1
0
Fork 0
arangodb/lib/Basics/AssocUnique.h

1132 lines
35 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Dr. Frank Celler
/// @author Martin Schoenert
/// @author Michael Hackstein
////////////////////////////////////////////////////////////////////////////////
#ifndef ARANGODB_BASICS_ASSOC_UNIQUE_H
#define ARANGODB_BASICS_ASSOC_UNIQUE_H 1
#include "Basics/Common.h"
#include <thread>
#include <velocypack/Builder.h>
#include <velocypack/velocypack-aliases.h>
#include "Basics/MutexLocker.h"
#include "Basics/gcd.h"
#include "Basics/memory-map.h"
#include "Basics/prime-numbers.h"
#include "Logger/Logger.h"
#include "Random/RandomGenerator.h"
namespace arangodb {
namespace basics {
struct BucketPosition {
size_t bucketId;
uint64_t position;
BucketPosition() : bucketId(SIZE_MAX), position(0) {}
void reset() {
bucketId = SIZE_MAX - 1;
position = 0;
}
bool operator==(BucketPosition const& other) const {
return position == other.position && bucketId == other.bucketId;
}
};
////////////////////////////////////////////////////////////////////////////////
/// @brief associative array
////////////////////////////////////////////////////////////////////////////////
template <class Key, class Element>
class AssocUnique {
private:
typedef void UserData;
public:
typedef std::function<uint64_t(UserData*, Key const*)> HashKeyFuncType;
typedef std::function<uint64_t(UserData*, Element const&)>
HashElementFuncType;
typedef std::function<bool(UserData*, Key const*, uint64_t hash,
Element const&)> IsEqualKeyElementFuncType;
typedef std::function<bool(UserData*, Element const&, Element const&)>
IsEqualElementElementFuncType;
typedef std::function<bool(Element&)> CallbackElementFuncType;
private:
struct Bucket {
uint64_t _nrAlloc; // the size of the table
uint64_t _nrUsed; // the number of used entries
Element* _table; // the table itself, aligned to a cache line boundary
};
std::vector<Bucket> _buckets;
size_t _bucketsMask;
HashKeyFuncType const _hashKey;
HashElementFuncType const _hashElement;
IsEqualKeyElementFuncType const _isEqualKeyElement;
IsEqualElementElementFuncType const _isEqualElementElement;
IsEqualElementElementFuncType const _isEqualElementElementByKey;
std::function<std::string()> _contextCallback;
public:
AssocUnique(HashKeyFuncType hashKey, HashElementFuncType hashElement,
IsEqualKeyElementFuncType isEqualKeyElement,
IsEqualElementElementFuncType isEqualElementElement,
IsEqualElementElementFuncType isEqualElementElementByKey,
size_t numberBuckets = 1,
std::function<std::string()> contextCallback =
[]() -> std::string { return ""; })
: _hashKey(hashKey),
_hashElement(hashElement),
_isEqualKeyElement(isEqualKeyElement),
_isEqualElementElement(isEqualElementElement),
_isEqualElementElementByKey(isEqualElementElementByKey),
_contextCallback(contextCallback) {
// Make the number of buckets a power of two:
size_t ex = 0;
size_t nr = 1;
numberBuckets >>= 1;
while (numberBuckets > 0) {
ex += 1;
numberBuckets >>= 1;
nr <<= 1;
}
numberBuckets = nr;
_bucketsMask = nr - 1;
try {
for (size_t j = 0; j < numberBuckets; j++) {
_buckets.emplace_back();
Bucket& b = _buckets.back();
b._nrAlloc = initialSize();
b._table = nullptr;
// may fail...
