1
0
Fork 0
arangodb/3rdParty/snowball/algorithms/lovins/stem_ISO_8859_1.sbl

209 lines
8.0 KiB
Plaintext

stringescapes {}
routines (
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA BB CC
endings
undouble respell
)
externals ( stem )
backwardmode (
/* Lovins' conditions A, B ... CC, as given in her Appendix B, where
a test for a two letter prefix ('test hop 2') is implicitly
assumed. Note that 'e' next 'u' corresponds to her u*e because
Snowball is scanning backwards. */
define A as ( hop 2 )
define B as ( hop 3 )
define C as ( hop 4 )
define D as ( hop 5 )
define E as ( test hop 2 not 'e' )
define F as ( test hop 3 not 'e' )
define G as ( test hop 3 'f' )
define H as ( test hop 2 't' or 'll' )
define I as ( test hop 2 not 'o' not 'e' )
define J as ( test hop 2 not 'a' not 'e' )
define K as ( test hop 3 'l' or 'i' or ('e' next 'u') )
define L as ( test hop 2 not 'u' not 'x' not ('s' not 'o') )
define M as ( test hop 2 not 'a' not 'c' not 'e' not 'm' )
define N as ( test hop 3 ( hop 2 not 's' or hop 2 ) )
define O as ( test hop 2 'l' or 'i' )
define P as ( test hop 2 not 'c' )
define Q as ( test hop 2 test hop 3 not 'l' not 'n' )
define R as ( test hop 2 'n' or 'r' )
define S as ( test hop 2 'dr' or ('t' not 't') )
define T as ( test hop 2 's' or ('t' not 'o') )
define U as ( test hop 2 'l' or 'm' or 'n' or 'r' )
define V as ( test hop 2 'c' )
define W as ( test hop 2 not 's' not 'u' )
define X as ( test hop 2 'l' or 'i' or ('e' next 'u') )
define Y as ( test hop 2 'in' )
define Z as ( test hop 2 not 'f' )
define AA as ( test hop 2 among ( 'd' 'f' 'ph' 'th' 'l' 'er' 'or'
'es' 't' ) )
define BB as ( test hop 3 not 'met' not 'ryst' )
define CC as ( test hop 2 'l' )
/* The system of endings, as given in Appendix A. */
define endings as (
[substring] among(
'alistically' B 'arizability' A 'izationally' B
'antialness' A 'arisations' A 'arizations' A 'entialness' A
'allically' C 'antaneous' A 'antiality' A 'arisation' A
'arization' A 'ationally' B 'ativeness' A 'eableness' E
'entations' A 'entiality' A 'entialize' A 'entiation' A
'ionalness' A 'istically' A 'itousness' A 'izability' A
'izational' A
'ableness' A 'arizable' A 'entation' A 'entially' A
'eousness' A 'ibleness' A 'icalness' A 'ionalism' A
'ionality' A 'ionalize' A 'iousness' A 'izations' A
'lessness' A
'ability' A 'aically' A 'alistic' B 'alities' A
'ariness' E 'aristic' A 'arizing' A 'ateness' A
'atingly' A 'ational' B 'atively' A 'ativism' A
'elihood' E 'encible' A 'entally' A 'entials' A
'entiate' A 'entness' A 'fulness' A 'ibility' A
'icalism' A 'icalist' A 'icality' A 'icalize' A
'ication' G 'icianry' A 'ination' A 'ingness' A
'ionally' A 'isation' A 'ishness' A 'istical' A
'iteness' A 'iveness' A 'ivistic' A 'ivities' A
'ization' F 'izement' A 'oidally' A 'ousness' A
'aceous' A 'acious' B 'action' G 'alness' A
'ancial' A 'ancies' A 'ancing' B 'ariser' A
