
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
std::vector<Value*> _history;
|
|
};
|
|
|
|
template <typename VertexId, typename EdgeId, typename EdgeWeight>
|
|
class PathFinder {
|
|
public:
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Path, type for the result
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Convention vertices.size() -1 === edges.size()
|
|
// path is vertices[0] , edges[0], vertices[1] etc.
|
|
struct Path {
|
|
std::deque<VertexId> vertices;
|
|
std::deque<EdgeId> edges;
|
|
EdgeWeight weight;
|
|
|
|
Path(std::deque<VertexId> const& vertices, std::deque<EdgeId> const& edges,
|
|
EdgeWeight weight)
|
|
: vertices(vertices), edges(edges), weight(weight) {}
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Step, one position with a predecessor and the edge
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct Step {
|
|
private:
|
|
EdgeWeight _weight;
|
|
|
|
public:
|
|
VertexId _vertex;
|
|
VertexId _predecessor;
|
|
EdgeId _edge;
|
|
bool _done;
|
|
|
|
Step() : _done(false) {}
|
|
|
|
Step(VertexId const& vert, VertexId const& pred, EdgeWeight weig, EdgeId const& edge)
|
|
: _weight(weig),
|
|
_vertex(vert),
|
|
_predecessor(pred),
|
|
_edge(edge),
|
|
_done(false) {}
|
|
|
|
EdgeWeight weight() const { return _weight; }
|
|
|
|
void setWeight(EdgeWeight w) { _weight = w; }
|
|
|
|
VertexId const& getKey() const { return _vertex; }
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief edge direction
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
typedef enum { FORWARD, BACKWARD } Direction;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief callback to find neighbors
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
typedef std::function<void(std::string const&, std::vector<Step*>&)>
|
|
ExpanderFunction;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief our specialization of the priority queue
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
typedef arangodb::basics::PriorityQueue<std::string, Step, EdgeWeight> PQueue;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief information for each thread
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct ThreadInfo {
|
|
PQueue _pq;
|
|
arangodb::Mutex _mutex;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief a Dijkstra searcher for the multi-threaded search
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
class SearcherTwoThreads {
|
|
PathFinder* _pathFinder;
|
|
ThreadInfo& _myInfo;
|
|
ThreadInfo& _peerInfo;
|
|
VertexId _start;
|
|
ExpanderFunction _expander;
|
|
std::string _id;
|
|
|
|
public:
|
|
SearcherTwoThreads(PathFinder* pathFinder, ThreadInfo& myInfo,
|
|
ThreadInfo& peerInfo, VertexId& start,
|
|
ExpanderFunction expander, std::string const& id)
|
|
: _pathFinder(pathFinder),
|
|
_myInfo(myInfo),
|
|
_peerInfo(peerInfo),
|
|
_start(std::move(start)),
|
|
_expander(expander),
|
|
_id(id) {}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Insert a neighbor to the todo list.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
private:
|
|
void insertNeighbor(Step* step, EdgeWeight newWeight) {
|
|
MUTEX_LOCKER(locker, _myInfo._mutex);
|
|
|
|
Step* s = _myInfo._pq.find(step->_vertex);
|
|
|
|
// Not found, so insert it:
|
|
if (s == nullptr) {
|
|
step->setWeight(newWeight);
|
|
_myInfo._pq.insert(step->_vertex, step);
|
|
// step is consumed!
|
|
return;
|
|
}
|
|
if (s->_done) {
|
|
delete step;
|
|
return;
|
|
}
|
|
if (s->weight() > newWeight) {
|
|
s->_predecessor = step->_predecessor;
|
|
s->_edge = step->_edge;
|
|
_myInfo._pq.lowerWeight(s->_vertex, newWeight);
|
|
}
|
|
delete step;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Lookup our current vertex in the data of our peer.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void lookupPeer(VertexId& vertex, EdgeWeight weight) {
|
|
MUTEX_LOCKER(locker, _peerInfo._mutex);
|
|
|
|
Step* s = _peerInfo._pq.find(vertex);
|
|
if (s == nullptr) {
|
|
// Not found, nothing more to do
|
|
return;
|
|
}
|
|
EdgeWeight total = s->weight() + weight;
|
|
|
|
// Update the highscore:
|
|
MUTEX_LOCKER(resultLocker, _pathFinder->_resultMutex);
|
|
|
|
if (!_pathFinder->_highscoreSet || total < _pathFinder->_highscore) {
|
|
_pathFinder->_highscoreSet = true;
|
|
_pathFinder->_highscore = total;
|
|
_pathFinder->_intermediate = vertex;
|
|
_pathFinder->_intermediateSet = true;
|
|
}
|
|
|
|
// Now the highscore is set!