b._table = new Element[static_cast<size_t>(b._nrAlloc)]();
}
} catch (...) {
for (auto& b : _buckets) {
delete[] b._table;
b._table = nullptr;
b._nrAlloc = 0;
}
throw;
}
}
~AssocUnique() {
for (auto& b : _buckets) {
delete[] b._table;
}
}
//////////////////////////////////////////////////////////////////////////////
/// @brief adhere to the rule of five
//////////////////////////////////////////////////////////////////////////////
AssocUnique(AssocUnique const&) = delete; // copy constructor
AssocUnique(AssocUnique&&) = delete; // move constructor
AssocUnique& operator=(AssocUnique const&) = delete; // op =
AssocUnique& operator=(AssocUnique&&) = delete; // op =
//////////////////////////////////////////////////////////////////////////////
/// @brief initial preallocation size of the hash table when the table is
/// first created
/// setting this to a high value will waste memory but reduce the number of
/// reallocations/repositionings necessary when the table grows
//////////////////////////////////////////////////////////////////////////////
private:
static uint64_t initialSize() { return 251; }
//////////////////////////////////////////////////////////////////////////////
/// @brief resizes the array
//////////////////////////////////////////////////////////////////////////////
void resizeInternal(UserData* userData, Bucket& b, uint64_t targetSize,
bool allowShrink) {
if (b._nrAlloc >= targetSize && !allowShrink) {
return;
}
std::string const cb(_contextCallback());
// only log performance infos for indexes with more than this number of
// entries
static uint64_t const NotificationSizeThreshold = 131072;
LOG(TRACE) << "resizing hash " << cb << ", target size: " << targetSize;
double start = TRI_microtime();
if (targetSize > NotificationSizeThreshold) {
LOG_TOPIC(TRACE, Logger::PERFORMANCE) <<
"hash-resize " << cb << ", target size: " << targetSize;
}
Element* oldTable = b._table;
uint64_t oldAlloc = b._nrAlloc;
TRI_ASSERT(targetSize > 0);
targetSize = TRI_NearPrime(targetSize);
// This might throw, is catched outside
b._table = new Element[static_cast<size_t>(targetSize)]();
b._nrAlloc = targetSize;
#ifdef __linux__
if (b._nrAlloc > 1000000) {
uintptr_t mem = reinterpret_cast<uintptr_t>(b._table);
uintptr_t pageSize = getpagesize();
mem = (mem / pageSize) * pageSize;
void* memptr = reinterpret_cast<void*>(mem);
TRI_MMFileAdvise(memptr, b._nrAlloc * sizeof(Element*),
TRI_MADVISE_RANDOM);
}
#endif
if (b._nrUsed > 0) {
uint64_t const n = b._nrAlloc;
TRI_ASSERT(n > 0);
for (uint64_t j = 0; j < oldAlloc; j++) {
Element const& element = oldTable[j];
if (element) {
uint64_t i, k;
i = k = _hashElement(userData, element) % n;
for (; i < n && b._table[i]; ++i)
;
if (i == n) {
for (i = 0; i < k && b._table[i]; ++i)
;
}
b._table[i] = element;
}
}
}
delete[] oldTable;
LOG(TRACE) << "resizing hash " << cb << " done";
LOG_TOPIC(TRACE, Logger::PERFORMANCE) << "[timer] " << Logger::FIXED(TRI_microtime() - start) << " s, hash-resize, " << cb << ", target size: " << targetSize;
}
//////////////////////////////////////////////////////////////////////////////
/// @brief check a resize of the hash array
//////////////////////////////////////////////////////////////////////////////
bool checkResize(UserData* userData, Bucket& b, uint64_t expected) {
if (2 * b._nrAlloc < 3 * (b._nrUsed + expected)) {
try {
resizeInternal(userData, b, 2 * (b._nrAlloc + expected) + 1, false);
} catch (...) {
return false;
}
}
return true;
}
//////////////////////////////////////////////////////////////////////////////
/// @brief Finds the element at the given position in the buckets.
