1
0
Fork 0
arangodb/arangod/Aql/OptimizerRules.cpp

500 lines
18 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// @brief rules for the query optimizer
///
/// @file arangod/Aql/OptimizerRules.cpp
///
/// DISCLAIMER
///
/// Copyright 2010-2014 triagens GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is triAGENS GmbH, Cologne, Germany
///
/// @author Max Neunhoeffer
/// @author Copyright 2014, triagens GmbH, Cologne, Germany
////////////////////////////////////////////////////////////////////////////////
#include "Aql/OptimizerRules.h"
#include "Aql/ExecutionNode.h"
#include "Aql/Indexes.h"
#include "Aql/Variable.h"
using namespace triagens::aql;
using Json = triagens::basics::Json;
// -----------------------------------------------------------------------------
// --SECTION-- rules for the optimizer
// -----------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
/// @brief remove all unnecessary filters
/// this rule modifies the plan in place:
/// - filters that are always true are removed completely
/// - filters that are always false will be removed plus their dependent nodes
////////////////////////////////////////////////////////////////////////////////
int triagens::aql::removeUnnecessaryFiltersRule (Optimizer* opt,
ExecutionPlan* plan,
Optimizer::PlanList& out,
bool& keep) {
keep = true; // plan will always be kept
std::unordered_set<ExecutionNode*> toUnlink;
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(triagens::aql::ExecutionNode::FILTER, true);
for (auto n : nodes) {
// filter nodes always have one input variable
auto varsUsedHere = n->getVariablesUsedHere();
TRI_ASSERT(varsUsedHere.size() == 1);
// now check who introduced our variable
auto variable = varsUsedHere[0];
auto setter = plan->getVarSetBy(variable->id);
if (setter == nullptr ||
setter->getType() != triagens::aql::ExecutionNode::CALCULATION) {
// filter variable was not introduced by a calculation.
continue;
}
// filter variable was introduced a CalculationNode. now check the expression
auto s = static_cast<CalculationNode*>(setter);
auto root = s->expression()->node();
if (! root->isConstant()) {
// filter expression can only be evaluated at runtime
continue;
}
// filter expression is constant and thus cannot throw
// we can now evaluate it safely
TRI_ASSERT(! s->expression()->canThrow());
if (root->toBoolean()) {
// filter is always true
// remove filter node and merge with following node
toUnlink.insert(n);
}
else {
// filter is always false
// get all dependent nodes of the filter node
std::vector<ExecutionNode*> stack;
stack.push_back(n);
bool canOptimize = true;
while (! stack.empty()) {
// pop a node from the stack
auto current = stack.back();
stack.pop_back();
if (toUnlink.find(current) != toUnlink.end()) {
// detected a cycle. TODO: decide whether a cycle is an error here or
// if it is valid
break;
}
if (current->getType() == triagens::aql::ExecutionNode::SINGLETON) {
// stop at a singleton node
break;
}
if (current->getType() == triagens::aql::ExecutionNode::SUBQUERY) {
// if we find a subquery, we abort optimizations.
// TODO: peek into the subquery and check if it can throw an exception itself
canOptimize = false;
break;
}
if (current->getType() == triagens::aql::ExecutionNode::CALCULATION) {
auto c = static_cast<CalculationNode*>(current);
if (c->expression()->node()->canThrow()) {
// the calculation may throw an exception. we must not remove it
// because its removal might change the query result
canOptimize = false;
break;
}
}
auto deps = current->getDependencies();
for (auto it = deps.begin(); it != deps.end(); ++it) {
stack.push_back((*it));
}
}
if (canOptimize) {
// store a hint in the filter that it will never produce results
static_cast<FilterNode*>(n)->setEmptyResult();
}
}
}
if (! toUnlink.empty()) {
std::cout << "Removing " << toUnlink.size() << " unnecessary "
"nodes..." << std::endl;
plan->unlinkNodes(toUnlink);
}
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief moves calculations up in the plan
/// this modifies the plan in place
////////////////////////////////////////////////////////////////////////////////
int triagens::aql::moveCalculationsUpRule (Optimizer* opt,
ExecutionPlan* plan,
Optimizer::PlanList& out,
bool& keep) {
std::vector<ExecutionNode*> nodes = plan->findNodesOfType(triagens::aql::ExecutionNode::CALCULATION, true);
for (auto n : nodes) {
auto nn = static_cast<CalculationNode*>(n);
if (nn->expression()->canThrow()) {
// we will only move expressions up that cannot throw
continue;
}
auto neededVars = n->getVariablesUsedHere();
// sort the list of variables that the expression needs as its input
// (sorting is needed for intersection later)
std::sort(neededVars.begin(), neededVars.end(), &Variable::Comparator);
for (auto it = neededVars.begin(); it != neededVars.end(); ++it) {
std::cout << "VAR USED IN CALC: " << (*it)->name << "\n";
}
std::vector<ExecutionNode*> stack;
auto deps = n->getDependencies();
for (auto it = deps.begin(); it != deps.end(); ++it) {
