mirror of https://gitee.com/bigwinds/arangodb
2236 lines
75 KiB
C++
2236 lines
75 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief rules for the query optimizer
|
|
///
|
|
/// @file arangod/Aql/OptimizerRules.cpp
|
|
///
|
|
/// DISCLAIMER
|
|
///
|
|
/// Copyright 2010-2014 triagens GmbH, Cologne, Germany
|
|
///
|
|
/// Licensed under the Apache License, Version 2.0 (the "License");
|
|
/// you may not use this file except in compliance with the License.
|
|
/// You may obtain a copy of the License at
|
|
///
|
|
/// http://www.apache.org/licenses/LICENSE-2.0
|
|
///
|
|
/// Unless required by applicable law or agreed to in writing, software
|
|
/// distributed under the License is distributed on an "AS IS" BASIS,
|
|
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
/// See the License for the specific language governing permissions and
|
|
/// limitations under the License.
|
|
///
|
|
/// Copyright holder is triAGENS GmbH, Cologne, Germany
|
|
///
|
|
/// @author Max Neunhoeffer
|
|
/// @author Copyright 2014, triagens GmbH, Cologne, Germany
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "Aql/OptimizerRules.h"
|
|
#include "Aql/ExecutionEngine.h"
|
|
#include "Aql/ExecutionNode.h"
|
|
#include "Aql/Variable.h"
|
|
#include "Aql/types.h"
|
|
|
|
using namespace triagens::aql;
|
|
using Json = triagens::basics::Json;
|
|
using EN = triagens::aql::ExecutionNode;
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// --SECTION-- rules for the optimizer
|
|
// -----------------------------------------------------------------------------
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief remove redundant sorts
|
|
/// this rule modifies the plan in place:
|
|
/// - sorts that are covered by earlier sorts will be removed
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::removeRedundantSorts (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(triagens::aql::ExecutionNode::SORT, true);
|
|
std::unordered_set<ExecutionNode*> toUnlink;
|
|
|
|
triagens::basics::StringBuffer buffer(TRI_UNKNOWN_MEM_ZONE);
|
|
|
|
for (auto n : nodes) {
|
|
if (toUnlink.find(n) != toUnlink.end()) {
|
|
// encountered a sort node that we already deleted
|
|
continue;
|
|
}
|
|
|
|
auto const sortNode = static_cast<SortNode*>(n);
|
|
|
|
auto sortInfo = sortNode->getSortInformation(plan, &buffer);
|
|
|
|
if (sortInfo.isValid && ! sortInfo.criteria.empty()) {
|
|
// we found a sort that we can understand
|
|
|
|
std::vector<ExecutionNode*> stack;
|
|
for (auto dep : sortNode->getDependencies()) {
|
|
stack.push_back(dep);
|
|
}
|
|
|
|
int nodesRelyingOnSort = 0;
|
|
|
|
while (! stack.empty()) {
|
|
auto current = stack.back();
|
|
stack.pop_back();
|
|
|
|
if (current->getType() == triagens::aql::ExecutionNode::SORT) {
|
|
// we found another sort. now check if they are compatible!
|
|
|
|
auto other = static_cast<SortNode*>(current)->getSortInformation(plan, &buffer);
|
|
|
|
switch (sortInfo.isCoveredBy(other)) {
|
|
case SortInformation::unequal: {
|
|
// different sort criteria
|
|
if (nodesRelyingOnSort == 0) {
|
|
// a sort directly followed by another sort: now remove one of them
|
|
|
|
if (other.canThrow) {
|
|
// if the sort can throw, we must not remove it
|
|
break;
|
|
}
|
|
|
|
if (sortNode->isStable()) {
|
|
// we should not optimize predecessors of a stable sort (used in a COLLECT node)
|
|
// the stable sort is for a reason, and removing any predecessors sorts might
|
|
// change the result
|
|
break;
|
|
}
|
|
|
|
// remove sort that is a direct predecessor of a sort
|
|
toUnlink.insert(current);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SortInformation::otherLessAccurate: {
|
|
toUnlink.insert(current);
|
|
break;
|
|
}
|
|
|
|
case SortInformation::ourselvesLessAccurate: {
|
|
// the sort at the start of the pipeline makes the sort at the end
|
|
// superfluous, so we'll remove it
|
|
toUnlink.insert(n);
|
|
break;
|
|
}
|
|
|
|
case SortInformation::allEqual: {
|
|
// the sort at the end of the pipeline makes the sort at the start
|
|
// superfluous, so we'll remove it
|
|
toUnlink.insert(current);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (current->getType() == triagens::aql::ExecutionNode::FILTER) {
|
|
// ok: a filter does not depend on sort order
|
|
}
|
|
else if (current->getType() == triagens::aql::ExecutionNode::CALCULATION) {
|
|
// ok: a filter does not depend on sort order only if it does not throw
|
|
if (current->canThrow()) {
|
|
++nodesRelyingOnSort;
|
|
}
|
|
}
|
|
else if (current->getType() == triagens::aql::ExecutionNode::ENUMERATE_LIST ||
|
|
current->getType() == triagens::aql::ExecutionNode::ENUMERATE_COLLECTION) {
|
|
// ok, but we cannot remove two different sorts if one of these node types is between them
|
|
// example: in the following query, the one sort will be optimized away:
|
|
// FOR i IN [ { a: 1 }, { a: 2 } , { a: 3 } ] SORT i.a ASC SORT i.a DESC RETURN i
|
|
// but in the following query, the sorts will stay:
|
|
// FOR i IN [ { a: 1 }, { a: 2 } , { a: 3 } ] SORT i.a ASC LET a = i.a SORT i.a DESC RETURN i
|
|
++nodesRelyingOnSort;
|
|
}
|
|
else {
|
|
// abort at all other type of nodes. we cannot remove a sort beyond them
|
|
// this include COLLECT and LIMIT
|
|
break;
|
|
}
|
|
|
|
auto deps = current->getDependencies();
|
|
|
|
if (deps.size() != 1) {
|
|
// node either has no or more than one dependency. we don't know what to do and must abort
|
|
// note: this will also handle Singleton nodes
|
|
break;
|
|
}
|
|
|
|
for (auto dep : deps) {
|
|
stack.push_back(dep);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (! toUnlink.empty()) {
|
|
plan->unlinkNodes(toUnlink);
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
opt->addPlan(plan, rule->level, ! toUnlink.empty());
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief remove all unnecessary filters
|
|
/// this rule modifies the plan in place:
|
|
/// - filters that are always true are removed completely
|
|
/// - filters that are always false will be replaced by a NoResults node
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::removeUnnecessaryFiltersRule (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
bool modified = false;
|
|
std::unordered_set<ExecutionNode*> toUnlink;
|
|
// should we enter subqueries??
|
|
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(triagens::aql::ExecutionNode::FILTER, true);
|
|
|
|
for (auto n : nodes) {
|
|
// filter nodes always have one input variable
|
|
auto varsUsedHere = n->getVariablesUsedHere();
|
|
TRI_ASSERT(varsUsedHere.size() == 1);
|
|
|
|
// now check who introduced our variable
|
|
auto variable = varsUsedHere[0];
|
|
auto setter = plan->getVarSetBy(variable->id);
|
|
|
|
if (setter == nullptr ||
|
|
setter->getType() != triagens::aql::ExecutionNode::CALCULATION) {
|
|
// filter variable was not introduced by a calculation.