/// Iterates using the given step size
//////////////////////////////////////////////////////////////////////////////
Element findElementSequentialBucketsRandom(
UserData* userData, BucketPosition& position, uint64_t const step,
BucketPosition const& initial) const {
Element found;
Bucket b = _buckets[position.bucketId];
do {
found = b._table[position.position];
position.position += step;
while (position.position >= b._nrAlloc) {
position.position -= b._nrAlloc;
position.bucketId = (position.bucketId + 1) % _buckets.size();
b = _buckets[position.bucketId];
}
if (position == initial) {
// We are done. Return the last element we have in hand
return found;
}
} while (!found);
return found;
}
//////////////////////////////////////////////////////////////////////////////
/// @brief Insert a document into the given bucket
/// This does not resize and expects to have enough space
//////////////////////////////////////////////////////////////////////////////
int doInsert(UserData* userData, Element const& element, Bucket& b, uint64_t hash) {
uint64_t const n = b._nrAlloc;
uint64_t i = hash % n;
uint64_t k = i;
for (; i < n && b._table[i] &&
!_isEqualElementElementByKey(userData, element, b._table[i]);
++i)
;
if (i == n) {
for (i = 0;
i < k && b._table[i] &&
!_isEqualElementElementByKey(userData, element, b._table[i]);
++i)
;
}
Element const& arrayElement = b._table[i];
if (arrayElement) {
return TRI_ERROR_ARANGO_UNIQUE_CONSTRAINT_VIOLATED;
}
b._table[i] = element;
b._nrUsed++;
return TRI_ERROR_NO_ERROR;
}
public:
void truncate(CallbackElementFuncType callback) {
std::vector<Element*> empty;
empty.reserve(_buckets.size());
try {
uint64_t const nrAlloc = initialSize();
for (size_t i = 0; i < _buckets.size(); ++i) {
auto newBucket = new Element[static_cast<size_t>(nrAlloc)]();
try {
// shouldn't fail as enough space was reserved above, but let's be paranoid
empty.emplace_back(newBucket);
} catch (...) {
delete[] newBucket;
throw;
}
}
size_t i = 0;
for (auto& b : _buckets) {
invokeOnAllElements(callback, b);
// now bucket is empty
delete[] b._table;
b._table = empty[i];
b._nrAlloc = initialSize();
b._nrUsed = 0;
empty[i] = nullptr; // pass ownership
++i;
}
} catch (...) {
// prevent leaks
for (auto& it : empty) {
delete[] it;
}
throw;
}
}
size_t buckets() const {
return _buckets.size();
}
//////////////////////////////////////////////////////////////////////////////
/// @brief checks if this index is empty
//////////////////////////////////////////////////////////////////////////////
bool isEmpty() const {
for (auto& b : _buckets) {
if (b._nrUsed > 0) {
return false;
}
}
return true;
}
//////////////////////////////////////////////////////////////////////////////
/// @brief get the hash array's memory usage
//////////////////////////////////////////////////////////////////////////////
size_t memoryUsage() const {
size_t sum = 0;
for (auto& b : _buckets) {
sum += static_cast<size_t>(b._nrAlloc * sizeof(Element));
}
return sum;
}
//////////////////////////////////////////////////////////////////////////////
/// @brief get the number of elements in the hash
//////////////////////////////////////////////////////////////////////////////
size_t size() const {
size_t sum = 0;
for (auto& b : _buckets) {
sum += static_cast<size_t>(b._nrUsed);
}
return sum;
}
//////////////////////////////////////////////////////////////////////////////
/// @brief resizes the hash table
//////////////////////////////////////////////////////////////////////////////
int resize(UserData* userData, size_t size) {
size /= _buckets.size();
for (auto& b : _buckets) {
if (2 * (2 * size + 1) < 3 * b._nrUsed) {
return TRI_ERROR_BAD_PARAMETER;
}
try {
resizeInternal(userData, b, 2 * size + 1, false);
} catch (...) {
return TRI_ERROR_OUT_OF_MEMORY;
}
}
return TRI_ERROR_NO_ERROR;
}
//////////////////////////////////////////////////////////////////////////////
/// @brief Appends information about statistics in the given VPackBuilder
//////////////////////////////////////////////////////////////////////////////
void appendToVelocyPack(VPackBuilder& builder) {
builder.add("buckets", VPackValue(VPackValueType::Array));
for (auto& b : _buckets) {
builder.openObject();
builder.add("nrAlloc", VPackValue(b._nrAlloc));
builder.add("nrUsed", VPackValue(b._nrUsed));
builder.close();
}
builder.close(); // buckets
builder.add("nrBuckets", VPackValue(_buckets.size()));
builder.add("totalUsed", VPackValue(size()));
}
//////////////////////////////////////////////////////////////////////////////
/// @brief finds an element equal to the given element.
//////////////////////////////////////////////////////////////////////////////
Element find(UserData* userData, Element const& element) const {
uint64_t i = _hashElement(userData, element);
Bucket const& b = _buckets[i & _bucketsMask];
uint64_t const n = b._nrAlloc;
i = i % n;
uint64_t k = i;
for (; i < n && b._table[i] &&
!_isEqualElementElementByKey(userData, element, b._table[i]);
++i)
;
if (i == n) {
for (i = 0;
i < k && b._table[i] &&
!_isEqualElementElementByKey(userData, element, b._table[i]);
++i)
;
}
// ...........................................................................