|
|
|
|
// Did we find a solution together with the other thread?
|
|
if (s->_done) {
|
|
if (total <= _pathFinder->_highscore) {
|
|
_pathFinder->_intermediate = vertex;
|
|
_pathFinder->_intermediateSet = true;
|
|
}
|
|
// Hacki says: If the highscore was set, and even if
|
|
// it is better than total, then this observation here
|
|
// proves that it will never be better, so: BINGO.
|
|
_pathFinder->_bingo = true;
|
|
// We found a way, but somebody else found a better way, so
|
|
// this is not the shortest path
|
|
return;
|
|
}
|
|
|
|
// Did we find a solution on our own? This is for the
|
|
// single thread case and for the case that the other
|
|
// thread is too slow to even finish its own start vertex!
|
|
if (s->weight() == 0) {
|
|
// We have found the target, we have finished all
|
|
// vertices with a smaller weight than this one (and did
|
|
// not succeed), so this must be a best solution:
|
|
_pathFinder->_intermediate = vertex;
|
|
_pathFinder->_intermediateSet = true;
|
|
_pathFinder->_bingo = true;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Search graph starting at Start following edges of the given
|
|
/// direction only
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void run() {
|
|
try {
|
|
VertexId v;
|
|
Step* s;
|
|
bool b;
|
|
{
|
|
MUTEX_LOCKER(locker, _myInfo._mutex);
|
|
b = _myInfo._pq.popMinimal(v, s, true);
|
|
}
|
|
|
|
std::vector<Step*> neighbors;
|
|
|
|
// Iterate while no bingo found and
|
|
// there still is a vertex on the stack.
|
|
while (!_pathFinder->_bingo && b) {
|
|
neighbors.clear();
|
|
_expander(v, neighbors);
|
|
for (auto* neighbor : neighbors) {
|
|
insertNeighbor(neighbor, s->weight() + neighbor->weight());
|
|
}
|
|
lookupPeer(v, s->weight());
|
|
|
|
MUTEX_LOCKER(locker, _myInfo._mutex);
|
|
Step* s2 = _myInfo._pq.find(v);
|
|
s2->_done = true;
|
|
b = _myInfo._pq.popMinimal(v, s, true);
|
|
}
|
|
// We can leave this loop only under 2 conditions:
|
|
// 1) already bingo==true => bingo = true no effect
|
|
// 2) This queue is empty => if there would be a
|
|
// path we would have found it here
|
|
// => No path possible. Set bingo, intermediate is empty.
