mirror of https://gitee.com/bigwinds/arangodb
943 lines
31 KiB
C++
943 lines
31 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief rules for the query optimizer
|
|
///
|
|
/// @file arangod/Aql/OptimizerRules.cpp
|
|
///
|
|
/// DISCLAIMER
|
|
///
|
|
/// Copyright 2010-2014 triagens GmbH, Cologne, Germany
|
|
///
|
|
/// Licensed under the Apache License, Version 2.0 (the "License");
|
|
/// you may not use this file except in compliance with the License.
|
|
/// You may obtain a copy of the License at
|
|
///
|
|
/// http://www.apache.org/licenses/LICENSE-2.0
|
|
///
|
|
/// Unless required by applicable law or agreed to in writing, software
|
|
/// distributed under the License is distributed on an "AS IS" BASIS,
|
|
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
/// See the License for the specific language governing permissions and
|
|
/// limitations under the License.
|
|
///
|
|
/// Copyright holder is triAGENS GmbH, Cologne, Germany
|
|
///
|
|
/// @author Max Neunhoeffer
|
|
/// @author Copyright 2014, triagens GmbH, Cologne, Germany
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "Aql/OptimizerRules.h"
|
|
#include "Aql/ExecutionNode.h"
|
|
#include "Aql/Indexes.h"
|
|
#include "Aql/Variable.h"
|
|
|
|
using namespace triagens::aql;
|
|
using Json = triagens::basics::Json;
|
|
using EN = triagens::aql::ExecutionNode;
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// --SECTION-- rules for the optimizer
|
|
// -----------------------------------------------------------------------------
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief dummyrule
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::dummyRule (Optimizer*,
|
|
ExecutionPlan*,
|
|
int level,
|
|
Optimizer::PlanList&) {
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief remove redundant sorts
|
|
/// this rule modifies the plan in place:
|
|
/// - sorts that are covered by earlier sorts will be removed
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::removeRedundantSorts (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
int level,
|
|
Optimizer::PlanList& out) {
|
|
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(triagens::aql::ExecutionNode::SORT, true);
|
|
std::unordered_set<ExecutionNode*> toUnlink;
|
|
|
|
for (auto n : nodes) {
|
|
auto sortInfo = static_cast<SortNode*>(n)->getSortInformation(plan);
|
|
|
|
if (sortInfo.isValid && ! sortInfo.criteria.empty()) {
|
|
// we found a sort that we can understand
|
|
|
|
std::vector<ExecutionNode*> stack;
|
|
for (auto dep : n->getDependencies()) {
|
|
stack.push_back(dep);
|
|
}
|
|
|
|
while (! stack.empty()) {
|
|
auto current = stack.back();
|
|
stack.pop_back();
|
|
|
|
if (current->getType() == triagens::aql::ExecutionNode::SORT) {
|
|
// we found another sort. now check if they are compatible!
|
|
auto other = static_cast<SortNode*>(current)->getSortInformation(plan);
|
|
|
|
if (sortInfo.isCoveredBy(other)) {
|
|
// the sort at the start of the pipeline makes the sort at the end
|
|
// superfluous, so we'll remove it
|
|
toUnlink.insert(n);
|
|
break;
|
|
}
|
|
}
|
|
|
|
auto deps = current->getDependencies();
|
|
if (deps.size() != 1) {
|
|
// node either has no or more than one dependency. we don't know what to do and must abort
|
|
// note: this will also handle Singleton nodes
|
|
break;
|
|
}
|
|
|
|
for (auto dep : deps) {
|
|
stack.push_back(dep);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (! toUnlink.empty()) {
|
|
plan->unlinkNodes(toUnlink);
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
out.push_back(plan, level);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief remove all unnecessary filters
|
|
/// this rule modifies the plan in place:
|
|
/// - filters that are always true are removed completely
|
|
/// - filters that are always false will be replaced by a NoResults node
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::removeUnnecessaryFiltersRule (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
int level,
|
|
Optimizer::PlanList& out) {
|
|
std::unordered_set<ExecutionNode*> toUnlink;
|
|
// should we enter subqueries??