// return whatever we found, this is nullptr if the thing was not found
// and otherwise a valid pointer
// ...........................................................................
return b._table[i];
}
//////////////////////////////////////////////////////////////////////////////
/// @brief finds an element given a key, returns a default-constructed Element
/// if not found
//////////////////////////////////////////////////////////////////////////////
Element findByKey(UserData* userData, Key const* key) const {
uint64_t hash = _hashKey(userData, key);
uint64_t i = hash;
uint64_t bucketId = i & _bucketsMask;
Bucket const& b = _buckets[static_cast<size_t>(bucketId)];
uint64_t const n = b._nrAlloc;
i = i % n;
uint64_t k = i;
for (; i < n && b._table[i] &&
!_isEqualKeyElement(userData, key, hash, b._table[i]);
++i)
;
if (i == n) {
for (i = 0; i < k && b._table[i] &&
!_isEqualKeyElement(userData, key, hash, b._table[i]);
++i)
;
}
// ...........................................................................
// return whatever we found, this is nullptr if the thing was not found
// and otherwise a valid pointer
// ...........................................................................
return b._table[i];
}
Element* findByKeyRef(UserData* userData, Key const* key) const {
uint64_t hash = _hashKey(userData, key);
uint64_t i = hash;
uint64_t bucketId = i & _bucketsMask;
Bucket const& b = _buckets[static_cast<size_t>(bucketId)];
uint64_t const n = b._nrAlloc;
i = i % n;
uint64_t k = i;
for (; i < n && b._table[i] &&
!_isEqualKeyElement(userData, key, hash, b._table[i]);
++i)
;
if (i == n) {
for (i = 0; i < k && b._table[i] &&
!_isEqualKeyElement(userData, key, hash, b._table[i]);
++i)
;
}
// ...........................................................................
// return whatever we found, this is nullptr if the thing was not found
// and otherwise a valid pointer
// ...........................................................................
return &b._table[i];
}
//////////////////////////////////////////////////////////////////////////////
/// @brief finds an element given a key, returns a default-constructed Element
/// if not found
/// also returns the internal hash value and the bucket position the element
/// was found at (or would be placed into)
//////////////////////////////////////////////////////////////////////////////
Element findByKey(UserData* userData, Key const* key,
BucketPosition& position, uint64_t& hash) const {
hash = _hashKey(userData, key);
uint64_t i = hash;
uint64_t bucketId = i & _bucketsMask;
Bucket const& b = _buckets[static_cast<size_t>(bucketId)];
uint64_t const n = b._nrAlloc;
i = i % n;
uint64_t k = i;
for (; i < n && b._table[i] &&
!_isEqualKeyElement(userData, key, hash, b._table[i]);
++i)
;
if (i == n) {
for (i = 0; i < k && b._table[i] &&
!_isEqualKeyElement(userData, key, hash, b._table[i]);
++i)
;
}
// if requested, pass the position of the found element back
// to the caller
position.bucketId = static_cast<size_t>(bucketId);
position.position = i;
// ...........................................................................
// return whatever we found, this is nullptr if the thing was not found
// and otherwise a valid pointer
// ...........................................................................
return b._table[i];
}
//////////////////////////////////////////////////////////////////////////////
/// @brief adds an element to the array
//////////////////////////////////////////////////////////////////////////////
int insert(UserData* userData, Element const& element) {
uint64_t hash = _hashElement(userData, element);
Bucket& b = _buckets[hash & _bucketsMask];
if (!checkResize(userData, b, 0)) {
return TRI_ERROR_OUT_OF_MEMORY;
}
return doInsert(userData, element, b, hash);
}
//////////////////////////////////////////////////////////////////////////////
/// @brief adds an element to the array, at the specified position
/// the caller must have calculated the correct position before.
/// the caller must also have checked that the bucket still has some reserve
/// space.
/// if the method returns TRI_ERROR_UNIQUE_CONSTRAINT_VIOLATED, the element
/// was not inserted. if it returns TRI_ERROR_OUT_OF_MEMORY, the element was
/// inserted, but resizing afterwards failed!