|
|
continue;
|
|
}
|
|
|
|
// filter variable was introduced a CalculationNode. now check the expression
|
|
auto s = static_cast<CalculationNode*>(setter);
|
|
auto root = s->expression()->node();
|
|
|
|
if (! root->isConstant()) {
|
|
// filter expression can only be evaluated at runtime
|
|
continue;
|
|
}
|
|
|
|
// filter expression is constant and thus cannot throw
|
|
// we can now evaluate it safely
|
|
TRI_ASSERT(! s->expression()->canThrow());
|
|
|
|
if (root->isTrue()) {
|
|
// filter is always true
|
|
// remove filter node and merge with following node
|
|
toUnlink.insert(n);
|
|
modified = true;
|
|
}
|
|
else {
|
|
// filter is always false
|
|
// now insert a NoResults node below it
|
|
auto noResults = new NoResultsNode(plan, plan->nextId());
|
|
plan->registerNode(noResults);
|
|
plan->replaceNode(n, noResults);
|
|
modified = true;
|
|
}
|
|
}
|
|
|
|
if (! toUnlink.empty()) {
|
|
plan->unlinkNodes(toUnlink);
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
opt->addPlan(plan, rule->level, modified);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief move calculations up in the plan
|
|
/// this rule modifies the plan in place
|
|
/// it aims to move up calculations as far up in the plan as possible, to
|
|
/// avoid redundant calculations in inner loops
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::moveCalculationsUpRule (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(triagens::aql::ExecutionNode::CALCULATION, true);
|
|
bool modified = false;
|
|
|
|
for (auto n : nodes) {
|
|
auto nn = static_cast<CalculationNode*>(n);
|
|
if (nn->expression()->canThrow()) {
|
|
// we will only move expressions up that cannot throw
|
|
continue;
|
|
}
|
|
|
|
auto const neededVars = n->getVariablesUsedHere();
|
|
|
|
std::vector<ExecutionNode*> stack;
|
|
for (auto dep : n->getDependencies()) {
|
|
stack.push_back(dep);
|
|
}
|
|
|
|
while (! stack.empty()) {
|
|
auto current = stack.back();
|
|
stack.pop_back();
|
|
|
|
bool found = false;
|
|
|
|
auto&& varsSet = current->getVariablesSetHere();
|
|
for (auto v : varsSet) {
|
|
for (auto it = neededVars.begin(); it != neededVars.end(); ++it) {
|
|
if ((*it)->id == v->id) {
|
|
// shared variable, cannot move up any more
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found) {
|
|
// done with optimizing this calculation node
|
|
break;
|
|
}
|
|
|
|
auto deps = current->getDependencies();
|
|
if (deps.size() != 1) {
|
|
// node either has no or more than one dependency. we don't know what to do and must abort
|
|
// note: this will also handle Singleton nodes
|
|
break;
|
|
}
|
|
|
|
for (auto dep : deps) {
|
|
stack.push_back(dep);
|
|
}
|
|
|
|
// first, unlink the calculation from the plan
|
|
plan->unlinkNode(n);
|
|
// and re-insert into before the current node
|
|
plan->insertDependency(current, n);
|
|
modified = true;
|
|
}
|
|
|
|
}
|
|
|
|
if (modified) {
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
opt->addPlan(plan, rule->level, modified);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief move filters up in the plan
|
|
/// this rule modifies the plan in place
|
|
/// filters are moved as far up in the plan as possible to make result sets
|
|
/// as small as possible as early as possible
|
|
/// filters are not pushed beyond limits
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::moveFiltersUpRule (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(triagens::aql::ExecutionNode::FILTER, true);
|
|
bool modified = false;
|
|
|
|
for (auto n : nodes) {
|
|
auto neededVars = n->getVariablesUsedHere();
|
|
TRI_ASSERT(neededVars.size() == 1);
|
|
|
|
std::vector<ExecutionNode*> stack;
|
|
for (auto dep : n->getDependencies()) {
|
|
stack.push_back(dep);
|
|
}
|
|
|
|
while (! stack.empty()) {
|
|
auto current = stack.back();
|
|
stack.pop_back();
|
|
|
|
if (current->getType() == triagens::aql::ExecutionNode::LIMIT) {
|
|
// cannot push a filter beyond a LIMIT node
|
|
break;
|
|
}
|
|
|
|
bool found = false;
|
|
|
|
auto&& varsSet = current->getVariablesSetHere();
|
|
for (auto v : varsSet) {
|
|
for (auto it = neededVars.begin(); it != neededVars.end(); ++it) {
|
|
if ((*it)->id == v->id) {
|
|
// shared variable, cannot move up any more
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found) {
|
|
// done with optimizing this calculation node
|
|
break;
|
|
}
|
|
|
|
auto deps = current->getDependencies();
|
|
if (deps.size() != 1) {
|
|
// node either has no or more than one dependency. we don't know what to do and must abort
|
|
// note: this will also handle Singleton nodes
|
|
break;
|
|
}
|
|
|
|
for (auto dep : deps) {
|
|
stack.push_back(dep);
|
|
}
|
|
|
|
// first, unlink the filter from the plan
|
|
plan->unlinkNode(n);
|
|
// and re-insert into plan in front of the current node
|
|
plan->insertDependency(current, n);
|
|
modified = true;
|
|
}
|
|
|
|
}
|
|
|
|
if (modified) {
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
opt->addPlan(plan, rule->level, modified);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
|
|
class triagens::aql::RedundantCalculationsReplacer : public WalkerWorker<ExecutionNode> {
|
|
|
|
public:
|
|
|
|
RedundantCalculationsReplacer (std::unordered_map<VariableId, Variable const*> const& replacements)
|
|
: _replacements(replacements) {
|
|
}
|
|
|
|
template<typename T>
|
|
void replaceInVariable (ExecutionNode* en) {
|
|
auto node = static_cast<T*>(en);
|
|
|
|
node->_inVariable = Variable::replace(node->_inVariable, _replacements);
|
|
}
|
|
|
|
void replaceInCalculation (ExecutionNode* en) {
|
|
auto node = static_cast<CalculationNode*>(en);
|
|
auto&& variables = node->expression()->variables();
|
|
|
|
// check if the calculation uses any of the variables that we want to replace
|
|
for (auto it = variables.begin(); it != variables.end(); ++it) {
|
|
if (_replacements.find((*it)->id) != _replacements.end()) {
|
|
// calculation uses a to-be-replaced variable
|
|
node->expression()->replaceVariables(_replacements);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool enterSubQuery () { return true; }
|
|
|
|
bool before (ExecutionNode* en) {
|
|
switch (en->getType()) {
|
|
case EN::ENUMERATE_LIST: {
|
|
replaceInVariable<EnumerateListNode>(en);
|
|
break;
|
|
}
|
|
|
|
case EN::RETURN: {
|
|
replaceInVariable<ReturnNode>(en);
|
|
break;
|
|
}
|
|
|
|
case EN::CALCULATION: {
|
|
replaceInCalculation(en);
|
|
break;
|
|
}
|
|
|
|
case EN::FILTER: {
|
|
replaceInVariable<FilterNode>(en);
|
|
break;
|
|
}
|
|
|
|
case EN::AGGREGATE: {
|
|
auto node = static_cast<AggregateNode*>(en);
|
|
for (auto variable : node->_aggregateVariables) {
|
|
variable.second = Variable::replace(variable.second, _replacements);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EN::SORT: {
|
|
auto node = static_cast<SortNode*>(en);
|
|
for (auto variable : node->_elements) {
|
|
variable.first = Variable::replace(variable.first, _replacements);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
// ignore all other types of nodes
|
|
}
|
|
}
|
|
|
|
// always continue
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
|
|
std::unordered_map<VariableId, Variable const*> const& _replacements;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief remove CalculationNode(s) that are repeatedly used in a query
|
|
/// (i.e. common expressions)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::removeRedundantCalculationsRule (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
triagens::basics::StringBuffer buffer(TRI_UNKNOWN_MEM_ZONE);
|
|
std::unordered_map<VariableId, Variable const*> replacements;
|
|
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::CALCULATION, true);
|
|
|
|
for (auto n : nodes) {
|
|
auto nn = static_cast<CalculationNode*>(n);
|
|
|
|
if (! nn->expression()->isDeterministic()) {
|
|
// If this node is non-deterministic, we must not touch it!
|
|
continue;
|
|
}
|
|
|
|
auto outvar = n->getVariablesSetHere();
|
|
TRI_ASSERT(outvar.size() == 1);
|
|
|
|
try {
|
|
nn->expression()->stringify(&buffer);
|
|
}
|
|
catch (...) {
|
|
// expression could not be stringified (maybe because not all node types
|
|
// are supported). this is not an error, we just skip the optimization
|
|
buffer.reset();
|
|
continue;
|
|
}
|
|
|
|
std::string const referenceExpression(buffer.c_str(), buffer.length());
|
|
buffer.reset();
|
|
|
|
std::vector<ExecutionNode*> stack;
|
|
for (auto dep : n->getDependencies()) {
|
|
stack.push_back(dep);
|
|
}
|
|
|
|
while (! stack.empty()) {
|
|
auto current = stack.back();
|
|
stack.pop_back();
|
|
|
|
if (current->getType() == triagens::aql::ExecutionNode::CALCULATION) {
|
|
try {
|
|
static_cast<CalculationNode*>(current)->expression()->stringify(&buffer);
|
|
}
|
|
catch (...) {
|
|
// expression could not be stringified (maybe because not all node types
|
|
// are supported). this is not an error, we just skip the optimization
|
|
buffer.reset();
|
|
continue;
|
|
}
|
|
|
|
std::string const compareExpression(buffer.c_str(), buffer.length());
|
|
buffer.reset();
|
|
|
|
if (compareExpression == referenceExpression) {
|
|
// expressions are identical
|
|
auto outvars = current->getVariablesSetHere();
|
|
TRI_ASSERT(outvars.size() == 1);
|
|
|
|
// check if target variable is already registered as a replacement
|
|
// this covers the following case:
|
|
// - replacements is set to B => C
|
|
// - we're now inserting a replacement A => B
|
|
// the goal now is to enter a replacement A => C instead of A => B
|
|
auto target = outvars[0];
|
|
while (target != nullptr) {
|
|
auto it = replacements.find(target->id);
|
|
if (it != replacements.end()) {
|
|
target = (*it).second;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
replacements.emplace(std::make_pair(outvar[0]->id, target));
|
|
|
|
// also check if the insertion enables further shortcuts
|
|
// this covers the following case:
|
|
// - replacements is set to A => B
|
|
// - we have just inserted a replacement B => C
|
|
// the goal now is to change the replacement A => B to A => C
|
|
for (auto it = replacements.begin(); it != replacements.end(); ++it) {
|
|
if ((*it).second == outvar[0]) {
|
|
(*it).second = target;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (current->getType() == triagens::aql::ExecutionNode::AGGREGATE) {
|
|
if (static_cast<AggregateNode*>(current)->hasOutVariable()) {
|
|
// COLLECT ... INTO is evil (tm): it needs to keep all already defined variables
|
|
// we need to abort optimization here
|
|
break;
|
|
}
|
|
}
|
|
|
|
auto deps = current->getDependencies();
|
|
if (deps.size() != 1) {
|
|
// node either has no or more than one dependency. we don't know what to do and must abort
|
|
// note: this will also handle Singleton nodes
|
|
break;
|
|
}
|
|
|
|
for (auto dep : deps) {
|
|
stack.push_back(dep);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (! replacements.empty()) {
|
|
// finally replace the variables
|
|
|
|
RedundantCalculationsReplacer finder(replacements);
|
|
plan->root()->walk(&finder);
|
|
plan->findVarUsage();
|
|
|
|
opt->addPlan(plan, rule->level, true);
|
|
}
|
|
else {
|
|
// no changes
|
|
opt->addPlan(plan, rule->level, false);
|
|
}
|
|
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief remove CalculationNodes and SubqueryNodes that are never needed
|
|
/// this modifies an existing plan in place
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::removeUnnecessaryCalculationsRule (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
std::vector<ExecutionNode::NodeType> const types = {
|
|
triagens::aql::ExecutionNode::CALCULATION,
|
|
triagens::aql::ExecutionNode::SUBQUERY
|
|
};
|
|
|
|
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(types, true);
|
|
std::unordered_set<ExecutionNode*> toUnlink;
|
|
for (auto n : nodes) {
|
|
if (n->getType() == triagens::aql::ExecutionNode::CALCULATION) {
|
|
auto nn = static_cast<CalculationNode*>(n);
|
|
|
|
if (nn->canThrow() ||
|
|
! nn->expression()->isDeterministic()) {
|
|
// If this node can throw or is non-deterministic, we must not optimize it away!