|
|
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(triagens::aql::ExecutionNode::FILTER, true);
|
|
|
|
for (auto n : nodes) {
|
|
// filter nodes always have one input variable
|
|
auto varsUsedHere = n->getVariablesUsedHere();
|
|
TRI_ASSERT(varsUsedHere.size() == 1);
|
|
|
|
// now check who introduced our variable
|
|
auto variable = varsUsedHere[0];
|
|
auto setter = plan->getVarSetBy(variable->id);
|
|
|
|
if (setter == nullptr ||
|
|
setter->getType() != triagens::aql::ExecutionNode::CALCULATION) {
|
|
// filter variable was not introduced by a calculation.
|
|
continue;
|
|
}
|
|
|
|
// filter variable was introduced a CalculationNode. now check the expression
|
|
auto s = static_cast<CalculationNode*>(setter);
|
|
auto root = s->expression()->node();
|
|
|
|
if (! root->isConstant()) {
|
|
// filter expression can only be evaluated at runtime
|
|
continue;
|
|
}
|
|
|
|
// filter expression is constant and thus cannot throw
|
|
// we can now evaluate it safely
|
|
TRI_ASSERT(! s->expression()->canThrow());
|
|
|
|
if (root->toBoolean()) {
|
|
// filter is always true
|
|
// remove filter node and merge with following node
|
|
toUnlink.insert(n);
|
|
}
|
|
else {
|
|
// filter is always false
|
|
// now insert a NoResults node below it
|
|
auto noResults = new NoResultsNode(plan->nextId());
|
|
plan->registerNode(noResults);
|
|
plan->replaceNode(n, noResults);
|
|
}
|
|
}
|
|
|
|
if (! toUnlink.empty()) {
|
|
plan->unlinkNodes(toUnlink);
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
out.push_back(plan, level);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief move calculations up in the plan
|
|
/// this rule modifies the plan in place
|
|
/// it aims to move up calculations as far up in the plan as possible, to
|
|
/// avoid redundant calculations in inner loops
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::moveCalculationsUpRule (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
int level,
|
|
Optimizer::PlanList& out) {
|
|
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(triagens::aql::ExecutionNode::CALCULATION, true);
|
|
bool modified = false;
|
|
|
|
for (auto n : nodes) {
|
|
auto nn = static_cast<CalculationNode*>(n);
|
|
if (nn->expression()->canThrow()) {
|
|
// we will only move expressions up that cannot throw
|
|
continue;
|
|
}
|
|
|
|
auto const neededVars = n->getVariablesUsedHere();
|
|
|
|
std::vector<ExecutionNode*> stack;
|
|
for (auto dep : n->getDependencies()) {
|
|
stack.push_back(dep);
|
|
}
|
|
|
|
while (! stack.empty()) {
|
|
auto current = stack.back();
|
|
stack.pop_back();
|
|
|
|
bool found = false;
|
|
|
|
auto&& varsSet = current->getVariablesSetHere();
|
|
for (auto v : varsSet) {
|
|
for (auto it = neededVars.begin(); it != neededVars.end(); ++it) {
|
|
if ((*it)->id == v->id) {
|
|
// shared variable, cannot move up any more
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found) {
|
|
// done with optimizing this calculation node
|
|
break;
|
|
}
|
|
|
|
auto deps = current->getDependencies();
|
|
if (deps.size() != 1) {
|
|
// node either has no or more than one dependency. we don't know what to do and must abort
|
|
// note: this will also handle Singleton nodes
|
|
break;
|
|
}
|
|
|
|
for (auto dep : deps) {
|
|
stack.push_back(dep);
|
|
}
|
|
|
|
// first, unlink the calculation from the plan
|
|
plan->unlinkNode(n);
|
|
// and re-insert into before the current node
|
|
plan->insertDependency(current, n);
|
|
modified = true;
|
|
}
|
|
|
|
}
|
|
|
|
if (modified) {
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
out.push_back(plan, level);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief move filters up in the plan
|
|
/// this rule modifies the plan in place
|
|
/// filters are moved as far up in the plan as possible to make result sets
|
|