//////////////////////////////////////////////////////////////////////////////
int insertAtPosition(UserData* userData, Element const& element,
BucketPosition const& position) {
Bucket& b = _buckets[position.bucketId];
Element const& arrayElement = b._table[position.position];
if (arrayElement) {
return TRI_ERROR_ARANGO_UNIQUE_CONSTRAINT_VIOLATED;
}
b._table[position.position] = element;
b._nrUsed++;
if (!checkResize(userData, b, 0)) {
return TRI_ERROR_OUT_OF_MEMORY;
}
return TRI_ERROR_NO_ERROR;
}
//////////////////////////////////////////////////////////////////////////////
/// @brief adds multiple elements to the array
//////////////////////////////////////////////////////////////////////////////
int batchInsert(std::function<void*()> const& contextCreator,
std::function<void(void*)> const& contextDestroyer,
std::vector<Element> const* data,
size_t numThreads) {
if (data->empty()) {
// nothing to do
return TRI_ERROR_NO_ERROR;
}
std::atomic<int> res(TRI_ERROR_NO_ERROR);
std::vector<Element> const& elements = *(data);
if (elements.size() < numThreads) {
numThreads = elements.size();
}
if (numThreads > _buckets.size()) {
numThreads = _buckets.size();
}
TRI_ASSERT(numThreads > 0);
size_t const chunkSize = elements.size() / numThreads;
typedef std::vector<std::pair<Element, uint64_t>> DocumentsPerBucket;
arangodb::Mutex bucketMapLocker;
std::unordered_map<uint64_t, std::vector<DocumentsPerBucket>> allBuckets;
// partition the work into some buckets
{
auto partitioner = [&](size_t lower, size_t upper, void* userData) -> void {
try {
std::unordered_map<uint64_t, DocumentsPerBucket> partitions;
for (size_t i = lower; i < upper; ++i) {
uint64_t hash = _hashElement(userData, elements[i]);
auto bucketId = hash & _bucketsMask;
auto it = partitions.find(bucketId);
if (it == partitions.end()) {
it = partitions.emplace(bucketId, DocumentsPerBucket()).first;
}
(*it).second.emplace_back(elements[i], hash);
}
// transfer ownership to the central map
MUTEX_LOCKER(mutexLocker, bucketMapLocker);
for (auto& it : partitions) {
auto it2 = allBuckets.find(it.first);
if (it2 == allBuckets.end()) {
it2 = allBuckets.emplace(it.first,
std::vector<DocumentsPerBucket>()).first;
}
(*it2).second.emplace_back(std::move(it.second));
}
} catch (...) {
res = TRI_ERROR_OUT_OF_MEMORY;
}
contextDestroyer(userData);
};
std::vector<std::thread> threads;
threads.reserve(numThreads);
try {
for (size_t i = 0; i < numThreads; ++i) {
size_t lower = i * chunkSize;
size_t upper = (i + 1) * chunkSize;
if (i + 1 == numThreads) {
// last chunk. account for potential rounding errors
upper = elements.size();
} else if (upper > elements.size()) {
upper = elements.size();
}
threads.emplace_back(std::thread(partitioner, lower, upper, contextCreator()));
}
} catch (...) {
res = TRI_ERROR_OUT_OF_MEMORY;
}
for (size_t i = 0; i < threads.size(); ++i) {
// must join threads, otherwise the program will crash
threads[i].join();
}
}
if (res.load() != TRI_ERROR_NO_ERROR) {
return res.load();
}
// now the data is partitioned...
// now insert the bucket data in parallel
{
auto inserter = [&](size_t chunk, void* userData) -> void {
try {
for (auto const& it : allBuckets) {
uint64_t bucketId = it.first;
if (bucketId % numThreads != chunk) {
// we're not responsible for this bucket!
continue;
}
// we're responsible for this bucket!
Bucket& b = _buckets[static_cast<size_t>(bucketId)];
uint64_t expected = 0;
for (auto const& it2 : it.second) {
expected += it2.size();
}
if (!checkResize(userData, b, expected)) {
res = TRI_ERROR_OUT_OF_MEMORY;
return;
}
for (auto const& it2 : it.second) {
for (auto const& it3 : it2) {
doInsert(userData, it3.first, b, it3.second);
}
}
}
} catch (...) {
res = TRI_ERROR_OUT_OF_MEMORY;
}
contextDestroyer(userData);
};
std::vector<std::thread> threads;
threads.reserve(numThreads);
try {
for (size_t i = 0; i < numThreads; ++i) {
threads.emplace_back(std::thread(inserter, i, contextCreator()));
}
} catch (...) {
res = TRI_ERROR_OUT_OF_MEMORY;
}
for (size_t i = 0; i < threads.size(); ++i) {
// must join threads, otherwise the program will crash
threads[i].join();
}
}
if (res.load() != TRI_ERROR_NO_ERROR) {
// Rollback such that the data can be deleted outside
void* userData = contextCreator();
try {
for (auto const& d : *data) {
remove(userData, d);
}
} catch (...) {
}
contextDestroyer(userData);
}
return res.load();
}
//////////////////////////////////////////////////////////////////////////////
/// @brief helper to heal a hole where we deleted something
//////////////////////////////////////////////////////////////////////////////
void healHole(UserData* userData, Bucket& b, uint64_t i) {
// ...........................................................................