|
|
continue;
|
|
}
|
|
}
|
|
else {
|
|
auto nn = static_cast<SubqueryNode*>(n);
|
|
if (nn->canThrow()) {
|
|
// subqueries that can throw must not be optimized away
|
|
continue;
|
|
}
|
|
}
|
|
|
|
auto outvar = n->getVariablesSetHere();
|
|
TRI_ASSERT(outvar.size() == 1);
|
|
auto varsUsedLater = n->getVarsUsedLater();
|
|
|
|
if (varsUsedLater.find(outvar[0]) == varsUsedLater.end()) {
|
|
// The variable whose value is calculated here is not used at
|
|
// all further down the pipeline! We remove the whole
|
|
// calculation node,
|
|
toUnlink.insert(n);
|
|
}
|
|
}
|
|
|
|
if (! toUnlink.empty()) {
|
|
plan->unlinkNodes(toUnlink);
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
opt->addPlan(plan, rule->level, ! toUnlink.empty());
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief prefer IndexRange nodes over EnumerateCollection nodes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class FilterToEnumCollFinder : public WalkerWorker<ExecutionNode> {
|
|
RangesInfo* _ranges;
|
|
Optimizer* _opt;
|
|
ExecutionPlan* _plan;
|
|
std::unordered_set<VariableId> _varIds;
|
|
bool _canThrow;
|
|
Optimizer::RuleLevel _level;
|
|
|
|
public:
|
|
|
|
FilterToEnumCollFinder (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Variable const* var,
|
|
Optimizer::RuleLevel level)
|
|
: _opt(opt),
|
|
_plan(plan),
|
|
_canThrow(false),
|
|
_level(level) {
|
|
_ranges = new RangesInfo();
|
|
_varIds.insert(var->id);
|
|
};
|
|
|
|
~FilterToEnumCollFinder () {
|
|
delete _ranges;
|
|
}
|
|
|
|
bool before (ExecutionNode* en) {
|
|
_canThrow = (_canThrow || en->canThrow()); // can any node walked over throw?
|
|
|
|
switch (en->getType()) {
|
|
case EN::ENUMERATE_LIST:
|
|
break;
|
|
case EN::CALCULATION: {
|
|
auto outvar = en->getVariablesSetHere();
|
|
TRI_ASSERT(outvar.size() == 1);
|
|
if (_varIds.find(outvar[0]->id) != _varIds.end()) {
|
|
auto node = static_cast<CalculationNode*>(en);
|
|
std::string attr;
|
|
Variable const* enumCollVar = nullptr;
|
|
buildRangeInfo(node->expression()->node(), enumCollVar, attr);
|
|
}
|
|
break;
|
|
}
|
|
case EN::SUBQUERY:
|
|
break;
|
|
case EN::FILTER: {
|
|
std::vector<Variable const*> inVar = en->getVariablesUsedHere();
|
|
TRI_ASSERT(inVar.size() == 1);
|
|
_varIds.insert(inVar[0]->id);
|
|
break;
|
|
}
|
|
case EN::AGGREGATE:
|
|
case EN::SCATTER:
|
|
case EN::DISTRIBUTE:
|
|
case EN::GATHER:
|
|
case EN::REMOTE:
|
|
// in these cases we simply ignore the intermediate nodes, note
|
|
// that we have taken care of nodes that could throw exceptions
|
|
// above.
|
|
break;
|
|
case EN::SINGLETON:
|
|
case EN::INSERT:
|
|
case EN::REMOVE:
|
|
case EN::REPLACE:
|
|
case EN::UPDATE:
|
|
case EN::RETURN:
|
|
case EN::NORESULTS:
|
|
case EN::ILLEGAL:
|
|
// in all these cases something is seriously wrong and we better abort
|
|
return true;
|
|
case EN::LIMIT:
|
|
// if we meet a limit node between a filter and an enumerate
|
|
// collection, we abort . . .
|
|
return true;
|
|
case EN::SORT:
|
|
case EN::INDEX_RANGE:
|
|
break;
|
|
case EN::ENUMERATE_COLLECTION: {
|
|
auto node = static_cast<EnumerateCollectionNode*>(en);
|
|
auto var = node->getVariablesSetHere()[0]; // should only be 1
|
|
std::unordered_map<std::string, RangeInfo>* map
|
|
= _ranges->find(var->name);
|
|
// check if we have any ranges with this var
|
|
|
|
if (map != nullptr) {
|
|
// Remove all variable bounds that are no longer defined here:
|
|
std::unordered_set<Variable const*> varsDefined
|
|
= node->getVarsValid();
|
|
// Take out the variable we define only here, because we are
|
|
// not allowed to use it in a variable bound expression:
|
|
std::vector<Variable const*> varsSetHere
|
|
= node->getVariablesSetHere();
|
|
for (auto v : varsSetHere) {
|
|
varsDefined.erase(v);
|
|
}
|
|
for (auto& x : *map) {
|
|
auto worker = [&] (std::list<RangeInfoBound>& bounds) -> void {
|
|
for (auto it = bounds.begin(); it != bounds.end();
|
|
/* no hoisting */) {
|
|
AstNode const* a = it->getExpressionAst(_plan->getAst());
|
|
std::unordered_set<Variable*> varsUsed
|
|
= Ast::getReferencedVariables(a);
|
|
bool bad = false;
|
|
for (auto v : varsUsed) {
|
|
if (varsDefined.find(const_cast<Variable const*>(v))
|
|
== varsDefined.end()) {
|
|
bad = true;
|
|
}
|
|
}
|
|
if (bad) {
|
|
it = bounds.erase(it);
|
|
x.second.revokeEquality(); // just to be sure
|
|
}
|
|
else {
|
|
it++;
|
|
}
|
|
}
|
|
};
|
|
worker(x.second._lows);
|
|
worker(x.second._highs);
|
|
}
|
|
// Now remove empty conditions:
|
|
for (auto it = map->begin(); it != map->end(); /* no hoisting */ ) {
|
|
if (it->second._lows.empty() &&
|
|
it->second._highs.empty() &&
|
|
! it->second._lowConst.isDefined() &&
|
|
! it->second._highConst.isDefined()) {
|
|
it = map->erase(it);
|
|
}
|
|
else {
|
|
it++;
|
|
}
|
|
}
|
|
|
|
// check the first components of <map> against indexes of <node>...
|
|
std::unordered_set<std::string> attrs;
|
|
|
|
bool valid = true; // are all the range infos valid?
|
|
|
|
for(auto x: *map) {
|
|
valid &= x.second.isValid();
|
|
if (! valid) {
|
|
break;
|
|
}
|
|
attrs.insert(x.first);
|
|
}
|
|
|
|
if (! _canThrow) {
|
|
if (! valid) { // ranges are not valid . . .
|
|
auto newPlan = _plan->clone();
|
|
try {
|
|
auto parents = newPlan->getNodeById(node->id())->getParents();
|
|
for (auto x: parents) {
|
|
auto noRes = new NoResultsNode(newPlan, newPlan->nextId());
|
|
newPlan->registerNode(noRes);
|
|
newPlan->insertDependency(x, noRes);
|
|
_opt->addPlan(newPlan, _level, true);
|
|
}
|
|
}
|
|
catch (...) {
|
|
delete newPlan;
|
|
throw;
|
|
}
|
|
}
|
|
else {
|
|
std::vector<Index*> idxs;
|
|
std::vector<size_t> prefixes;
|
|
// {idxs.at(i)->_fields[0]..idxs.at(i)->_fields[prefixes.at(i)]}
|
|
// is a subset of <attrs>
|
|
|
|
// note: prefixes are only used for skiplist indexes
|
|
// for all other index types, the prefix value will always be 0
|
|
node->getIndexesForIndexRangeNode(attrs, idxs, prefixes);
|
|
|
|
// make one new plan for every index in <idxs> that replaces the
|
|
// enumerate collection node with a IndexRangeNode ...
|
|
|
|
for (size_t i = 0; i < idxs.size(); i++) {
|
|
std::vector<std::vector<RangeInfo>> rangeInfo;
|
|
rangeInfo.push_back(std::vector<RangeInfo>());
|
|
|
|
// ranges must be valid and all comparisons == if hash
|
|
// index or == followed by a single <, >, >=, or <=
|
|
// if a skip index in the order of the fields of the
|
|
// index.