|
|
_pathFinder->_bingo = true;
|
|
} catch (arangodb::basics::Exception const& ex) {
|
|
_pathFinder->_resultCode = ex.code();
|
|
} catch (std::bad_alloc const&) {
|
|
_pathFinder->_resultCode = TRI_ERROR_OUT_OF_MEMORY;
|
|
} catch (...) {
|
|
_pathFinder->_resultCode = TRI_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief start and join functions
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
public:
|
|
void start() { _thread = std::thread(&SearcherTwoThreads::run, this); }
|
|
|
|
void join() { _thread.join(); }
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief The thread object.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
private:
|
|
std::thread _thread;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief a Dijkstra searcher for the single-threaded search
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
class Searcher {
|
|
PathFinder* _pathFinder;
|
|
ThreadInfo& _myInfo;
|
|
ThreadInfo& _peerInfo;
|
|
VertexId _start;
|
|
ExpanderFunction _expander;
|
|
std::string _id;
|
|
|
|
public:
|
|
Searcher(PathFinder* pathFinder, ThreadInfo& myInfo, ThreadInfo& peerInfo,
|
|
VertexId& start, ExpanderFunction expander, std::string const& id)
|
|
: _pathFinder(pathFinder),
|
|
_myInfo(myInfo),
|
|
_peerInfo(peerInfo),
|
|
_start(start),
|
|
_expander(expander),
|
|
_id(id) {}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Insert a neighbor to the todo list.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
private:
|
|
void insertNeighbor(Step* step, EdgeWeight newWeight) {
|
|
Step* s = _myInfo._pq.find(step->_vertex);
|
|
|
|
// Not found, so insert it:
|
|
if (s == nullptr) {
|
|
step->setWeight(newWeight);
|
|
_myInfo._pq.insert(step->_vertex, step);
|
|
return;
|
|
}
|
|
delete step;
|
|
if (s->_done) {
|
|
return;
|
|
}
|
|
if (s->weight() > newWeight) {
|
|
_myInfo._pq.lowerWeight(s->_vertex, newWeight);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Lookup our current vertex in the data of our peer.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void lookupPeer(VertexId& vertex, EdgeWeight weight) {
|
|
Step* s = _peerInfo._pq.find(vertex);
|
|
|
|
if (s == nullptr) {
|
|
// Not found, nothing more to do
|
|
return;
|
|
}
|
|
EdgeWeight total = s->weight() + weight;
|
|
|
|
// Update the highscore:
|
|
if (!_pathFinder->_highscoreSet || total < _pathFinder->_highscore) {
|
|
_pathFinder->_highscoreSet = true;
|
|
_pathFinder->_highscore = total;
|
|
_pathFinder->_intermediate = vertex;
|
|
_pathFinder->_intermediateSet = true;
|
|
}
|
|
|
|
// Now the highscore is set!
|
|
|
|
// Did we find a solution together with the other thread?
|
|
if (s->_done) {
|
|
if (total <= _pathFinder->_highscore) {
|
|
_pathFinder->_intermediate = vertex;
|
|
_pathFinder->_intermediateSet = true;
|
|
}
|
|
// Hacki says: If the highscore was set, and even if
|
|
// it is better than total, then this observation here
|
|
// proves that it will never be better, so: BINGO.
|
|
_pathFinder->_bingo = true;
|
|
// We found a way, but somebody else found a better way,
|
|
// so this is not the shortest path
|
|
return;
|
|
}
|
|
|
|
// Did we find a solution on our own? This is for the
|
|
// single thread case and for the case that the other
|
|
// thread is too slow to even finish its own start vertex!
|
|
if (s->weight() == 0) {
|
|
// We have found the target, we have finished all
|
|
// vertices with a smaller weight than this one (and did
|
|
// not succeed), so this must be a best solution:
|
|
_pathFinder->_intermediate = vertex;
|
|
_pathFinder->_intermediateSet = true;
|
|
_pathFinder->_bingo = true;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Do one step only.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
public:
|
|
bool oneStep() {
|
|
VertexId v;
|
|
Step* s;
|
|
bool b = _myInfo._pq.popMinimal(v, s, true);
|
|
|
|
std::vector<Step*> neighbors;
|
|
|
|
if (_pathFinder->_bingo || !b) {
|
|
// We can leave this functino only under 2 conditions:
|
|
// 1) already bingo==true => bingo = true no effect
|
|
// 2) This queue is empty => if there would be a
|
|
// path we would have found it here
|
|
// => No path possible. Set bingo, intermediate is empty.
|
|
_pathFinder->_bingo = true;
|
|
return false;
|
|
}
|
|
|
|
_expander(v, neighbors);
|
|
for (Step* neighbor : neighbors) {
|
|
insertNeighbor(neighbor, s->weight() + neighbor->weight());
|
|
}
|
|
lookupPeer(v, s->weight());
|
|
|
|
Step* s2 = _myInfo._pq.find(v);
|
|
s2->_done = true;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
PathFinder(PathFinder const&) = delete;
|
|
PathFinder& operator=(PathFinder const&) = delete;
|
|
PathFinder() = delete;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief create the PathFinder
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
PathFinder(ExpanderFunction forwardExpander,
|
|
ExpanderFunction backwardExpander, bool bidirectional = true)
|
|
: _highscoreSet(false),
|
|
_highscore(0),
|
|
_bingo(false),
|
|
_resultCode(TRI_ERROR_NO_ERROR),
|
|
_intermediateSet(false),
|
|
_intermediate(),
|
|
_forwardExpander(forwardExpander),
|
|
_backwardExpander(backwardExpander),
|
|
_bidirectional(bidirectional){};
|
|
|
|
~PathFinder(){};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Find the shortest path between start and target.