/// as small as possible as early as possible
|
|
/// filters are not pushed beyond limits
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::moveFiltersUpRule (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
int level,
|
|
Optimizer::PlanList& out) {
|
|
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(triagens::aql::ExecutionNode::FILTER, true);
|
|
bool modified = false;
|
|
|
|
for (auto n : nodes) {
|
|
auto neededVars = n->getVariablesUsedHere();
|
|
TRI_ASSERT(neededVars.size() == 1);
|
|
|
|
std::vector<ExecutionNode*> stack;
|
|
for (auto dep : n->getDependencies()) {
|
|
stack.push_back(dep);
|
|
}
|
|
|
|
while (! stack.empty()) {
|
|
auto current = stack.back();
|
|
stack.pop_back();
|
|
|
|
if (current->getType() == triagens::aql::ExecutionNode::LIMIT) {
|
|
// cannot push a filter beyond a LIMIT node
|
|
break;
|
|
}
|
|
|
|
bool found = false;
|
|
|
|
auto&& varsSet = current->getVariablesSetHere();
|
|
for (auto v : varsSet) {
|
|
for (auto it = neededVars.begin(); it != neededVars.end(); ++it) {
|
|
if ((*it)->id == v->id) {
|
|
// shared variable, cannot move up any more
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found) {
|
|
// done with optimizing this calculation node
|
|
break;
|
|
}
|
|
|
|
auto deps = current->getDependencies();
|
|
if (deps.size() != 1) {
|
|
// node either has no or more than one dependency. we don't know what to do and must abort
|
|
// note: this will also handle Singleton nodes
|
|
break;
|
|
}
|
|
|
|
for (auto dep : deps) {
|
|
stack.push_back(dep);
|
|
}
|
|
|
|
// first, unlink the filter from the plan
|
|
plan->unlinkNode(n);
|
|
// and re-insert into plan in front of the current node
|
|
plan->insertDependency(current, n);
|
|
modified = true;
|
|
}
|
|
|
|
}
|
|
|
|
if (modified) {
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
out.push_back(plan, level);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief remove CalculationNode(s) that are never needed
|
|
/// this modifies an existing plan in place
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::removeUnnecessaryCalculationsRule (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
int level,
|
|
Optimizer::PlanList& out) {
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::CALCULATION, true);
|
|
std::unordered_set<ExecutionNode*> toUnlink;
|
|
for (auto n : nodes) {
|
|
auto nn = static_cast<CalculationNode*>(n);
|
|
|
|
if (nn->expression()->canThrow()) {
|
|
// If this node can throw, we must not optimize it away!
|
|
continue;
|
|
}
|
|
|
|
auto outvar = n->getVariablesSetHere();
|
|
TRI_ASSERT(outvar.size() == 1);
|
|
auto varsUsedLater = n->getVarsUsedLater();
|
|
|
|
if (varsUsedLater.find(outvar[0]) == varsUsedLater.end()) {
|
|
// The variable whose value is calculated here is not used at
|
|
// all further down the pipeline! We remove the whole
|
|
// calculation node,
|
|
toUnlink.insert(n);
|
|
}
|
|
}
|
|
|
|
if (! toUnlink.empty()) {
|
|
plan->unlinkNodes(toUnlink);
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
out.push_back(plan, level);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief prefer IndexRange nodes over EnumerateCollection nodes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class FilterToEnumCollFinder : public WalkerWorker<ExecutionNode> {
|
|
RangesInfo* _ranges;
|
|
ExecutionPlan* _plan;
|
|
Variable const* _var;
|
|
Optimizer::PlanList* _out;
|
|
bool _canThrow;
|
|
|
|
public:
|
|
|
|
FilterToEnumCollFinder (ExecutionPlan* plan, Variable const * var, Optimizer::PlanList* out)
|
|
: _plan(plan),
|
|
_var(var),
|
|
_out(out),
|
|
_canThrow(false) {
|
|
_ranges = new RangesInfo();
|
|
};
|
|
|
|
~FilterToEnumCollFinder () {
|
|
delete _ranges;
|
|
}
|
|
|
|
bool before (ExecutionNode* en) {
|
|
_canThrow = (_canThrow || en->canThrow()); // can any node walked over throw?