|
|
auto idx = idxs.at(i);
|
|
TRI_ASSERT(idx != nullptr);
|
|
|
|
if (idx->type == TRI_IDX_TYPE_PRIMARY_INDEX) {
|
|
bool handled = false;
|
|
auto range = map->find(std::string(TRI_VOC_ATTRIBUTE_ID));
|
|
|
|
if (range != map->end()) {
|
|
if (! range->second.is1ValueRangeInfo()) {
|
|
rangeInfo.at(0).clear(); // not usable
|
|
}
|
|
else {
|
|
rangeInfo.at(0).push_back(range->second);
|
|
handled = true;
|
|
}
|
|
}
|
|
|
|
if (! handled) {
|
|
range = map->find(std::string(TRI_VOC_ATTRIBUTE_KEY));
|
|
|
|
if (range != map->end()) {
|
|
if (! range->second.is1ValueRangeInfo()) {
|
|
rangeInfo.at(0).clear(); // not usable
|
|
}
|
|
else {
|
|
rangeInfo.at(0).push_back(range->second);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (idx->type == TRI_IDX_TYPE_HASH_INDEX) {
|
|
for (size_t j = 0; j < idx->fields.size(); j++) {
|
|
auto range = map->find(idx->fields[j]);
|
|
|
|
if (! range->second.is1ValueRangeInfo()) {
|
|
rangeInfo.at(0).clear(); // not usable
|
|
break;
|
|
}
|
|
rangeInfo.at(0).push_back(range->second);
|
|
}
|
|
}
|
|
else if (idx->type == TRI_IDX_TYPE_EDGE_INDEX) {
|
|
bool handled = false;
|
|
auto range = map->find(std::string(TRI_VOC_ATTRIBUTE_FROM));
|
|
|
|
if (range != map->end()) {
|
|
if (! range->second.is1ValueRangeInfo()) {
|
|
rangeInfo.at(0).clear(); // not usable
|
|
}
|
|
else {
|
|
rangeInfo.at(0).push_back(range->second);
|
|
handled = true;
|
|
}
|
|
}
|
|
|
|
if (! handled) {
|
|
range = map->find(std::string(TRI_VOC_ATTRIBUTE_TO));
|
|
|
|
if (range != map->end()) {
|
|
if (! range->second.is1ValueRangeInfo()) {
|
|
rangeInfo.at(0).clear(); // not usable
|
|
}
|
|
else {
|
|
rangeInfo.at(0).push_back(range->second);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (idx->type == TRI_IDX_TYPE_SKIPLIST_INDEX) {
|
|
size_t j = 0;
|
|
auto range = map->find(idx->fields[0]);
|
|
TRI_ASSERT(range != map->end());
|
|
rangeInfo.at(0).push_back(range->second);
|
|
bool equality = range->second.is1ValueRangeInfo();
|
|
while (++j < prefixes.at(i) && equality) {
|
|
range = map->find(idx->fields[j]);
|
|
rangeInfo.at(0).push_back(range->second);
|
|
equality = equality && range->second.is1ValueRangeInfo();
|
|
}
|
|
}
|
|
|
|
if (! rangeInfo.at(0).empty()) {
|
|
auto newPlan = _plan->clone();
|
|
if (newPlan == nullptr) {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_OUT_OF_MEMORY);
|
|
}
|
|
|
|
try {
|
|
ExecutionNode* newNode = new IndexRangeNode(newPlan, newPlan->nextId(), node->vocbase(),
|
|
node->collection(), node->outVariable(), idx, rangeInfo, false);
|
|
newPlan->registerNode(newNode);
|
|
newPlan->replaceNode(newPlan->getNodeById(node->id()), newNode);
|
|
_opt->addPlan(newPlan, _level, true);
|
|
}
|
|
catch (...) {
|
|
delete newPlan;
|
|
throw;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void buildRangeInfo (AstNode const* node,
|
|
Variable const*& enumCollVar,
|
|
std::string& attr) {
|
|
if (node->type == NODE_TYPE_REFERENCE) {
|
|
auto x = static_cast<Variable*>(node->getData());
|
|
auto setter = _plan->getVarSetBy(x->id);
|
|
if (setter != nullptr &&
|
|
setter->getType() == triagens::aql::ExecutionNode::ENUMERATE_COLLECTION) {
|
|
enumCollVar = x;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (node->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
|
|
buildRangeInfo(node->getMember(0), enumCollVar, attr);
|
|
|
|
if (enumCollVar != nullptr) {
|
|
char const* attributeName = node->getStringValue();
|
|
attr.append(attributeName);
|
|
attr.push_back('.');
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (node->type == NODE_TYPE_OPERATOR_BINARY_EQ) {
|
|
auto lhs = node->getMember(0);
|
|
auto rhs = node->getMember(1);
|
|
if (rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
|
|
buildRangeInfo(rhs, enumCollVar, attr);
|
|
if (enumCollVar != nullptr) {
|
|
std::unordered_set<Variable*> varsUsed
|
|
= Ast::getReferencedVariables(lhs);
|
|
if (varsUsed.find(const_cast<Variable*>(enumCollVar))
|
|
== varsUsed.end()) {
|
|
// Found a multiple attribute access of a variable and an
|
|
// expression which does not involve that variable:
|
|
_ranges->insert(enumCollVar->name,
|
|
attr.substr(0, attr.size() - 1),
|
|
RangeInfoBound(lhs, true),
|
|
RangeInfoBound(lhs, true), true);
|
|
}
|
|
enumCollVar = nullptr;
|
|
attr.clear();
|
|
}
|
|
}
|
|
|
|
if (lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
|
|
buildRangeInfo(lhs, enumCollVar, attr);
|
|
if (enumCollVar != nullptr) {
|
|
std::unordered_set<Variable*> varsUsed
|
|
= Ast::getReferencedVariables(rhs);
|
|
if (varsUsed.find(const_cast<Variable*>(enumCollVar))
|
|
== varsUsed.end()) {
|
|
// Found a multiple attribute access of a variable and an
|
|
// expression which does not involve that variable:
|
|
_ranges->insert(enumCollVar->name,
|
|
attr.substr(0, attr.size() - 1),
|
|
RangeInfoBound(rhs, true),
|
|
RangeInfoBound(rhs, true), true);
|
|
}
|
|
enumCollVar = nullptr;
|
|
attr.clear();
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (node->type == NODE_TYPE_OPERATOR_BINARY_LT ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_GT ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_LE ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_GE) {
|
|
|
|
bool include = (node->type == NODE_TYPE_OPERATOR_BINARY_LE ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_GE);
|
|
|
|
auto lhs = node->getMember(0);
|
|
auto rhs = node->getMember(1);
|
|
|
|
if (rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
|
|
// Attribute access on the right:
|
|
// First find out whether there is a multiple attribute access
|
|
// of a variable on the right:
|
|
buildRangeInfo(rhs, enumCollVar, attr);
|
|
if (enumCollVar != nullptr) {
|
|
RangeInfoBound low;
|
|
RangeInfoBound high;
|
|
|
|
// Constant value on the left, so insert a constant condition:
|
|
if (node->type == NODE_TYPE_OPERATOR_BINARY_GE ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_GT) {
|
|
high.assign(lhs, include);
|
|
}
|
|
else {
|
|
low.assign(lhs, include);
|
|
}
|
|
_ranges->insert(enumCollVar->name, attr.substr(0, attr.size() - 1),
|
|
low, high, false);
|
|
|
|
enumCollVar = nullptr;
|
|
attr.clear();
|
|
}
|
|
}
|
|
|
|
if (lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
|
|
// Attribute access on the left:
|
|
// First find out whether there is a multiple attribute access
|
|
// of a variable on the left:
|
|
buildRangeInfo(lhs, enumCollVar, attr);
|
|
if (enumCollVar != nullptr) {
|
|
RangeInfoBound low;
|
|
RangeInfoBound high;
|
|
|
|
// Constant value on the right, so insert a constant condition:
|
|
if (node->type == NODE_TYPE_OPERATOR_BINARY_GE ||
|
|
node->type == NODE_TYPE_OPERATOR_BINARY_GT) {
|
|
low.assign(rhs, include);
|
|
}
|
|
else {
|
|
high.assign(rhs, include);
|
|
}
|
|
_ranges->insert(enumCollVar->name, attr.substr(0, attr.size() - 1),
|
|
low, high, false);
|
|
|
|
enumCollVar = nullptr;
|
|
attr.clear();
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (node->type == NODE_TYPE_OPERATOR_BINARY_AND) {
|
|
buildRangeInfo(node->getMember(0), enumCollVar, attr);
|
|
buildRangeInfo(node->getMember(1), enumCollVar, attr);
|
|
}
|
|
/* TODO: or isn't implemented yet.