|
|
/// Only edges having the given direction are followed.
|
|
/// nullptr indicates there is no path.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Caller has to free the result
|
|
// nullptr indicates there is no path
|
|
Path* shortestPath(VertexId& start, VertexId& target) {
|
|
// For the result:
|
|
std::deque<VertexId> r_vertices;
|
|
std::deque<EdgeId> r_edges;
|
|
_highscoreSet = false;
|
|
_highscore = 0;
|
|
_bingo = false;
|
|
|
|
// Forward with initialization:
|
|
VertexId emptyVertex;
|
|
EdgeId emptyEdge;
|
|
ThreadInfo forward;
|
|
forward._pq.insert(start, new Step(start, emptyVertex, 0, emptyEdge));
|
|
|
|
// backward with initialization:
|
|
ThreadInfo backward;
|
|
backward._pq.insert(target, new Step(target, emptyVertex, 0, emptyEdge));
|
|
|
|
// Now the searcher threads:
|
|
Searcher forwardSearcher(this, forward, backward, start, _forwardExpander,
|
|
"Forward");
|
|
std::unique_ptr<Searcher> backwardSearcher;
|
|
if (_bidirectional) {
|
|
backwardSearcher.reset(new Searcher(this, backward, forward, target,
|
|
_backwardExpander, "Backward"));
|
|
}
|
|
|
|
TRI_IF_FAILURE("TraversalOOMInitialize") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
|
|
while (!_bingo) {
|
|
if (!forwardSearcher.oneStep()) {
|
|
break;
|
|
}
|
|
if (!backwardSearcher->oneStep()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!_bingo || _intermediateSet == false) {
|
|
return nullptr;
|
|
}
|
|
|
|
Step* s = forward._pq.find(_intermediate);
|
|
r_vertices.emplace_back(_intermediate);
|
|
|
|
// FORWARD Go path back from intermediate -> start.
|
|
// Insert all vertices and edges at front of vector
|
|
// Do NOT! insert the intermediate vertex
|
|
while (!s->_predecessor.empty()) {
|
|
r_edges.push_front(s->_edge);
|
|
r_vertices.push_front(s->_predecessor);
|
|
s = forward._pq.find(s->_predecessor);
|
|
}
|
|
|
|
// BACKWARD Go path back from intermediate -> target.
|
|
// Insert all vertices and edges at back of vector
|
|
// Also insert the intermediate vertex
|
|
s = backward._pq.find(_intermediate);
|
|
while (!s->_predecessor.empty()) {
|
|
r_vertices.emplace_back(s->_predecessor);
|
|
s = backward._pq.find(s->_predecessor);
|
|
}
|
|
|
|
TRI_IF_FAILURE("TraversalOOMPath") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
|
|
return new Path(r_vertices, r_edges, _highscore);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief return the shortest path between the start and target vertex,
|
|
/// multi-threaded version using SearcherTwoThreads.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Caller has to free the result
|
|
// nullptr indicates there is no path
|
|
|
|
Path* shortestPathTwoThreads(VertexId& start, VertexId& target) {
|
|
// For the result:
|
|
std::deque<VertexId> r_vertices;
|
|
std::deque<EdgeId> r_edges;
|
|
_highscoreSet = false;
|
|
_highscore = 0;
|
|
_bingo = false;
|
|
|
|
// Forward with initialization:
|
|
VertexId emptyVertex;
|
|
EdgeId emptyEdge;
|
|
ThreadInfo forward;
|
|
forward._pq.insert(start, new Step(start, emptyVertex, 0, emptyEdge));
|
|
|
|
// backward with initialization:
|
|
ThreadInfo backward;
|
|
backward._pq.insert(target, new Step(target, emptyVertex, 0, emptyEdge));
|
|
|
|
// Now the searcher threads:
|
|
SearcherTwoThreads forwardSearcher(this, forward, backward, start,
|
|
_forwardExpander, "Forward");
|
|
std::unique_ptr<SearcherTwoThreads> backwardSearcher;
|
|
if (_bidirectional) {
|
|
backwardSearcher.reset(new SearcherTwoThreads(
|
|
this, backward, forward, target, _backwardExpander, "Backward"));
|
|
}
|
|
|
|
TRI_IF_FAILURE("TraversalOOMInitialize") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
|
|
forwardSearcher.start();
|
|
if (_bidirectional) {
|
|
backwardSearcher->start();
|
|
}
|
|
forwardSearcher.join();
|
|
if (_bidirectional) {
|
|
backwardSearcher->join();
|
|
}
|
|
|
|
// check error code returned by the threads
|
|
int res = _resultCode.load();
|
|
|
|
if (res != TRI_ERROR_NO_ERROR) {
|
|
// one of the threads caught an exception
|
|
THROW_ARANGO_EXCEPTION(res);
|
|
}
|
|
|
|
if (!_bingo || _intermediateSet == false) {
|
|
return nullptr;
|
|
}
|
|
|
|
Step* s = forward._pq.find(_intermediate);
|
|
r_vertices.emplace_back(_intermediate);
|
|
|
|
// FORWARD Go path back from intermediate -> start.