// remove item - destroy any internal memory associated with the
// element structure
// ...........................................................................
b._table[i] = Element();
b._nrUsed--;
uint64_t const n = b._nrAlloc;
// ...........................................................................
// and now check the following places for items to move closer together
// so that there are no gaps in the array
// ...........................................................................
uint64_t k = TRI_IncModU64(i, n);
while (b._table[k]) {
uint64_t j = _hashElement(userData, b._table[k]) % n;
if ((i < k && !(i < j && j <= k)) || (k < i && !(i < j || j <= k))) {
b._table[i] = b._table[k];
b._table[k] = Element();
i = k;
}
k = TRI_IncModU64(k, n);
}
if (b._nrUsed == 0) {
resizeInternal(userData, b, initialSize(), true);
}
}
//////////////////////////////////////////////////////////////////////////////
/// @brief removes an element from the array based on its key,
/// returns nullptr if the element
/// was not found and the old value, if it was successfully removed
//////////////////////////////////////////////////////////////////////////////
Element removeByKey(UserData* userData, Key const* key) {
uint64_t hash = _hashKey(userData, key);
uint64_t i = hash;
Bucket& b = _buckets[i & _bucketsMask];
uint64_t const n = b._nrAlloc;
i = i % n;
uint64_t k = i;
for (; i < n && b._table[i] &&
!_isEqualKeyElement(userData, key, hash, b._table[i]);
++i)
;
if (i == n) {
for (i = 0; i < k && b._table[i] &&
!_isEqualKeyElement(userData, key, hash, b._table[i]);
++i)
;
}
Element old = b._table[i];
if (old) {
healHole(userData, b, i);
}
return old;
}
//////////////////////////////////////////////////////////////////////////////
/// @brief removes an element from the array, returns nullptr if the element
/// was not found and the old value, if it was successfully removed
//////////////////////////////////////////////////////////////////////////////
Element remove(UserData* userData, Element const& element) {
uint64_t i = _hashElement(userData, element);
Bucket& b = _buckets[i & _bucketsMask];
uint64_t const n = b._nrAlloc;
i = i % n;
uint64_t k = i;
for (; i < n && b._table[i] &&
!_isEqualElementElement(userData, element, b._table[i]);
++i)
;
if (i == n) {
for (i = 0; i < k && b._table[i] &&
!_isEqualElementElement(userData, element, b._table[i]);
++i)
;
}
Element old = b._table[i];
if (old) {
healHole(userData, b, i);
}
return old;
}
/// @brief a method to iterate over all elements in the hash. this method
/// can NOT be used for deleting elements
void invokeOnAllElements(CallbackElementFuncType const& callback) {
for (auto& b : _buckets) {
if (b._table == nullptr) {
continue;
}
if (!invokeOnAllElements(callback, b)) {
return;
}
}
}
/// @brief a method to iterate over all elements in a bucket. this method
/// can NOT be used for deleting elements
bool invokeOnAllElements(CallbackElementFuncType const& callback, Bucket& b) {
for (size_t i = 0; i < b._nrAlloc; ++i) {
if (!b._table[i] || b._nrUsed == 0) {
continue;
}
if (!b._table[i]) {
continue;
}
if (!callback(b._table[i])) {
return false;
}
}
return true;
}
//////////////////////////////////////////////////////////////////////////////
/// @brief a method to iterate over all elements in the hash. this method
/// can be used for deleting elements as well
//////////////////////////////////////////////////////////////////////////////
void invokeOnAllElementsForRemoval(CallbackElementFuncType callback) {
for (auto& b : _buckets) {
if (b._table == nullptr || b._nrUsed == 0) {
continue;
}
for (size_t i = 0; i < b._nrAlloc; /* no hoisting */) {
if (!b._table[i]) {
++i;
continue;
}
Element old = b._table[i];
if (!callback(b._table[i])) {
return;
}
if (b._nrUsed == 0) {
break;
}
if (b._table[i] == old) {
++i;
}
}
}
}
//////////////////////////////////////////////////////////////////////////////
/// @brief a method to iterate over all elements in the index in
/// a sequential order.