|
|
if (node->type == NODE_TYPE_OPERATOR_BINARY_OR) {
|
|
buildRangeInfo(node->getMember(0), enumCollVar, attr);
|
|
buildRangeInfo(node->getMember(1), enumCollVar, attr);
|
|
}
|
|
*/
|
|
// default case
|
|
attr.clear();
|
|
enumCollVar = nullptr;
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief useIndexRange, try to use an index for filtering
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::useIndexRange (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::FILTER, true);
|
|
|
|
for (auto n : nodes) {
|
|
auto nn = static_cast<FilterNode*>(n);
|
|
auto invars = nn->getVariablesUsedHere();
|
|
TRI_ASSERT(invars.size() == 1);
|
|
FilterToEnumCollFinder finder(opt, plan, invars[0], rule->level);
|
|
nn->walk(&finder);
|
|
}
|
|
opt->addPlan(plan, rule->level, false);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief analyse the sortnode and its calculation nodes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class SortAnalysis {
|
|
using ECN = triagens::aql::EnumerateCollectionNode;
|
|
|
|
typedef std::pair<ECN::IndexMatchVec, IndexOrCondition> Range_IndexPair;
|
|
|
|
struct sortNodeData {
|
|
bool ASC;
|
|
size_t calculationNodeID;
|
|
std::string variableName;
|
|
std::string attributevec;
|
|
};
|
|
|
|
std::vector<sortNodeData*> _sortNodeData;
|
|
|
|
public:
|
|
size_t const sortNodeID;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief constructor; fetches the referenced calculation nodes and builds
|
|
/// _sortNodeData for later use.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
SortAnalysis (SortNode* node)
|
|
: sortNodeID(node->id()) {
|
|
auto sortParams = node->getCalcNodePairs();
|
|
|
|
for (size_t n = 0; n < sortParams.size(); n++) {
|
|
auto d = new sortNodeData;
|
|
try {
|
|
d->ASC = sortParams[n].second;
|
|
d->calculationNodeID = sortParams[n].first->id();
|
|
|
|
if (sortParams[n].first->getType() == EN::CALCULATION) {
|
|
auto cn = static_cast<triagens::aql::CalculationNode*>(sortParams[n].first);
|
|
auto oneSortExpression = cn->expression();
|
|
|
|
if (oneSortExpression->isAttributeAccess()) {
|
|
auto simpleExpression = oneSortExpression->getMultipleAttributes();
|
|
d->variableName = simpleExpression.first;
|
|
d->attributevec = simpleExpression.second;
|
|
}
|
|
}
|
|
_sortNodeData.push_back(d);
|
|
}
|
|
catch (...) {
|
|
delete d;
|
|
throw;
|
|
}
|
|
}
|
|
}
|
|
|
|
~SortAnalysis () {
|
|
for (auto x : _sortNodeData){
|
|
delete x;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief checks the whether we only have simple calculation nodes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool isAnalyzeable () {
|
|
if (_sortNodeData.size() == 0) {
|
|
return false;
|
|
}
|
|
for (size_t j = 0; j < _sortNodeData.size(); j ++) {
|
|
if (_sortNodeData[j]->variableName.length() == 0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief checks whether our calculation nodes reference variableName;
|
|
/// @returns pair used for further processing with the indices.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
Range_IndexPair getAttrsForVariableName (std::string &variableName) {
|
|
ECN::IndexMatchVec v;
|
|
IndexOrCondition rangeInfo;
|
|
|
|
for (size_t j = 0; j < _sortNodeData.size(); j ++) {
|
|
if (_sortNodeData[j]->variableName != variableName) {
|
|
return std::make_pair(v, rangeInfo); // for now, no mixed support.
|
|
}
|
|
}
|
|
// Collect the right data for the sorting:
|
|
for (size_t j = 0; j < _sortNodeData.size(); j ++) {
|
|
v.push_back(std::make_pair(_sortNodeData[j]->attributevec,
|
|
_sortNodeData[j]->ASC));
|
|
}
|
|
// We only need one or-condition (because this is mandatory) which
|
|
// refers to 0 of the attributes:
|
|
rangeInfo.push_back(std::vector<RangeInfo>());
|
|
return std::make_pair(v, rangeInfo);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief removes the sortNode and its referenced Calculationnodes from
|
|
/// the plan.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void removeSortNodeFromPlan (ExecutionPlan* newPlan) {
|
|
newPlan->unlinkNode(newPlan->getNodeById(sortNodeID));
|
|
}
|
|
};
|
|
|
|
class SortToIndexNode : public WalkerWorker<ExecutionNode> {
|
|
using ECN = triagens::aql::EnumerateCollectionNode;
|
|
|
|
Optimizer* _opt;
|
|
ExecutionPlan* _plan;
|
|
SortAnalysis* _sortNode;
|
|
Optimizer::RuleLevel _level;
|
|
|
|
public:
|
|
bool planModified;
|
|
|
|
|
|
SortToIndexNode (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
SortAnalysis* Node,
|
|
Optimizer::RuleLevel level)
|
|
: _opt(opt),
|
|
_plan(plan),
|
|
_sortNode(Node),
|
|
_level(level) {
|
|
planModified = false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief check if an enumerate collection or index range node is part of an
|
|
/// outer loop - this is necessary to ensure that the overall query result
|
|
/// does not change by replacing a SortNode with an IndexRangeNode
|
|
/// Example:
|
|
/// FOR i IN [ 1, 2 ] FOR j IN collectionWithIndex SORT j.indexdedAttr RETURN j
|
|
/// this must not be optimized because removing the sort and using the index
|
|
/// would only guarantee the sortedness within each iteration of the outer for
|
|
/// loop but not for the total result
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool isInnerLoop (ExecutionNode const* node) const {
|
|
while (node != nullptr) {
|
|
auto deps = node->getDependencies();
|
|
if (deps.size() != 1) {
|
|
return false;
|
|
}
|
|
node = deps[0];
|
|
TRI_ASSERT(node != nullptr);
|
|
|
|
if (node->getType() == EN::ENUMERATE_COLLECTION ||
|
|
node->getType() == EN::INDEX_RANGE ||
|
|
node->getType() == EN::ENUMERATE_LIST) {
|
|
// we are contained in an outer loop
|
|
// TODO: potential optimization: check if the outer loop has 0 or 1
|
|
// iterations. in this case it is still possible to remove the sort
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief if the sort is already done by an indexrange, remove the sort.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool handleIndexRangeNode (IndexRangeNode* node) {
|
|
if (isInnerLoop(node)) {
|
|
// index range contained in an outer loop. must not optimize away the sort!
|
|
return true;
|
|
}
|
|
|
|
auto variableName = node->getVariablesSetHere()[0]->name;
|
|
auto result = _sortNode->getAttrsForVariableName(variableName);
|
|
|
|
auto const& match = node->MatchesIndex(result.first);
|
|
if (match.doesMatch) {
|
|
if (match.reverse) {
|
|
node->reverse(true);
|
|
}
|
|
_sortNode->removeSortNodeFromPlan(_plan);
|
|
planModified = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief check whether we can sort via an index.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool handleEnumerateCollectionNode (EnumerateCollectionNode* node,
|
|
Optimizer::RuleLevel level) {
|
|
if (isInnerLoop(node)) {
|
|
// index range contained in an outer loop. must not optimize away the sort!
|
|
return true;
|
|
}
|
|
|
|
auto variableName = node->getVariablesSetHere()[0]->name;
|
|
auto result = _sortNode->getAttrsForVariableName(variableName);
|
|
|
|
if (result.first.size() == 0) {
|
|
return true; // we didn't find anything replaceable by indice
|
|
}
|
|
|
|
for (auto idx: node->getIndicesOrdered(result.first)) {
|
|
// make one new plan for each index that replaces this
|
|
// EnumerateCollectionNode with an IndexRangeNode
|
|
|
|
// can only use the index if it is a skip list or (a hash and we
|
|
// are checking equality)
|
|
auto newPlan = _plan->clone();
|
|
try {
|
|
ExecutionNode* newNode = new IndexRangeNode(newPlan,
|
|
newPlan->nextId(),
|
|
node->vocbase(),
|
|
node->collection(),
|
|
node->outVariable(),
|
|
idx.index, /// TODO: estimate cost on match quality
|
|
result.second,
|
|
(idx.doesMatch && idx.reverse));
|
|
newPlan->registerNode(newNode);
|
|
newPlan->replaceNode(newPlan->getNodeById(node->id()), newNode);
|
|
|
|
if (idx.doesMatch) { // if the index superseedes the sort, remove it.
|
|
_sortNode->removeSortNodeFromPlan(newPlan);
|
|
_opt->addPlan(newPlan, Optimizer::RuleLevel::pass5, true);
|
|
}
|
|
else {
|
|
_opt->addPlan(newPlan, level, true);
|
|
}
|
|
}
|
|
catch (...) {
|
|
delete newPlan;
|
|
throw;
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool enterSubQuery () { return false; }
|
|
|
|
bool before (ExecutionNode* en) {
|
|
switch (en->getType()) {
|
|
case EN::ENUMERATE_LIST:
|
|
case EN::CALCULATION:
|
|
case EN::SUBQUERY: /// TODO: find out whether it may throw
|
|
case EN::FILTER:
|
|
return false; // skip. we don't care.
|
|
|
|
case EN::SINGLETON:
|
|
case EN::AGGREGATE:
|
|
case EN::INSERT:
|
|
case EN::REMOVE:
|
|
case EN::REPLACE:
|
|
case EN::UPDATE:
|
|
case EN::RETURN:
|
|
case EN::NORESULTS:
|
|
case EN::SCATTER:
|
|
case EN::DISTRIBUTE:
|
|
case EN::GATHER:
|
|
case EN::REMOTE:
|
|
case EN::ILLEGAL:
|
|
case EN::LIMIT: // LIMIT is criterion to stop
|
|
return true; // abort.