|
|
// Insert all vertices and edges at front of vector
|
|
// Do NOT! insert the intermediate vertex
|
|
while (!s->_predecessor.empty()) {
|
|
r_edges.push_front(s->_edge);
|
|
r_vertices.push_front(s->_predecessor);
|
|
s = forward._pq.find(s->_predecessor);
|
|
}
|
|
|
|
// BACKWARD Go path back from intermediate -> target.
|
|
// Insert all vertices and edges at back of vector
|
|
// Also insert the intermediate vertex
|
|
s = backward._pq.find(_intermediate);
|
|
while (!s->_predecessor.empty()) {
|
|
r_edges.emplace_back(s->_edge);
|
|
r_vertices.emplace_back(s->_predecessor);
|
|
s = backward._pq.find(s->_predecessor);
|
|
}
|
|
|
|
TRI_IF_FAILURE("TraversalOOMPath") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
|
|
return new Path(r_vertices, r_edges, _highscore);
|
|
}
|
|
|
|
/* Here is a proof for the correctness of this algorithm:
|
|
*
|
|
* Assume we are looking for a shortest path from vertex A to vertex B.
|
|
*
|
|
* We do Dijkstra from both sides, thread 1 from A in forward direction and
|
|
* thread 2 from B in backward direction. That is, we administrate a (hash)
|
|
* table of distances from A to vertices in forward direction and one of
|
|
* distances from B to vertices in backward direction.
|
|
*
|
|
* We get the following guarantees:
|
|
*
|
|
* When thread 1 is working on a vertex X, then it knows the distance w
|
|
* from A to X.
|
|
*
|
|
* When thread 2 is working on a vertex Y, then it knows the distance v
|
|
* from Y to B.
|
|
*
|
|
* When thread 1 is working on a vertex X at distance w from A, then it has
|
|
* completed the work on all vertices X' at distance < w from A.
|
|
*
|
|
* When thread 2 is working on a vertex Y at distance v to B, then it has
|
|
* completed the work on all vertices X' at (backward) distance < v to B.
|
|
*
|
|
* This all follows from the standard Dijkstra algorithm.
|
|
*
|
|
* Additionally, we do the following after we complete the normal work on a
|
|
* vertex:
|
|
*
|
|
* Thread 1 checks for each vertex X at distance w from A whether thread 2
|
|
* already knows it. If so, it makes sure that the highscore and intermediate
|
|
* are set to the total length. Thread 2 does the analogous thing.
|
|
*
|
|
* If Thread 1 finds that vertex X (at distance v to B, say) has already
|
|
* been completed by thread 2, then we call bingo. Thread 2 does the
|
|
* analogous thing.
|
|
*
|
|
* We need to prove that the result is a shortest path.