|
|
|
|
if (en->getType() == triagens::aql::ExecutionNode::CALCULATION) {
|
|
auto outvar = en->getVariablesSetHere();
|
|
TRI_ASSERT(outvar.size() == 1);
|
|
if (outvar[0]->id == _var->id) {
|
|
auto node = static_cast<CalculationNode*>(en);
|
|
std::string attr;
|
|
std::string enumCollVar;
|
|
buildRangeInfo(node->expression()->node(), enumCollVar, attr);
|
|
}
|
|
}
|
|
else if (en->getType() == triagens::aql::ExecutionNode::ENUMERATE_COLLECTION) {
|
|
auto node = static_cast<EnumerateCollectionNode*>(en);
|
|
auto var = node->getVariablesSetHere()[0]; // should only be 1
|
|
auto map = _ranges->find(var->name); // check if we have any ranges with this var
|
|
|
|
if (map != nullptr) {
|
|
// check the first components of <map> against indexes of <node> . . .
|
|
std::vector<std::string> attrs;
|
|
std::vector<std::vector<RangeInfo*>> rangeInfo;
|
|
rangeInfo.push_back(std::vector<RangeInfo*>());
|
|
bool valid = true;
|
|
bool eq = true;
|
|
for (auto x : *map) {
|
|
attrs.push_back(x.first);
|
|
rangeInfo.at(0).push_back(x.second);
|
|
valid = valid && x.second->_valid; // check the ranges are all valid
|
|
eq = eq && x.second->is1ValueRangeInfo();
|
|
// check if the condition is equality (i.e. the ranges only contain
|
|
// 1 value)
|
|
}
|
|
if (! _canThrow) {
|
|
if (! valid){ // ranges are not valid . . .
|
|
std::cout << "INVALID RANGE!\n";
|
|
|
|
auto newPlan = _plan->clone();
|
|
auto parents = node->getParents();
|
|
for(auto x: parents) {
|
|
auto noRes = new NoResultsNode(newPlan->nextId());
|
|
newPlan->registerNode(noRes);
|
|
newPlan->insertDependency(x, noRes);
|
|
_out->push_back(newPlan, 0);
|
|
}
|
|
}
|
|
else {
|
|
std::vector<TRI_index_t*> idxs = node->getIndicesUnordered(attrs);
|
|
// make one new plan for every index in <idxs> that replaces the
|
|
// enumerate collection node with a RangeIndexNode . . .
|
|
for (auto idx: idxs) {
|
|
if ( idx->_type == TRI_IDX_TYPE_SKIPLIST_INDEX ||
|
|
(idx->_type == TRI_IDX_TYPE_HASH_INDEX && eq)) {
|
|
//can only use the index if it is a skip list or (a hash and we
|
|
//are checking equality)
|
|
std::cout << "FOUND INDEX!\n";
|
|
auto newPlan = _plan->clone();
|
|
ExecutionNode* newNode = nullptr;
|
|
try{
|
|
newNode = new IndexRangeNode(newPlan->nextId(), node->vocbase(),
|
|
node->collection(), node->outVariable(), idx, rangeInfo);
|
|
newPlan->registerNode(newNode);
|
|
}
|
|
catch (...) {
|
|
if (newNode != nullptr) {
|
|
delete newNode;
|
|
}
|
|
delete newPlan;
|
|
throw;
|
|
}
|
|
newPlan->replaceNode(newPlan->getNodeById(node->id()), newNode);
|
|
_out->push_back(newPlan, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (en->getType() == triagens::aql::ExecutionNode::LIMIT) {
|
|
// if we meet a limit node between a filter and an enumerate collection,
|
|
// we abort . . .