'arized' A 'arizer' A 'atable' A 'ations' B
'atives' A 'eature' Z 'efully' A 'encies' A
'encing' A 'ential' A 'enting' C 'entist' A
'eously' A 'ialist' A 'iality' A 'ialize' A
'ically' A 'icance' A 'icians' A 'icists' A
'ifully' A 'ionals' A 'ionate' D 'ioning' A
'ionist' A 'iously' A 'istics' A 'izable' E
'lessly' A 'nesses' A 'oidism' A
'acies' A 'acity' A 'aging' B 'aical' A
'alist' A 'alism' B 'ality' A 'alize' A
'allic'BB 'anced' B 'ances' B 'antic' C
'arial' A 'aries' A 'arily' A 'arity' B
'arize' A 'aroid' A 'ately' A 'ating' I
'ation' B 'ative' A 'ators' A 'atory' A
'ature' E 'early' Y 'ehood' A 'eless' A
'elity' A 'ement' A 'enced' A 'ences' A
'eness' E 'ening' E 'ental' A 'ented' C
'ently' A 'fully' A 'ially' A 'icant' A
'ician' A 'icide' A 'icism' A 'icist' A
'icity' A 'idine' I 'iedly' A 'ihood' A
'inate' A 'iness' A 'ingly' B 'inism' J
'inity'CC 'ional' A 'ioned' A 'ished' A
'istic' A 'ities' A 'itous' A 'ively' A
'ivity' A 'izers' F 'izing' F 'oidal' A
'oides' A 'otide' A 'ously' A
'able' A 'ably' A 'ages' B 'ally' B
'ance' B 'ancy' B 'ants' B 'aric' A
'arly' K 'ated' I 'ates' A 'atic' B
'ator' A 'ealy' Y 'edly' E 'eful' A
'eity' A 'ence' A 'ency' A 'ened' E
'enly' E 'eous' A 'hood' A 'ials' A
'ians' A 'ible' A 'ibly' A 'ical' A
'ides' L 'iers' A 'iful' A 'ines' M
'ings' N 'ions' B 'ious' A 'isms' B
'ists' A 'itic' H 'ized' F 'izer' F
'less' A 'lily' A 'ness' A 'ogen' A
'ward' A 'wise' A 'ying' B 'yish' A
'acy' A 'age' B 'aic' A 'als'BB
'ant' B 'ars' O 'ary' F 'ata' A
'ate' A 'eal' Y 'ear' Y 'ely' E
'ene' E 'ent' C 'ery' E 'ese' A
'ful' A 'ial' A 'ian' A 'ics' A
'ide' L 'ied' A 'ier' A 'ies' P
'ily' A 'ine' M 'ing' N 'ion' Q
'ish' C 'ism' B 'ist' A 'ite'AA
'ity' A 'ium' A 'ive' A 'ize' F
'oid' A 'one' R 'ous' A
'ae' A 'al'BB 'ar' X 'as' B
'ed' E 'en' F 'es' E 'ia' A
'ic' A 'is' A 'ly' B 'on' S
'or' T 'um' U 'us' V 'yl' R
'{'}s' A 's{'}' A
'a' A 'e' A 'i' A 'o' A
's' W 'y' B
(delete)
)
)
/* Undoubling is rule 1 of appendix C. */
define undouble as (
test substring among ('bb' 'dd' 'gg' 'll' 'mm' 'nn' 'pp' 'rr' 'ss'
'tt')
[next] delete
)
/* The other appendix C rules can be done together. */
define respell as (
[substring] among (
'iev' (<-'ief')
'uct' (<-'uc')
'umpt' (<-'um')
'rpt' (<-'rb')
'urs' (<-'ur')
'istr' (<-'ister')
'metr' (<-'meter')
'olv' (<-'olut')
'ul' (not 'a' not 'i' not 'o' <-'l')
'bex' (<-'bic')
'dex' (<-'dic')
'pex' (<-'pic')
'tex' (<-'tic')
'ax' (<-'ac')
'ex' (<-'ec')
'ix' (<-'ic')
'lux' (<-'luc')
'uad' (<-'uas')
'vad' (<-'vas')
'cid' (<-'cis')
'lid' (<-'lis')
'erid' (<-'eris')
'pand' (<-'pans')
'end' (not 's' <-'ens')
'ond' (<-'ons')
'lud' (<-'lus')
'rud' (<-'rus')
'her' (not 'p' not 't' <-'hes')
'mit' (<-'mis')
'ent' (not 'm' <-'ens')
/* 'ent' was 'end' in the 1968 paper - a typo. */
'ert' (<-'ers')
'et' (not 'n' <-'es')
'yt' (<-'ys')
'yz' (<-'ys')
)
)
)
define stem as (
backwards (
do endings
do undouble
do respell
)
)