/// Returns nullptr if all documents have been returned.
/// Convention: position.bucketId == SIZE_MAX indicates a new start.
/// Convention: position.bucketId == SIZE_MAX - 1 indicates a restart.
/// During a continue the total will not be modified.
//////////////////////////////////////////////////////////////////////////////
Element findSequential(UserData* userData, BucketPosition& position,
uint64_t& total) const {
if (position.bucketId >= _buckets.size()) {
// bucket id is out of bounds. now handle edge cases
if (position.bucketId < SIZE_MAX - 1) {
return Element();
}
if (position.bucketId == SIZE_MAX) {
// first call, now fill total
total = 0;
for (auto const& b : _buckets) {
total += b._nrUsed;
}
if (total == 0) {
return Element();
}
TRI_ASSERT(total > 0);
}
position.bucketId = 0;
position.position = 0;
}
while (true) {
Bucket const& b = _buckets[position.bucketId];
uint64_t const n = b._nrAlloc;
for (; position.position < n && !b._table[position.position];
++position.position)
;
if (position.position != n) {
// found an element
Element found = b._table[position.position];
// move forward the position indicator one more time
if (++position.position == n) {
position.position = 0;
++position.bucketId;
}
return found;
}
// reached end
position.position = 0;
if (++position.bucketId >= _buckets.size()) {
// Indicate we are done
return Element();
}
// continue iteration with next bucket
}
}
//////////////////////////////////////////////////////////////////////////////
/// @brief a method to iterate over all elements in the index in
/// reversed sequential order.
/// Returns nullptr if all documents have been returned.
/// Convention: position === UINT64_MAX indicates a new start.
//////////////////////////////////////////////////////////////////////////////
Element findSequentialReverse(UserData* userData,
BucketPosition& position) const {
if (position.bucketId >= _buckets.size()) {
// bucket id is out of bounds. now handle edge cases
if (position.bucketId < SIZE_MAX - 1) {
return Element();
}
if (position.bucketId == SIZE_MAX && isEmpty()) {
return Element();
}
position.bucketId = _buckets.size() - 1;
position.position = _buckets[position.bucketId]._nrAlloc - 1;
}
Bucket b = _buckets[position.bucketId];
Element found;
do {
found = b._table[position.position];
if (position.position == 0) {
if (position.bucketId == 0) {
// Indicate we are done
position.bucketId = _buckets.size();
return Element();
}
--position.bucketId;
b = _buckets[position.bucketId];
position.position = b._nrAlloc - 1;
} else {
--position.position;
}
} while (!found);
return found;
}
//////////////////////////////////////////////////////////////////////////////
/// @brief a method to iterate over all elements in the index in
/// a random order.
/// Returns nullptr if all documents have been returned.
/// Convention: *step === 0 indicates a new start.
//////////////////////////////////////////////////////////////////////////////
Element findRandom(UserData* userData, BucketPosition& initialPosition,
BucketPosition& position, uint64_t& step,
uint64_t& total) const {
if (step != 0 && position == initialPosition) {
// already read all documents
return Element();
}
if (step == 0) {
// Initialize
uint64_t used = 0;
total = 0;
for (auto& b : _buckets) {
total += b._nrAlloc;
used += b._nrUsed;
}
if (used == 0) {
return Element();
}
TRI_ASSERT(total > 0);
// find a co-prime for total
while (true) {
step = RandomGenerator::interval(UINT32_MAX) % total;
if (step > 10 &&
arangodb::basics::binaryGcd<uint64_t>(total, step) == 1) {
uint64_t initialPositionNr = 0;
while (initialPositionNr == 0) {
initialPositionNr = RandomGenerator::interval(UINT32_MAX) % total;
}
for (size_t i = 0; i < _buckets.size(); ++i) {
if (initialPositionNr < _buckets[i]._nrAlloc) {
position.bucketId = i;
position.position = initialPositionNr;
initialPosition.bucketId = i;
initialPosition.position = initialPositionNr;
break;
}
initialPositionNr -= _buckets[i]._nrAlloc;
}
break;
}
}
}
return findElementSequentialBucketsRandom(userData, position, step,
initialPosition);
}
};
} // namespace basics
} // namespace arangodb
#endif