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void buildRangeInfo (AstNode const* node, std::string& enumCollVar, std::string& attr) {
|
|
if (node->type == NODE_TYPE_REFERENCE) {
|
|
auto x = static_cast<Variable*>(node->getData());
|
|
auto setter = _plan->getVarSetBy(x->id);
|
|
if (setter != nullptr &&
|
|
setter->getType() == triagens::aql::ExecutionNode::ENUMERATE_COLLECTION) {
|
|
enumCollVar = x->name;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (node->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
|
|
char const* attributeName = node->getStringValue();
|
|
buildRangeInfo(node->getMember(0), enumCollVar, attr);
|
|
if (! enumCollVar.empty()) {
|
|
attr.append(attributeName);
|
|
attr.push_back('.');
|
|
}
|
|
}
|
|
|
|
if (node->type == NODE_TYPE_OPERATOR_BINARY_EQ) {
|
|
auto lhs = node->getMember(0);
|
|
auto rhs = node->getMember(1);
|
|
AstNode const* val;
|
|
AstNode const* nextNode;
|
|
if(rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS && lhs->type == NODE_TYPE_VALUE) {
|
|
val = lhs;
|
|
nextNode = rhs;
|
|
}
|
|
else if (lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS && rhs->type == NODE_TYPE_VALUE) {
|
|
val = rhs;
|
|
nextNode = lhs;
|
|
}
|
|
else {
|
|
val = nullptr;
|
|
}
|
|
|
|
if (val != nullptr) {
|
|
buildRangeInfo(nextNode, enumCollVar, attr);
|
|
if (! enumCollVar.empty()) {
|
|
_ranges->insert(enumCollVar, attr.substr(0, attr.size() - 1),
|
|
new RangeInfoBound(val, true), new RangeInfoBound(val, true));
|
|
}
|
|
}
|
|
}
|
|
|
|
if(node->type == NODE_TYPE_OPERATOR_BINARY_LT ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_GT ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_LE ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_GE) {
|
|
|
|
bool include = (node->type == NODE_TYPE_OPERATOR_BINARY_LE ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_GE);
|
|
|
|
auto lhs = node->getMember(0);
|
|
auto rhs = node->getMember(1);
|
|
RangeInfoBound* low = nullptr;
|
|
RangeInfoBound* high = nullptr;
|
|
AstNode *nextNode;
|
|
|
|
if (rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS && lhs->type == NODE_TYPE_VALUE) {
|
|
if (node->type == NODE_TYPE_OPERATOR_BINARY_GE ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_GT) {
|
|
high = new RangeInfoBound(lhs, include);
|
|
low = nullptr;
|
|
}
|
|
else {
|
|
low = new RangeInfoBound(lhs, include);
|
|
high =nullptr;
|
|
}
|
|
nextNode = rhs;
|
|
}
|
|
else if (lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS && rhs->type == NODE_TYPE_VALUE) {
|
|
if (node->type == NODE_TYPE_OPERATOR_BINARY_GE ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_GT) {
|
|
low = new RangeInfoBound(rhs, include);
|
|
high = nullptr;
|
|
}
|
|
else {
|
|
high = new RangeInfoBound(rhs, include);
|
|
low = nullptr;
|
|
}
|
|
nextNode = lhs;
|
|
}
|
|
else {
|
|
low = nullptr;
|
|
high = nullptr;
|
|
}
|
|
|
|
if (low != nullptr || high != nullptr) {
|
|
buildRangeInfo(nextNode, enumCollVar, attr);
|
|
if (! enumCollVar.empty()) {
|
|
_ranges->insert(enumCollVar, attr.substr(0, attr.size()-1), low, high);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (node->type == NODE_TYPE_OPERATOR_BINARY_AND) {
|
|
attr = "";
|
|
buildRangeInfo(node->getMember(0), enumCollVar, attr);
|
|
attr = "";
|
|
buildRangeInfo(node->getMember(1), enumCollVar, attr);
|
|
}
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief relaxRule, do not do anything