stack.push_back((*it));
}
while (! stack.empty()) {
auto current = stack.back();
stack.pop_back();
std::cout << "LOOKING AT NODE OF TYPE: " << current->getTypeString() << "\n";
auto deps = current->getDependencies();
if (deps.size() != 1) {
// node either has no or more than one dependency. we don't know what to do and must abort
// note that this will also handle Singleton nodes
break;
}
// check which variables the current node defines
auto dependencyVars = current->getVariablesSetHere();
// sort the variables (sorting needed for intersection)
std::sort(dependencyVars.begin(), dependencyVars.end(), &Variable::Comparator);
// create the intersection of variables
std::vector<Variable const*> shared;
std::set_intersection(neededVars.begin(), neededVars.end(),
dependencyVars.begin(), dependencyVars.end(),
std::back_inserter(shared));
if (! shared.empty()) {
// shared variables found, meaning that the current node introduces a variable needed
// by our calculation. we cannot move the calculation up the chain
break;
}
// no shared variables found. we can move the calculation up the dependency chain
// first, delete the calculation from the plan
plan->unlinkNode(n);
// fiddle dependencies of calculation node
n->removeDependencies();
n->addDependency(deps[0]);
n->invalidateVarUsage();
// fiddle dependencies of current node
current->removeDependency(deps[0]);
current->addDependency(n);
current->invalidateVarUsage();
deps[0]->invalidateVarUsage();
for (auto it = deps.begin(); it != deps.end(); ++it) {
stack.push_back((*it));
}
}
}
plan->findVarUsage();
keep = true;
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief remove CalculationNode(s) that are never needed
/// this modifies an existing plan in place
////////////////////////////////////////////////////////////////////////////////
int triagens::aql::removeUnnecessaryCalculationsRule (Optimizer* opt,
ExecutionPlan* plan,
Optimizer::PlanList& out,
bool& keep) {
keep = true;
std::vector<ExecutionNode*> nodes
= plan->findNodesOfType(triagens::aql::ExecutionNode::CALCULATION, true);
std::unordered_set<ExecutionNode*> toUnlink;
for (auto n : nodes) {
auto nn = static_cast<CalculationNode*>(n);
if (nn->expression()->canThrow()) {
// If this node can throw, we must not optimize it away!
continue;
}
auto outvar = n->getVariablesSetHere();
TRI_ASSERT(outvar.size() == 1);
auto varsUsedLater = n->getVarsUsedLater();
if (varsUsedLater.find(outvar[0]) == varsUsedLater.end()) {
// The variable whose value is calculated here is not used at
// all further down the pipeline! We remove the whole
// calculation node,
toUnlink.insert(n);
}
}
if (! toUnlink.empty()) {
std::cout << "Removing " << toUnlink.size() << " unnecessary "
"CalculationNodes..." << std::endl;
plan->unlinkNodes(toUnlink);
}
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief find nodes of a certain type
////////////////////////////////////////////////////////////////////////////////
class CalculationNodeFinder : public WalkerWorker<ExecutionNode> {
RangesInfo* _ranges;
ExecutionPlan* _plan;
Variable const* _var;
Optimizer::PlanList _out;
ExecutionNode* _prev;
//EnumerateCollectionNode const* _enumColl;
public:
CalculationNodeFinder (ExecutionPlan* plan, Variable const * var, Optimizer::PlanList& out)
: _plan(plan), _var(var), _out(out), _prev(nullptr){
_ranges = new RangesInfo();
};
void before (ExecutionNode* en) {
if (en->getType() == triagens::aql::ExecutionNode::CALCULATION) {
auto outvar = en->getVariablesSetHere();
TRI_ASSERT(outvar.size() == 1);
if(outvar[0]->id == _var->id){
auto node = static_cast<CalculationNode*>(en);
std::string attr;
std::string enumCollVar;
buildRangeInfo(node->expression()->node(), enumCollVar, attr);
}
}
else if (en->getType() == triagens::aql::ExecutionNode::ENUMERATE_COLLECTION) {
auto node = static_cast<EnumerateCollectionNode*>(en);
auto var = node->getVariablesSetHere()[0]; // should only be 1
auto map = _ranges->find(var->name); // check if we have any ranges with this var
if (map != nullptr) {
// check the first components of <map> against indexes of <node> . . .
// FIXME does this need to be done like this? Couldn't we keep track
// earlier?
std::vector<std::string> attrs;
std::vector<RangeInfo*> rangeInfo;
for (auto x : *map){
attrs.push_back(x.first);
rangeInfo.push_back(x.second);
}
std::vector<TRI_index_t*> idxs = node->getIndexes(attrs);
// TODO remove next 3 lines . . .
if (idxs.size() != 0) {
std::cout << "FOUND INDEX!\n";
}
//use RangeIndexNode . . .
for (auto idx: idxs) {
auto newPlan = _plan->clone();
auto newNode = new IndexRangeNode( newPlan->nextId(), node->vocbase(),
node->collection(), node->outVariable(), idx, &rangeInfo);
newPlan->registerNode(newNode);
newPlan->replaceNode(newPlan->getNodeById(node->id()), newNode,
newPlan->getNodeById(_prev->id()));
std::cout << newPlan->root()->toJson().toString() << "\n";
_out.push_back(newPlan);
}
// keep map from the old nodes to the new nodes . . . (just use the
// ids they should be equal) !?