|
|
|
|
case EN::SORT: // pulling two sorts together is done elsewhere.
|
|
return en->id() != _sortNode->sortNodeID; // ignore ourselves.
|
|
|
|
case EN::INDEX_RANGE:
|
|
return handleIndexRangeNode(static_cast<IndexRangeNode*>(en));
|
|
|
|
case EN::ENUMERATE_COLLECTION:
|
|
return handleEnumerateCollectionNode(static_cast<EnumerateCollectionNode*>(en), _level);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
int triagens::aql::useIndexForSort (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
bool planModified = false;
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::SORT, true);
|
|
for (auto n : nodes) {
|
|
auto thisSortNode = static_cast<SortNode*>(n);
|
|
SortAnalysis node(thisSortNode);
|
|
if (node.isAnalyzeable()) {
|
|
SortToIndexNode finder(opt, plan, &node, rule->level);
|
|
thisSortNode->walk(&finder);/// todo auf der dependency anfangen
|
|
if (finder.planModified) {
|
|
planModified = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
opt->addPlan(plan,
|
|
planModified ? Optimizer::RuleLevel::pass5 : rule->level,
|
|
planModified);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief helper to compute lots of permutation tuples
|
|
/// a permutation tuple is represented as a single vector together with
|
|
/// another vector describing the boundaries of the tuples.
|
|
/// Example:
|
|
/// data: 0,1,2, 3,4, 5,6
|
|
/// starts: 0, 3, 5, (indices of starts of sections)
|
|
/// means a tuple of 3 permutations of 3, 2 and 2 points respectively
|
|
/// This function computes the next permutation tuple among the
|
|
/// lexicographically sorted list of all such tuples. It returns true
|
|
/// if it has successfully computed this and false if the tuple is already
|
|
/// the lexicographically largest one. If false is returned, the permutation
|
|
/// tuple is back to the beginning.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static bool nextPermutationTuple (std::vector<size_t>& data,
|
|
std::vector<size_t>& starts) {
|
|
auto begin = data.begin(); // a random access iterator
|
|
for (size_t i = starts.size(); i-- != 0; ) {
|
|
std::vector<size_t>::iterator from = begin + starts[i];
|
|
std::vector<size_t>::iterator to;
|
|
if (i == starts.size() - 1) {
|
|
to = data.end();
|
|
}
|
|
else {
|
|
to = begin + starts[i + 1];
|
|
}
|
|
if (std::next_permutation(from, to)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief interchange adjacent EnumerateCollectionNodes in all possible ways
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::interchangeAdjacentEnumerations (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::ENUMERATE_COLLECTION,
|
|
true);
|
|
std::unordered_set<ExecutionNode*> nodesSet;
|
|
for (auto n : nodes) {
|
|
TRI_ASSERT(nodesSet.find(n) == nodesSet.end());
|
|
nodesSet.insert(n);
|
|
}
|
|
|
|
std::vector<ExecutionNode*> nodesToPermute;
|
|
std::vector<size_t> permTuple;
|
|
std::vector<size_t> starts;
|
|
|
|
// We use that the order of the nodes is such that a node B that is among the
|
|
// recursive dependencies of a node A is later in the vector.
|
|
for (auto n : nodes) {
|
|
|
|
if (nodesSet.find(n) != nodesSet.end()) {
|
|
std::vector<ExecutionNode*> nn;
|
|
nn.push_back(n);
|
|
nodesSet.erase(n);
|
|
|
|
// Now follow the dependencies as long as we see further such nodes:
|
|
auto nwalker = n;
|
|
while (true) {
|
|
auto deps = nwalker->getDependencies();
|
|
if (deps.size() == 0) {
|
|
break;
|
|
}
|
|
if (deps[0]->getType() !=
|
|
triagens::aql::ExecutionNode::ENUMERATE_COLLECTION) {
|
|
break;
|
|
}
|
|
nwalker = deps[0];
|
|
nn.push_back(nwalker);
|
|
nodesSet.erase(nwalker);
|
|
}
|
|
if (nn.size() > 1) {
|
|
// Move it into the permutation tuple:
|
|
starts.push_back(permTuple.size());
|
|
for (auto nnn : nn) {
|
|
nodesToPermute.push_back(nnn);
|
|
permTuple.push_back(permTuple.size());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now we have collected all the runs of EnumerateCollectionNodes in the
|
|
// plan, we need to compute all possible permutations of all of them,
|
|
// independently. This is why we need to compute all permutation tuples.
|
|
|
|
opt->addPlan(plan, rule->level, false);
|
|
|
|
if (! starts.empty()) {
|
|
nextPermutationTuple(permTuple, starts); // will never return false
|
|
do {
|
|
// Clone the plan:
|
|
auto newPlan = plan->clone();
|
|
|
|
try { // get rid of plan if any of this fails
|
|
// Find the nodes in the new plan corresponding to the ones in the
|
|
// old plan that we want to permute:
|
|
std::vector<ExecutionNode*> newNodes;
|
|
for (size_t j = 0; j < nodesToPermute.size(); j++) {
|
|
newNodes.push_back(newPlan->getNodeById(nodesToPermute[j]->id()));
|
|
}
|
|
|
|
// Now get going with the permutations:
|
|
for (size_t i = 0; i < starts.size(); i++) {
|
|
size_t lowBound = starts[i];
|
|
size_t highBound = (i < starts.size()-1)
|
|
? starts[i+1]
|
|
: permTuple.size();
|
|
// We need to remove the nodes
|
|
// newNodes[lowBound..highBound-1] in newPlan and replace
|
|
// them by the same ones in a different order, given by
|
|
// permTuple[lowBound..highBound-1].
|
|
auto parents = newNodes[lowBound]->getParents();
|
|
TRI_ASSERT(parents.size() == 1);
|
|
auto parent = parents[0]; // needed for insertion later
|
|
|
|
// Unlink all those nodes:
|
|
for (size_t j = lowBound; j < highBound; j++) {
|
|
newPlan->unlinkNode(newNodes[j]);
|
|
}
|
|
|
|
// And insert them in the new order:
|
|
for (size_t j = highBound; j-- != lowBound; ) {
|
|
newPlan->insertDependency(parent, newNodes[permTuple[j]]);
|
|
}
|
|
}
|
|
|
|
// OK, the new plan is ready, let's report it:
|
|
if (! opt->addPlan(newPlan, rule->level, true)) {
|
|
break;
|
|
}
|
|
}
|
|
catch (...) {
|
|
delete newPlan;
|
|
throw;
|
|
}
|
|
|
|
}
|
|
while (nextPermutationTuple(permTuple, starts));
|
|
}
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief scatter operations in cluster
|
|
/// this rule inserts scatter, gather and remote nodes so operations on sharded
|
|
/// collections actually work
|
|
/// it will change plans in place
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::scatterInCluster (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
bool wasModified = false;
|
|
|
|
if (ExecutionEngine::isCoordinator()) {
|
|
// we are a coordinator. now look in the plan for nodes of type
|
|
// EnumerateCollectionNode and IndexRangeNode
|
|
std::vector<ExecutionNode::NodeType> const types = {
|
|
ExecutionNode::ENUMERATE_COLLECTION,
|
|
ExecutionNode::INDEX_RANGE,
|
|
ExecutionNode::INSERT,
|
|
ExecutionNode::UPDATE,
|
|
ExecutionNode::REPLACE,
|
|
ExecutionNode::REMOVE
|
|
};
|
|
|
|
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(types, true);
|
|
|
|
for (auto& node: nodes) {
|
|
// found a node we need to replace in the plan
|
|
|
|
auto parents = node->getParents();
|
|
auto deps = node->getDependencies();
|
|
TRI_ASSERT(deps.size() == 1);
|
|
|
|
// unlink the node
|
|
bool const isRootNode = plan->isRoot(node);
|
|
if (isRootNode) {
|
|
if (deps[0]->getType() == ExecutionNode::REMOTE &&
|
|
deps[0]->getDependencies()[0]->getType() == ExecutionNode::DISTRIBUTE){
|
|
continue;
|
|
}
|
|
}
|
|
plan->unlinkNode(node, isRootNode);
|
|
|
|
auto const nodeType = node->getType();
|
|
|
|
// extract database and collection from plan node
|
|
TRI_vocbase_t* vocbase = nullptr;
|
|
Collection const* collection = nullptr;
|
|
|
|
if (nodeType == ExecutionNode::ENUMERATE_COLLECTION) {
|
|
vocbase = static_cast<EnumerateCollectionNode*>(node)->vocbase();
|
|
collection = static_cast<EnumerateCollectionNode*>(node)->collection();
|
|
}
|
|
else if (nodeType == ExecutionNode::INDEX_RANGE) {
|
|
vocbase = static_cast<IndexRangeNode*>(node)->vocbase();
|
|
collection = static_cast<IndexRangeNode*>(node)->collection();
|
|
}
|
|
else if (nodeType == ExecutionNode::INSERT ||
|
|
nodeType == ExecutionNode::UPDATE ||
|
|
nodeType == ExecutionNode::REPLACE ||
|
|