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::useIndexRange (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
int level,
|
|
Optimizer::PlanList& out) {
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::FILTER, true);
|
|
|
|
for (auto n : nodes) {
|
|
auto nn = static_cast<FilterNode*>(n);
|
|
auto invars = nn->getVariablesUsedHere();
|
|
TRI_ASSERT(invars.size() == 1);
|
|
FilterToEnumCollFinder finder(plan, invars[0], &out);
|
|
nn->walk(&finder);
|
|
}
|
|
|
|
out.push_back(plan, level);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief analyse the sortnode and its calculation nodes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
class sortAnalysis
|
|
{
|
|
using ECN = triagens::aql::EnumerateCollectionNode;
|
|
|
|
typedef std::pair<ECN::IndexMatchVec, RangeInfoVec> Range_IndexPair;
|
|
|
|
struct sortNodeData {
|
|
bool ASC;
|
|
size_t calculationNodeID;
|
|
std::string variableName;
|
|
std::string attributevec;
|
|
};
|
|
|
|
std::vector<sortNodeData*> _sortNodeData;
|
|
|
|
public:
|
|
size_t const sortNodeID;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief constructor; fetches the referenced calculation nodes and builds
|
|
/// _sortNodeData for later use.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
sortAnalysis (SortNode * node)
|
|
: sortNodeID(node->id())
|
|
{
|
|
auto sortParams = node->getCalcNodePairs();
|
|
|
|
for (size_t n = 0; n < sortParams.size(); n++) {
|
|
auto d = new sortNodeData;
|
|
d->ASC = sortParams[n].second;
|
|
d->calculationNodeID = sortParams[n].first->id();
|
|
|
|
if (sortParams[n].first->getType() == EN::CALCULATION) {
|
|
auto cn = static_cast<triagens::aql::CalculationNode*>(sortParams[n].first);
|
|
auto oneSortExpression = cn->expression();
|
|
|
|
if (oneSortExpression->isAttributeAccess()) {
|
|
auto simpleExpression = oneSortExpression->getMultipleAttributes();
|
|
d->variableName = simpleExpression.first;
|
|
d->attributevec = simpleExpression.second;
|
|
}
|
|
}
|
|
_sortNodeData.push_back(d);
|
|
}
|
|
}
|
|
|
|
~sortAnalysis () {
|
|
for (auto x : _sortNodeData){
|
|
delete x;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief checks the whether we only have simple calculation nodes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
bool isAnalyzeable () {
|
|
if (_sortNodeData.size() == 0) {
|
|
return false;
|
|
}
|
|
size_t j;
|
|
for (j = 0; j < _sortNodeData.size(); j ++) {
|
|
if (_sortNodeData[j]->variableName.length() == 0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* are we all from one variable? * /
|
|
int j = 0;
|
|
for (; (j < _sortNodeData.size() &&
|
|
sortNodeData[j]->variableName.length() == 0);
|
|
j ++);
|
|
last = sortNodeData[j];
|
|
j ++;
|
|
for (j < _sortNodeData.size(); j++) {
|
|
if (sortNodeData[j]->variableName.length)
|
|
if (last->variableName != sortNodeData[j]->variableName) {
|
|
return false;
|
|
}
|
|
last = sortNodeData[j];
|
|
}
|
|
alle nodes gesetzt, ja.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief checks whether our calculation nodes reference variableName;
|
|
/// @returns pair used for further processing with the indices.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
Range_IndexPair getAttrsForVariableName (std::string &variableName) {
|
|
ECN::IndexMatchVec v;
|
|
RangeInfoVec rangeInfo;
|
|
|
|
for (size_t j = 0; j < _sortNodeData.size(); j ++) {
|
|
if (_sortNodeData[j]->variableName != variableName) {
|
|
return std::make_pair(v, rangeInfo); // for now, no mixed support.