|
|
*
|
|
* Assume that there is a shortest path of length <v+w from A to B. Let X'
|
|
* be the latest vertex on this path with distance w' < w from A and let Y'
|
|
* be the next one on the path. Then Y' is at distance w'+z' >= w from A
|
|
* and thus at distance v' < v to B:
|
|
*
|
|
* | >=w | v'<v |
|
|
* | w'<w | z' | |
|
|
* A -----> X' -> Y' -----> B
|
|
*
|
|
* Therefore, X' has already been completed by thread 1 and Y' has
|
|
* already been completed by thread 2.
|
|
*
|
|
* Therefore, thread 1 has (in this temporal order) done:
|
|
*
|
|
* 1a: discover Y' and store it in table 1 under mutex 1
|
|
* 1b: lookup X' in thread 2's table under mutex 2
|
|
* 1c: mark X' as complete in table 1 under mutex 1
|
|
*
|
|
* And thread 2 has (in this temporal order) done:
|
|
*
|
|
* 2a: discover X' and store it in table 2 under mutex 2
|
|
* 2b: lookup Y' in thread 1's table under mutex 1
|
|
* 2c: mark Y' as complete in table 2 under mutex 2
|
|
*
|
|
* If 1b has happened before 2a, then 1a has happened before 2a and
|
|
* thus 2b, so thread 2 has found the highscore w'+z'+v' < v+w.
|
|
* Otherwise, 1b has happened after 2a and thus thread 1 has found the
|
|
* highscore.
|
|
*
|
|
* Thus the highscore of this shortest path has already been set and the
|
|
* algorithm is correct.
|
|
*/
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief lowest total weight for a complete path found
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool _highscoreSet;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief lowest total weight for a complete path found
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
EdgeWeight _highscore;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief _bingo, flag that indicates termination
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
std::atomic<bool> _bingo;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief result code. this is used to transport errors from sub-threads to
|
|
/// the caller thread
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
std::atomic<int> _resultCode;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief _resultMutex, this is used to protect access to the result data
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
arangodb::Mutex _resultMutex;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief _intermediate, one vertex on the shortest path found, flag
|
|
/// indicates
|
|
/// whether or not it was set.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool _intermediateSet;
|
|
VertexId _intermediate;
|
|
|
|
private:
|
|
ExpanderFunction _forwardExpander;
|
|
ExpanderFunction _backwardExpander;
|
|
bool _bidirectional;
|
|
};
|
|
|
|
template <typename edgeIdentifier, typename vertexIdentifier>
|
|
struct EnumeratedPath {
|
|
std::vector<edgeIdentifier> edges;
|
|
std::vector<vertexIdentifier> vertices;
|
|
EnumeratedPath() {}
|
|
};
|
|
|
|
template <typename edgeIdentifier, typename vertexIdentifier, typename edgeItem>
|
|
class PathEnumerator {
|
|
private:
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief List of the last path is used to
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
EnumeratedPath<edgeIdentifier, vertexIdentifier> _enumeratedPath;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief The pointers returned for edge indexes on this path. Used to
|
|
/// continue
|
|
/// the search on respective levels.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
std::stack<edgeItem*> _lastEdges;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief The boolean value indicating the direction for 'any' search
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
std::stack<bool> _lastEdgesDir;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief An internal index for the edge collection used at each depth level
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
std::stack<size_t> _lastEdgesIdx;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Function to get the next edge from index.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
std::function<void(vertexIdentifier&, std::vector<edgeIdentifier>&,
|
|
edgeItem*&, size_t&, bool&)> _getEdge;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Function to get the connected vertex from index.