nodeType == ExecutionNode::REMOVE) {
|
|
vocbase = static_cast<ModificationNode*>(node)->vocbase();
|
|
collection = static_cast<ModificationNode*>(node)->collection();
|
|
}
|
|
else {
|
|
TRI_ASSERT(false);
|
|
}
|
|
|
|
// insert a scatter node
|
|
ExecutionNode* scatterNode = new ScatterNode(plan, plan->nextId(),
|
|
vocbase, collection);
|
|
plan->registerNode(scatterNode);
|
|
scatterNode->addDependency(deps[0]);
|
|
|
|
// insert a remote node
|
|
ExecutionNode* remoteNode = new RemoteNode(plan, plan->nextId(), vocbase,
|
|
collection, "", "", "");
|
|
plan->registerNode(remoteNode);
|
|
remoteNode->addDependency(scatterNode);
|
|
|
|
// re-link with the remote node
|
|
node->addDependency(remoteNode);
|
|
|
|
// insert another remote node
|
|
remoteNode = new RemoteNode(plan, plan->nextId(), vocbase, collection, "", "", "");
|
|
plan->registerNode(remoteNode);
|
|
remoteNode->addDependency(node);
|
|
|
|
// insert a gather node
|
|
ExecutionNode* gatherNode = new GatherNode(plan, plan->nextId(), vocbase,
|
|
collection);
|
|
plan->registerNode(gatherNode);
|
|
gatherNode->addDependency(remoteNode);
|
|
|
|
// and now link the gather node with the rest of the plan
|
|
if (parents.size() == 1) {
|
|
parents[0]->replaceDependency(deps[0], gatherNode);
|
|
}
|
|
|
|
if (isRootNode) {
|
|
// if we replaced the root node, set a new root node
|
|
plan->root(gatherNode);
|
|
}
|
|
wasModified = true;
|
|
}
|
|
}
|
|
|
|
opt->addPlan(plan, rule->level, wasModified);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief distribute operations in cluster
|
|
///
|
|
/// this rule inserts distribute, remote nodes so operations on sharded
|
|
/// collections actually work, this differs from scatterInCluster in that every
|
|
/// incoming row is only set to one shard and not all as in scatterInCluster
|
|
///
|
|
/// it will change plans in place
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::distributeInCluster (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
bool wasModified = false;
|
|
|
|
if (ExecutionEngine::isCoordinator()) {
|
|
// we are a coordinator, we replace the root if it is a modification node
|
|
|
|
// only replace if it is the last node in the plan
|
|
auto const& node = plan->root();
|
|
auto const nodeType = node->getType();
|
|
|
|
if (nodeType != ExecutionNode::INSERT &&
|
|
nodeType != ExecutionNode::REMOVE) {
|
|
opt->addPlan(plan, rule->level, wasModified);
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
Collection const* collection = static_cast<ModificationNode*>(node)->collection();
|
|
|
|
if (nodeType == ExecutionNode::REMOVE) {
|
|
// check if collection shard keys are only _key
|
|
std::vector<std::string> shardKeys = collection->shardKeys();
|
|
if (shardKeys.size() != 1 || shardKeys[0] != "_key") {
|
|
opt->addPlan(plan, rule->level, wasModified);
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
}
|
|
|
|
auto deps = node->getDependencies();
|
|
TRI_ASSERT(deps.size() == 1);
|
|
|
|
// unlink the node
|
|
plan->unlinkNode(node, true);
|
|
|
|
// extract database from plan node
|
|
TRI_vocbase_t* vocbase = static_cast<ModificationNode*>(node)->vocbase();
|
|
|
|
// insert a distribute node
|
|
TRI_ASSERT(node->getVariablesUsedHere().size() == 1);
|
|
ExecutionNode* distNode = new DistributeNode(plan, plan->nextId(),
|
|
vocbase, collection, node->getVariablesUsedHere()[0]->id);
|
|
plan->registerNode(distNode);
|
|
distNode->addDependency(deps[0]);
|
|
|
|
// insert a remote node
|
|
ExecutionNode* remoteNode = new RemoteNode(plan, plan->nextId(), vocbase,
|
|
collection, "", "", "");
|
|
plan->registerNode(remoteNode);
|
|
remoteNode->addDependency(distNode);
|
|
|
|
// re-link with the remote node
|
|
node->addDependency(remoteNode);
|
|
|
|
// make node the root again
|
|
plan->root(node);
|
|
wasModified = true;
|
|
}
|
|
|
|
opt->addPlan(plan, rule->level, wasModified);
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief move filters up into the cluster distribution part of the plan
|
|
/// this rule modifies the plan in place
|
|
/// filters are moved as far up in the plan as possible to make result sets
|
|
/// as small as possible as early as possible
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::distributeFilternCalcToCluster (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
bool modified = false;
|
|
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::GATHER, true);
|
|
|
|
|
|
for (auto n : nodes) {
|
|
auto remoteNodeList = n->getDependencies();
|
|
TRI_ASSERT(remoteNodeList.size() > 0);
|
|
auto rn = remoteNodeList[0];
|
|
auto parents = n->getParents();
|
|
if (parents.size() < 1) {
|
|
continue;
|
|
}
|
|
while (1) {
|
|
bool stopSearching = false;
|
|
|
|
auto inspectNode = parents[0];
|
|
|
|
switch (inspectNode->getType()) {
|
|
case EN::ENUMERATE_LIST:
|
|
case EN::SINGLETON:
|
|
case EN::AGGREGATE:
|
|
case EN::INSERT:
|
|
case EN::REMOVE:
|
|
case EN::REPLACE:
|
|
case EN::UPDATE:
|
|
parents = inspectNode->getParents();
|
|
continue;
|
|
case EN::SUBQUERY:
|
|
case EN::RETURN:
|
|
case EN::NORESULTS:
|
|
case EN::SCATTER:
|
|
case EN::DISTRIBUTE:
|
|
case EN::GATHER:
|
|
case EN::ILLEGAL:
|
|
//do break
|
|
case EN::REMOTE:
|
|
case EN::LIMIT:
|
|
case EN::SORT:
|
|
case EN::INDEX_RANGE:
|
|
case EN::ENUMERATE_COLLECTION:
|
|
stopSearching = true;
|
|
break;
|
|
case EN::CALCULATION:
|
|
case EN::FILTER:
|
|
// remember our cursor...
|
|
parents = inspectNode->getParents();
|
|
// then unlink the filter/calculator from the plan
|
|
plan->unlinkNode(inspectNode);
|
|
// and re-insert into plan in front of the remoteNode
|
|
plan->insertDependency(rn, inspectNode);
|
|
|
|
modified = true;
|
|
//ready to rumble!
|
|
break;
|
|
}
|
|
|
|
if (stopSearching) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (modified) {
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
opt->addPlan(plan, rule->level, modified);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief move sorts up into the cluster distribution part of the plan
|
|
/// this rule modifies the plan in place
|
|
/// sorts are moved as far up in the plan as possible to make result sets
|
|
/// as small as possible as early as possible
|
|
///
|
|
/// filters are not pushed beyond limits
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::distributeSortToCluster (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
bool modified = false;
|
|
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::GATHER, true);
|
|
|
|
for (auto n : nodes) {
|
|
auto remoteNodeList = n->getDependencies();
|
|
auto gatherNode = static_cast<GatherNode*>(n);
|
|
TRI_ASSERT(remoteNodeList.size() > 0);
|
|
auto rn = remoteNodeList[0];
|
|
auto parents = n->getParents();
|
|
if (parents.size() < 1) {
|
|
continue;
|
|
}
|
|
while (1) {
|
|
bool stopSearching = false;
|
|
|
|
auto inspectNode = parents[0];
|
|
|
|
switch (inspectNode->getType()) {
|
|
case EN::ENUMERATE_LIST:
|
|
case EN::SINGLETON:
|
|
case EN::AGGREGATE:
|
|
case EN::INSERT:
|
|
case EN::REMOVE:
|
|
case EN::REPLACE:
|
|
case EN::UPDATE:
|
|
case EN::CALCULATION:
|
|
case EN::FILTER:
|
|
parents = inspectNode->getParents();
|
|
continue;
|
|
case EN::SUBQUERY:
|
|
case EN::RETURN:
|
|
case EN::NORESULTS:
|
|
case EN::SCATTER:
|
|
case EN::DISTRIBUTE:
|
|
case EN::GATHER:
|
|
case EN::ILLEGAL:
|
|
//do break
|
|
case EN::REMOTE:
|
|
case EN::LIMIT:
|
|
case EN::INDEX_RANGE:
|
|
case EN::ENUMERATE_COLLECTION:
|
|
stopSearching = true;
|
|
break;
|
|
case EN::SORT:
|
|
auto thisSortNode = static_cast<SortNode*>(inspectNode);
|
|
|
|
// remember our cursor...
|
|
parents = inspectNode->getParents();
|
|
// then unlink the filter/calculator from the plan
|
|
plan->unlinkNode(inspectNode);
|
|
// and re-insert into plan in front of the remoteNode
|
|
plan->insertDependency(rn, inspectNode);
|
|
gatherNode->setElements(thisSortNode->getElements());
|
|
modified = true;
|
|
//ready to rumble!