|
|
}
|
|
}
|
|
for (size_t j = 0; j < _sortNodeData.size(); j ++) {
|
|
v.push_back(std::make_pair(_sortNodeData[j]->attributevec,
|
|
_sortNodeData[j]->ASC));
|
|
rangeInfo.push_back(std::vector<RangeInfo*>());
|
|
|
|
rangeInfo.at(j).push_back(new RangeInfo(variableName,
|
|
_sortNodeData[j]->attributevec,
|
|
nullptr, nullptr));
|
|
}
|
|
return std::make_pair(v, rangeInfo);;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief removes the sortNode and its referenced Calculationnodes from the plan.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void removeSortNodeFromPlan (ExecutionPlan *newPlan) {
|
|
newPlan->unlinkNode(newPlan->getNodeById(sortNodeID));
|
|
|
|
for (auto idToRemove = _sortNodeData.begin();
|
|
idToRemove != _sortNodeData.end();
|
|
++idToRemove) {
|
|
newPlan->unlinkNode(newPlan->getNodeById((*idToRemove)->calculationNodeID));
|
|
}
|
|
}
|
|
};
|
|
|
|
class sortToIndexNode : public WalkerWorker<ExecutionNode> {
|
|
using ECN = triagens::aql::EnumerateCollectionNode;
|
|
|
|
ExecutionPlan* _plan;
|
|
Optimizer::PlanList& _out;
|
|
sortAnalysis* _sortNode;
|
|
|
|
public:
|
|
sortToIndexNode (ExecutionPlan* plan,
|
|
Optimizer::PlanList& out,
|
|
sortAnalysis* Node)
|
|
: _plan(plan),
|
|
_out(out),
|
|
_sortNode(Node) {
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief if the sort is already done by an indexrange, remove the sort.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
bool handleIndexRangeNode(IndexRangeNode* node) {
|
|
auto variableName = node->getVariablesSetHere()[0]->name;
|
|
auto result = _sortNode->getAttrsForVariableName(variableName);
|
|
|
|
if (node->MatchesIndex(result.first)) {
|
|
_sortNode->removeSortNodeFromPlan(_plan);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief check whether we can sort via an index.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
bool handleEnumerateCollectionNode(EnumerateCollectionNode* node)
|
|
{
|
|
auto variableName = node->getVariablesSetHere()[0]->name;
|
|
auto result = _sortNode->getAttrsForVariableName(variableName);
|
|
|
|
if (result.first.size() == 0) {
|
|
return false; // we didn't find anything replaceable by indice
|
|
}
|
|
|
|
for (auto idx: node->getIndicesOrdered(result.first)) {
|
|
// make one new plan for each index that replaces this
|
|
// EnumerateCollectionNode with an IndexRangeNode
|
|
|
|
//can only use the index if it is a skip list or (a hash and we
|
|
//are checking equality)
|
|
auto newPlan = _plan->clone();
|
|
ExecutionNode* newNode = nullptr;
|
|
try {
|
|
newNode = new IndexRangeNode( newPlan->nextId(),
|
|
node->vocbase(),
|
|
node->collection(),
|
|
node->outVariable(),
|
|
idx.index,/// TODO: estimate cost on match quality
|
|
result.second);
|
|
newPlan->registerNode(newNode);
|
|
}
|
|
catch (...) {
|
|
delete newNode;
|
|
delete newPlan;
|
|
throw;
|
|
}
|
|
|
|
newPlan->replaceNode(newPlan->getNodeById(node->id()), newNode);
|
|
|
|
if (idx.fullmatch) { // if the index superseedes the sort, remove it.