|
|
/// Returns false if the vertex does not match the filter
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
std::function<bool(edgeIdentifier const&, vertexIdentifier const&, size_t,
|
|
vertexIdentifier&)> _getVertex;
|
|
|
|
public:
|
|
PathEnumerator(
|
|
std::function<void(vertexIdentifier const&, std::vector<edgeIdentifier>&,
|
|
edgeItem*&, size_t&, bool&)> getEdge,
|
|
std::function<bool(edgeIdentifier const&, vertexIdentifier const&, size_t,
|
|
vertexIdentifier&)> getVertex,
|
|
vertexIdentifier const& startVertex)
|
|
: _getEdge(getEdge), _getVertex(getVertex) {
|
|
_enumeratedPath.vertices.push_back(startVertex);
|
|
_lastEdges.push(nullptr);
|
|
_lastEdgesDir.push(false);
|
|
_lastEdgesIdx.push(0);
|
|
TRI_ASSERT(_enumeratedPath.vertices.size() == 1);
|
|
TRI_ASSERT(_lastEdges.size() == 1);
|
|
TRI_ASSERT(_lastEdgesDir.size() == 1);
|
|
}
|
|
|
|
~PathEnumerator() {}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Get the next Path element from the traversal.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
const EnumeratedPath<edgeIdentifier, vertexIdentifier>& next() {
|
|
// Avoid tail recusion. May crash on high search depth
|
|
while (true) {
|
|
if (_lastEdges.empty()) {
|
|
_enumeratedPath.edges.clear();
|
|
_enumeratedPath.vertices.clear();
|
|
return _enumeratedPath;
|
|
}
|
|
_getEdge(_enumeratedPath.vertices.back(), _enumeratedPath.edges,
|
|
_lastEdges.top(), _lastEdgesIdx.top(), _lastEdgesDir.top());
|
|
if (_lastEdges.top() != nullptr) {
|
|
// Could continue the path in the next depth.
|
|
_lastEdges.push(nullptr);
|
|
_lastEdgesDir.push(false);
|
|
_lastEdgesIdx.push(0);
|
|
vertexIdentifier v;
|
|
bool isValid = _getVertex(_enumeratedPath.edges.back(),
|
|
_enumeratedPath.vertices.back(),
|
|
_enumeratedPath.vertices.size(), v);
|
|
_enumeratedPath.vertices.push_back(v);
|
|
TRI_ASSERT(_enumeratedPath.vertices.size() ==
|
|
_enumeratedPath.edges.size() + 1);
|
|
if (isValid) {
|
|
return _enumeratedPath;
|
|
}
|
|
} else {
|
|
if (_enumeratedPath.edges.empty()) {
|
|
// We are done with enumerating paths
|
|
_enumeratedPath.edges.clear();
|
|
_enumeratedPath.vertices.clear();
|
|
return _enumeratedPath;
|
|
}
|
|
}
|
|
// This either modifies the stack or _lastEdges is empty.
|
|
// This will return in next depth
|
|
prune();
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Prunes the current path prefix, the next function should not return
|
|
/// any path having this prefix anymore.
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
void prune() {
|
|
if (!_lastEdges.empty()) {
|
|
_lastEdges.pop();
|
|
_lastEdgesDir.pop();
|
|
_lastEdgesIdx.pop();
|
|
if (!_enumeratedPath.edges.empty()) {
|
|
_enumeratedPath.edges.pop_back();
|
|
_enumeratedPath.vertices.pop_back();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename VertexId, typename EdgeId>
|
|
class ConstDistanceFinder {
|
|
public:
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Path, type for the result
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Convention vertices.size() -1 === edges.size()
|
|
// path is vertices[0] , edges[0], vertices[1] etc.
|
|
// NOTE Do not forget to compute and set weight!
|
|
struct Path {
|
|
std::deque<VertexId> vertices;
|
|
std::deque<EdgeId> edges;
|
|
size_t weight;
|
|
|
|
Path() : weight(0) {}
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// @brief callback to find neighbors
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
typedef std::function<void(VertexId& V, std::vector<EdgeId>& edges,
|
|
std::vector<VertexId>& neighbors)>
|
|
ExpanderFunction;
|
|
|
|
private:
|
|
struct PathSnippet {
|
|
VertexId const _pred;
|
|
EdgeId const _path;
|
|
|
|