|
|
}
|
|
|
|
if (stopSearching) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (modified) {
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
opt->addPlan(plan, rule->level, modified);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief try to get rid of a RemoteNode->ScatterNode combination which has
|
|
/// only a SingletonNode and possibly some CalculationNodes as dependencies
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::removeUnnecessaryRemoteScatter (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::REMOTE, true);
|
|
std::unordered_set<ExecutionNode*> toUnlink;
|
|
|
|
for (auto n : nodes) {
|
|
// check if the remote node is preceeded by a scatter node and any number of
|
|
// calculation and singleton nodes. if yes, remove remote and scatter
|
|
|
|
auto const& deps = n->getDependencies();
|
|
if (deps.size() != 1) {
|
|
continue;
|
|
}
|
|
|
|
if (deps[0]->getType() != EN::SCATTER) {
|
|
continue;
|
|
}
|
|
|
|
bool canOptimize = true;
|
|
auto node = deps[0];
|
|
while (node != nullptr) {
|
|
auto const& d = node->getDependencies();
|
|
|
|
if (d.size() != 1) {
|
|
break;
|
|
}
|
|
|
|
node = d[0];
|
|
if (node->getType() != EN::SINGLETON &&
|
|
node->getType() != EN::CALCULATION) {
|
|
// found some other node type...
|
|
// this disqualifies the optimization
|
|
canOptimize = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (canOptimize) {
|
|
toUnlink.insert(n);
|
|
toUnlink.insert(deps[0]);
|
|
}
|
|
}
|
|
|
|
if (! toUnlink.empty()) {
|
|
plan->unlinkNodes(toUnlink);
|
|
plan->findVarUsage();
|
|
}
|
|
|
|
opt->addPlan(plan, rule->level, ! toUnlink.empty());
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// WalkerWorker for undistributeRemoveAfterEnumColl
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class RemoveToEnumCollFinder: public WalkerWorker<ExecutionNode> {
|
|
ExecutionPlan* _plan;
|
|
std::unordered_set<ExecutionNode*>& _toUnlink;
|
|
bool _remove;
|
|
bool _scatter;
|
|
bool _gather;
|
|
EnumerateCollectionNode* _enumColl;
|
|
ExecutionNode* _setter;
|
|
const Variable* _variable;
|
|
ExecutionNode* _lastNode;
|
|
|
|
public:
|
|
RemoveToEnumCollFinder (ExecutionPlan* plan,
|
|
std::unordered_set<ExecutionNode*>& toUnlink)
|
|
: _plan(plan),
|
|
_toUnlink(toUnlink),
|
|
_remove(false),
|
|
_scatter(false),
|
|
_gather(false),
|
|
_enumColl(nullptr),
|
|
_setter(nullptr),
|
|
_variable(nullptr),
|
|
_lastNode(nullptr){
|
|
};
|
|
|
|
~RemoveToEnumCollFinder () {
|
|
}
|
|
|
|
bool before (ExecutionNode* en) {
|
|
switch (en->getType()) {
|
|
case EN::REMOVE: {
|
|
TRI_ASSERT(_remove == false);
|
|
|
|
// find the variable we are removing . . .
|
|
auto rn = static_cast<RemoveNode*>(en);
|
|
auto varsToRemove = rn->getVariablesUsedHere();
|
|
|
|
// remove nodes always have one input variable
|
|
TRI_ASSERT(varsToRemove.size() == 1);
|
|
_setter = _plan->getVarSetBy(varsToRemove[0]->id);
|
|
TRI_ASSERT(_setter != nullptr);
|
|
auto enumColl = _setter;
|
|
|
|
if (_setter->getType() == EN::CALCULATION) {
|
|
// this should be an attribute access for _key
|
|
auto cn = static_cast<CalculationNode*>(_setter);
|
|
if (!(cn->expression()->isAttributeAccess())) {
|
|
break; // abort . . .
|
|
}
|
|
// check the variable is the same as the remove variable
|
|
auto vars = cn->getVariablesSetHere();
|
|
if (vars.size() != 1 || vars[0]->id != varsToRemove[0]->id) {
|
|
break; // abort . . .
|
|
}
|
|
// TODO check if we are accessing the _key attribute, maybe this is
|
|
// not required:
|
|
// AQL_EXPLAIN("FOR d IN docs FILTER d.Hallo < 5 REMOVE d.blah in docs")
|
|
// returns a plan but:
|
|
// AQL_EXECUTE("FOR d IN docs FILTER d.Hallo < 5 REMOVE d.blah in docs")
|
|
// doesn't work (in the non-cluster, neither work in the cluster)
|
|
|
|
// set the _variable to the variable in the expression of this
|
|
// node and also define _enumColl
|
|
varsToRemove = cn->getVariablesUsedHere();
|
|
TRI_ASSERT(varsToRemove.size() == 1);
|
|
enumColl = _plan->getVarSetBy(varsToRemove[0]->id);
|
|
TRI_ASSERT(_setter != nullptr);
|
|
}
|
|
|
|
if (enumColl->getType() != EN::ENUMERATE_COLLECTION) {
|
|
break; // abort . . .
|
|
}
|
|
|
|
_enumColl = static_cast<EnumerateCollectionNode*>(enumColl);
|
|
|
|
if (_enumColl->collection() != rn->collection()) {
|
|
break; // abort . . .
|
|
}
|
|
|
|
_variable = varsToRemove[0]; // the variable we'll remove
|
|
_remove = true;
|
|
_lastNode = en;
|
|
return false; // continue . . .
|
|
}
|
|
case EN::REMOTE: {
|
|
_toUnlink.insert(en);
|
|
_lastNode = en;
|
|
return false; // continue . . .
|
|
}
|
|
case EN::SCATTER: {
|
|
if (_scatter) { // met more than one scatter node
|
|
break; // abort . . .
|
|
}
|
|
_scatter = true;
|
|
_toUnlink.insert(en);
|
|
_lastNode = en;
|
|
return false; // continue . . .
|
|
}
|
|
case EN::GATHER: {
|
|
if (_gather) { // met more than one gather node
|
|
break; // abort . . .
|
|
}
|
|
_gather = true;
|
|
_toUnlink.insert(en);
|
|
_lastNode = en;
|
|
return false; // continue . . .
|
|
}
|
|
case EN::FILTER: {
|
|
_lastNode = en;
|
|
return false; // continue . . .
|
|
}
|
|
case EN::CALCULATION: {
|
|
TRI_ASSERT(_setter != nullptr);
|
|
if (_setter->getType() == EN::CALCULATION && _setter->id() == en->id()) {
|
|
_lastNode = en;
|
|
return false; // continue . . .
|
|
}
|
|
if (_lastNode == nullptr || _lastNode->getType() != EN::FILTER) {
|
|
// doesn't match the last filter node
|
|
break; // abort . . .
|
|
}
|
|
auto cn = static_cast<CalculationNode*>(en);
|
|
auto fn = static_cast<FilterNode*>(_lastNode);
|
|
// FIXME should the following be an assertion? I.e. can it
|
|
// ever happen?
|
|
|
|
// check these as a Calc-Filter pair
|
|
if (cn->getVariablesSetHere()[0]->id
|
|
!= fn->getVariablesUsedHere()[0]->id) {
|
|
break; // abort . . .
|
|
}
|
|
|
|
// check that we are filtering/calculating something with the variable
|
|
// we are to remove
|
|
auto varsUsedHere = cn->getVariablesUsedHere();
|
|
|
|
if (varsUsedHere.size() != 1) {
|
|
break; //abort . . .
|
|
}
|
|
if (varsUsedHere[0]->id != _variable->id) {
|
|
break; // abort . . . FIXME is this the desired behaviour??
|
|
}
|
|
_lastNode = en;
|
|
return false; // continue . . .
|
|
}
|
|
case EN::ENUMERATE_COLLECTION: {
|
|
// check that we are enumerating the variable we are to remove
|
|
// and that we have already seen a remove node
|
|
TRI_ASSERT(_enumColl != nullptr);
|
|
if (en->id() != _enumColl->id()) {
|
|
break; // abort . . . FIXME is this the desired behaviour??
|
|
}
|
|
return true; // reached the end!
|
|
}
|
|
case EN::SINGLETON:
|
|
case EN::ENUMERATE_LIST:
|
|
case EN::SUBQUERY:
|
|
case EN::AGGREGATE:
|
|
case EN::INSERT:
|
|
case EN::REPLACE:
|
|
case EN::UPDATE:
|
|
case EN::DISTRIBUTE:
|
|
case EN::RETURN:
|
|
case EN::NORESULTS:
|
|
case EN::ILLEGAL:
|
|
case EN::LIMIT:
|
|
case EN::SORT:
|
|
case EN::INDEX_RANGE: {
|
|
// if we meet any of the above, then we abort . . .
|
|
}
|
|
}
|
|
_toUnlink.clear();
|
|
return true;
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief recognises that a RemoveNode can be moved to the shards.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int triagens::aql::undistributeRemoveAfterEnumColl (Optimizer* opt,
|
|
ExecutionPlan* plan,
|
|
Optimizer::Rule const* rule) {
|
|
std::vector<ExecutionNode*> nodes
|
|
= plan->findNodesOfType(triagens::aql::ExecutionNode::REMOVE, true);
|
|
std::unordered_set<ExecutionNode*> toUnlink;
|
|
|
|
for (auto n : nodes) {
|
|
RemoveToEnumCollFinder finder(plan, toUnlink);
|
|
n->walk(&finder);
|
|
}
|
|
|
|
bool modified = false;
|
|
if (!toUnlink.empty()) {
|
|
plan->unlinkNodes(toUnlink);
|
|
plan->findVarUsage();
|
|
modified = true;
|
|
}
|
|
|
|
opt->addPlan(plan, rule->level, modified);
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
// Local Variables:
|
|
// mode: outline-minor
|
|
// outline-regexp: "^\\(/// @brief\\|/// {@inheritDoc}\\|/// @addtogroup\\|// --SECTION--\\|/// @\\}\\)"
|
|
// End:
|
|
|