|
|
_sortNode->removeSortNodeFromPlan(newPlan);
|
|
}
|
|
_out.push_back(newPlan, 0);
|
|
}
|
|
for (auto x : result.second) {
|
|
for (auto y : x) {
|
|
delete y;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool enterSubQuery () { return false; }
|
|
|
|
bool before (ExecutionNode* en) {
|
|
switch (en->getType()) {
|
|
case EN::ENUMERATE_LIST:
|
|
case EN::CALCULATION:
|
|
case EN::SUBQUERY: /// TODO: find out whether it may throw
|
|
case EN::FILTER:
|
|
return false; // skip. we don't care.
|
|
|
|
case EN::INTERSECTION:
|
|
case EN::SINGLETON:
|
|
case EN::AGGREGATE:
|
|
case EN::LOOKUP_JOIN:
|
|
case EN::MERGE_JOIN:
|
|
case EN::LOOKUP_INDEX_UNIQUE:
|
|
case EN::LOOKUP_INDEX_RANGE:
|
|
case EN::LOOKUP_FULL_COLLECTION:
|
|
case EN::CONCATENATION:
|
|
case EN::MERGE:
|
|
case EN::REMOTE:
|
|
case EN::INSERT:
|
|
case EN::REMOVE:
|
|
case EN::REPLACE:
|
|
case EN::UPDATE:
|
|
case EN::RETURN:
|
|
case EN::NORESULTS:
|
|
case EN::ILLEGAL:
|
|
case EN::LIMIT: // LIMIT is criterion to stop
|
|
return true; // abort.
|
|
|
|
case EN::SORT: // pulling two sorts together is done elsewhere.
|
|
return en->id() != _sortNode->sortNodeID; // ignore ourselves.
|
|
|
|
case EN::INDEX_RANGE:
|
|
return handleIndexRangeNode(static_cast<IndexRangeNode*>(en));
|
|
|
|
case EN::ENUMERATE_COLLECTION:
|
|
return handleEnumerateCollectionNode(static_cast<EnumerateCollectionNode*>(en));
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
int triagens::aql::useIndexForSort (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
int level,
|
|
Optimizer::PlanList& out) {
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::SORT, true);
|
|
for (auto n : nodes) {
|
|
auto thisSortNode = static_cast<SortNode*>(n);
|
|
sortAnalysis node(thisSortNode);
|
|
if (node.isAnalyzeable()) {
|
|
sortToIndexNode finder(plan, out, &node);
|
|
thisSortNode->walk(&finder);/// todo auf der dependency anfangen
|
|
}
|
|
}
|
|
|
|
out.push_back(plan, level);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief interchange adjacent EnumerateCollectionNodes in all possible ways
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::interchangeAdjacentEnumerations (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
int level,
|
|
Optimizer::PlanList& out) {
|
|
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::ENUMERATE_COLLECTION,
|
|
true);
|
|
|
|
// We use that the order of the nodes is such that a node B that is among the
|
|
// recursive dependencies of a node A is later in the vector.
|
|
for (size_t i = 0; i < nodes.size(); i++) {
|
|
ExecutionNode* n = nodes[i];
|
|
std::vector<ExecutionNode*> nn;
|
|
nn.push_back(n);
|
|
// Now follow the dependencies as long as we see further such nodes:
|
|
while (true) {
|
|
auto deps = n->getDependencies();
|
|
if (deps.size() == 0) {
|
|
break;
|
|
}
|
|
if (deps[0]->getType() != triagens::aql::ExecutionNode::ENUMERATE_COLLECTION) {
|
|
break;
|
|
}
|
|
n = deps[0];
|
|
nn.push_back(n);
|
|
}
|
|
if (nn.size() > 1) {
|
|
// Now we want to compute all permutations of nn
|
|
}
|
|
}
|
|
|
|
out.push_back(plan, level);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
// Local Variables:
|
|
// mode: outline-minor
|
|
// outline-regexp: "^\\(/// @brief\\|/// {@inheritDoc}\\|/// @addtogroup\\|// --SECTION--\\|/// @\\}\\)"
|
|
// End:
|
|
|