PathSnippet(VertexId& pred, EdgeId& path) : _pred(pred), _path(path) {}
|
|
};
|
|
|
|
std::unordered_map<VertexId, PathSnippet*> _leftFound;
|
|
std::deque<VertexId> _leftClosure;
|
|
|
|
std::unordered_map<VertexId, PathSnippet*> _rightFound;
|
|
std::deque<VertexId> _rightClosure;
|
|
|
|
ExpanderFunction _leftNeighborExpander;
|
|
ExpanderFunction _rightNeighborExpander;
|
|
|
|
public:
|
|
ConstDistanceFinder(ExpanderFunction left, ExpanderFunction right)
|
|
: _leftNeighborExpander(left), _rightNeighborExpander(right) {}
|
|
|
|
~ConstDistanceFinder() {
|
|
for (auto& it : _leftFound) {
|
|
delete it.second;
|
|
}
|
|
for (auto& it : _rightFound) {
|
|
delete it.second;
|
|
}
|
|
}
|
|
|
|
Path* search(VertexId& start, VertexId& end) {
|
|
auto res = std::make_unique<Path>();
|
|
// Init
|
|
if (start == end) {
|
|
res->vertices.emplace_back(start);
|
|
return res.release();
|
|
}
|
|
_leftFound.emplace(start, nullptr);
|
|
_rightFound.emplace(end, nullptr);
|
|
_leftClosure.emplace_back(start);
|
|
_rightClosure.emplace_back(end);
|
|
|
|
TRI_IF_FAILURE("TraversalOOMInitialize") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
|
|
std::vector<EdgeId> edges;
|
|
std::vector<VertexId> neighbors;
|
|
while (!_leftClosure.empty() && !_rightClosure.empty()) {
|
|
edges.clear();
|
|
neighbors.clear();
|
|
std::deque<VertexId> _nextClosure;
|
|
if (_leftClosure.size() < _rightClosure.size()) {
|
|
for (VertexId& v : _leftClosure) {
|
|
_leftNeighborExpander(v, edges, neighbors);
|
|
TRI_ASSERT(edges.size() == neighbors.size());
|
|
for (size_t i = 0; i < neighbors.size(); ++i) {
|
|
VertexId n = neighbors.at(i);
|
|
if (_leftFound.find(n) == _leftFound.end()) {
|
|
_leftFound.emplace(n, new PathSnippet(v, edges.at(i)));
|
|
if (_rightFound.find(n) != _rightFound.end()) {
|
|
res->vertices.emplace_back(n);
|
|
auto it = _leftFound.find(n);
|
|
VertexId next;
|
|
while (it->second != nullptr) {
|
|
next = it->second->_pred;
|
|
res->vertices.push_front(next);
|
|
res->edges.push_front(it->second->_path);
|
|
it = _leftFound.find(next);
|
|
}
|
|
it = _rightFound.find(n);
|
|
while (it->second != nullptr) {
|
|
next = it->second->_pred;
|
|
res->vertices.emplace_back(next);
|
|
res->edges.emplace_back(it->second->_path);
|
|
it = _rightFound.find(next);
|
|
}
|
|
res->weight = res->edges.size();
|
|
TRI_IF_FAILURE("TraversalOOMPath") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
return res.release();
|
|
}
|
|
_nextClosure.emplace_back(n);
|
|
}
|
|
}
|
|
}
|
|
_leftClosure = _nextClosure;
|
|
} else {
|
|
for (VertexId& v : _rightClosure) {
|
|
_rightNeighborExpander(v, edges, neighbors);
|
|
TRI_ASSERT(edges.size() == neighbors.size());
|
|
for (size_t i = 0; i < neighbors.size(); ++i) {
|
|
VertexId n = neighbors.at(i);
|
|
if (_rightFound.find(n) == _rightFound.end()) {
|
|
_rightFound.emplace(n, new PathSnippet(v, edges.at(i)));
|
|
if (_leftFound.find(n) != _leftFound.end()) {
|
|
res->vertices.emplace_back(n);
|
|
auto it = _leftFound.find(n);
|
|
VertexId next;
|
|
while (it->second != nullptr) {
|
|
next = it->second->_pred;
|
|
res->vertices.push_front(next);
|
|
res->edges.push_front(it->second->_path);
|
|
it = _leftFound.find(next);
|
|
}
|
|
it = _rightFound.find(n);
|
|
while (it->second != nullptr) {
|
|
next = it->second->_pred;
|
|
res->vertices.emplace_back(next);
|
|
res->edges.emplace_back(it->second->_path);
|
|
it = _rightFound.find(next);
|
|
}
|
|
res->weight = res->edges.size();
|
|
|
|
TRI_IF_FAILURE("TraversalOOMPath") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
return res.release();
|
|
}
|
|
_nextClosure.emplace_back(n);
|
|
}
|
|
}
|
|
}
|
|
_rightClosure = _nextClosure;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
#endif
|