// remove the enumerate coll node
// remember the previous node
// make dependencies of new RangeIndexNode equal to the dep of
// deleted enumerate coll node, make dependencies of previous node
// equal to new RangeIndexNode . . .
// push_back to out
}
}
_prev = en;
}
void buildRangeInfo (AstNode const* node, std::string& enumCollVar, std::string& attr){
//std::vector<std::string>& attrs){
if(node->type == NODE_TYPE_REFERENCE){
auto x = static_cast<Variable*>(node->getData());
auto setter = _plan->getVarSetBy(x->id);
if( setter != nullptr &&
setter->getType() == triagens::aql::ExecutionNode::ENUMERATE_COLLECTION){
enumCollVar = x->name;
//_enumColl = static_cast<EnumerateCollectionNode*>(setter);
}
return;
}
if(node->type == NODE_TYPE_ATTRIBUTE_ACCESS){
char const* attributeName = node->getStringValue();
buildRangeInfo(node->getMember(0), enumCollVar, attr);
if(!enumCollVar.empty()){
attr.append(attributeName);
attr.push_back('.');
}
}
if(node->type == NODE_TYPE_OPERATOR_BINARY_EQ){
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
AstNode const* val;
AstNode const* nextNode;
if(rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS && lhs->type == NODE_TYPE_VALUE){
val = lhs;
nextNode = rhs;
}
else if (lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS && rhs->type == NODE_TYPE_VALUE){
val = rhs;
nextNode = lhs;
}
else {
val = nullptr;
}
if(val != nullptr){
buildRangeInfo(nextNode, enumCollVar, attr);
if(!enumCollVar.empty()){
_ranges->insert(enumCollVar, attr.substr(0, attr.size()-1),
new RangeInfoBound(val, true), new RangeInfoBound(val, true));
}
}
//std::cout << _ranges->toString() << "\n";
}
if(node->type == NODE_TYPE_OPERATOR_BINARY_LT ||
node->type == NODE_TYPE_OPERATOR_BINARY_GT ||
node->type == NODE_TYPE_OPERATOR_BINARY_LE ||
node->type == NODE_TYPE_OPERATOR_BINARY_GE){
bool include = (node->type == NODE_TYPE_OPERATOR_BINARY_LE ||
node->type == NODE_TYPE_OPERATOR_BINARY_GE);
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
RangeInfoBound* low = nullptr;
RangeInfoBound* high = nullptr;
AstNode *nextNode;
if (rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS && lhs->type == NODE_TYPE_VALUE) {
if (node->type == NODE_TYPE_OPERATOR_BINARY_GE ||
node->type == NODE_TYPE_OPERATOR_BINARY_GT) {
high = new RangeInfoBound(lhs, include);
low = nullptr;
} else {
low = new RangeInfoBound(lhs, include);
high =nullptr;
}
nextNode = rhs;
}
else if (lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS && rhs->type == NODE_TYPE_VALUE) {
if (node->type == NODE_TYPE_OPERATOR_BINARY_GE ||
node->type == NODE_TYPE_OPERATOR_BINARY_GT) {
low = new RangeInfoBound(rhs, include);
high = nullptr;
} else {
high = new RangeInfoBound(rhs, include);
low = nullptr;
}
nextNode = lhs;
}
else {
low = nullptr;
high = nullptr;
}
if(low != nullptr || high != nullptr){
buildRangeInfo(nextNode, enumCollVar, attr);
if(!enumCollVar.empty()){
_ranges->insert(enumCollVar, attr.substr(0, attr.size()-1), low, high);
}
}
//std::cout << _ranges->toString() << "\n";
}
if(node->type == NODE_TYPE_OPERATOR_BINARY_AND){
attr = "";
buildRangeInfo(node->getMember(0), enumCollVar, attr);
attr = "";
buildRangeInfo(node->getMember(1), enumCollVar, attr);
//std::cout << _ranges->toString() << "\n";
}
}
};
////////////////////////////////////////////////////////////////////////////////
/// @brief relaxRule, do not do anything
////////////////////////////////////////////////////////////////////////////////
int triagens::aql::useIndexRange (Optimizer* opt,
ExecutionPlan* plan,
Optimizer::PlanList& out,
bool& keep) {
keep = true;
std::vector<ExecutionNode*> nodes
= plan->findNodesOfType(triagens::aql::ExecutionNode::FILTER, true);
for (auto n : nodes) {
auto nn = static_cast<FilterNode*>(n);
auto invars = nn->getVariablesUsedHere();
TRI_ASSERT(invars.size() == 1);
CalculationNodeFinder finder(plan, invars[0], out);
nn->walk(&finder);
}
return TRI_ERROR_NO_ERROR;
}
// Local Variables:
// mode: outline-minor
// outline-regexp: "^\\(/// @brief\\|/// {@inheritDoc}\\|/// @addtogroup\\|// --SECTION--\\|/// @\\}\\)"
// End: