1
0
Fork 0
arangodb/arangod/VocBase/Legends.cpp

343 lines
13 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// @brief legends for shaped JSON objects to make them self-contained
///
/// @file
/// Code for legends.
///
/// DISCLAIMER
///
/// Copyright 2014 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Max Neunhoeffer
/// @author Copyright 2014-2014, triAGENS GmbH, Cologne, Germany
////////////////////////////////////////////////////////////////////////////////
#include "Legends.h"
using namespace std;
using namespace triagens;
using namespace triagens::basics;
////////////////////////////////////////////////////////////////////////////////
/// Data format of a legend in memory:
///
/// Rough overview description:
///
/// - attribute-ID table
/// - shape table
/// - attribute-ID string data
/// - padding to achieve 8-byte alignment
/// - shape data
/// - padding to achieve 8-byte alignment
///
/// Description of the attribute-ID table (actual binary types in
/// [square brackets]):
///
/// - number of entries [TRI_shape_size_t]
/// - each entry consists of:
///
/// - attribute ID (aid) [TRI_shape_aid_t]
/// - offset to string value, measured from the beginning of the legend
/// [TRI_shape_size_t]
///
/// The entries in the attribute-ID table are sorted by ascending order of
/// shape IDs to allow for binary search if needed.
///
/// Description of the shape table:
///
/// - number of entries [TRI_shape_size_t]
/// - each entry consists of:
///
/// - shape ID (sid) [TRI_shape_sid_t]
/// - offset to shape data, measured from the beginning of the legend
/// [TRI_shape_size_t]
/// - size in bytes of the shape data for this shape ID [TRI_shape_size_t]
///
/// The entries in the shape table are sorted by ascending order of
/// shape IDs to allow for binary search if needed.
///
/// The strings for the attribute IDs are stored one after another, each
/// including a terminating zero byte. At the end of the string data follow
/// zero bytes to pad to a total length that is divisible by 8.
///
/// The actual entries of the shape data is stored one after another. Alignment
/// for each entry is automatically given by the length of the shape data. At
/// the end there is padding to make the length of the total legend divisible
/// by 8.
///
/// Note that the builtin shapes are never dumped and that proper legends
/// contain all attribute IDs
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
/// @brief clear all data to build a new legend, keep shaper
////////////////////////////////////////////////////////////////////////////////
void JsonLegend::clear () {
_have_attribute.clear();
_attribs.clear();
_att_data.clear();
_have_shape.clear();
_shapes.clear();
_shape_data.clear();
}
////////////////////////////////////////////////////////////////////////////////
/// @brief add an attribute ID to the legend
////////////////////////////////////////////////////////////////////////////////
int JsonLegend::addAttributeId (TRI_shape_aid_t aid) {
auto it = _have_attribute.find(aid);
if (it != _have_attribute.end()) {
return TRI_ERROR_NO_ERROR;
}
char const* p = _shaper->lookupAttributeId(aid);
if (nullptr == p) {
return TRI_ERROR_AID_NOT_FOUND;
}
_have_attribute.insert(it, aid);
size_t len = strlen(p);
_attribs.emplace_back(aid, _att_data.length());
_att_data.appendText(p, len + 1); // including the zero byte
return TRI_ERROR_NO_ERROR;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief add a shape to the legend
////////////////////////////////////////////////////////////////////////////////
int JsonLegend::addShape (TRI_shape_sid_t sid,
char const* data,
uint32_t len) {
// data and len must always be given, because in general we might have
// to sniff recursively into the subobjects. :-(
int res = TRI_ERROR_NO_ERROR;
TRI_ASSERT(data != nullptr);
TRI_shape_t const* shape = nullptr;
// First the trivial cases:
if (sid < Shaper::firstCustomShapeId()) {
shape = Shaper::lookupSidBasicShape(sid);
TRI_ASSERT(shape != nullptr);
}
else {
shape = _shaper->lookupShapeId(sid);
if (nullptr == shape) {
return TRI_ERROR_LEGEND_INCOMPLETE;
}
auto it = _have_shape.find(sid);
if (it == _have_shape.end()) {
_have_shape.insert(it, sid);
Shape sh(sid, _shape_data.length(), shape->_size);
_shapes.push_back(sh);
_shape_data.appendText(reinterpret_cast<char const*>(shape), static_cast<size_t>(shape->_size));
}
}
// Now we have to add all attribute IDs and all shapes used by this
// one recursively, note that the data of this object is in a
// consistent state, such that we can call ourselves recursively.
if (shape->_type == TRI_SHAPE_HOMOGENEOUS_SIZED_LIST) {
// Handle a homogeneous list with equal size entries. Note that
// this does not imply that no subobject contains any array or
// inhomogeneous list, because they could be lists that have the
// same size by sheer coincidence. Therefore we have to visit them
// all recursively. :-(
auto shape_spec = reinterpret_cast<TRI_homogeneous_sized_list_shape_t const*>(shape);
auto len = reinterpret_cast<TRI_shape_length_list_t const*>(data);
auto ptr = reinterpret_cast<char const*>(len+1);
res = TRI_ERROR_NO_ERROR; // just in case the length is 0
TRI_shape_length_list_t i;
for (i = 0; i < *len; i++) {
res = addShape(shape_spec->_sidEntry, ptr, static_cast<uint32_t>(shape_spec->_sizeEntry));
ptr += shape_spec->_sizeEntry;
if (res != TRI_ERROR_NO_ERROR) {
break;
}
}
}
else if (shape->_type == TRI_SHAPE_HOMOGENEOUS_LIST) {
// Handle a homogeneous list: Only one sid, but the subobjects can
// contain inhomogeneous lists.
auto shape_spec = reinterpret_cast<TRI_homogeneous_list_shape_t const*> (shape);
res = TRI_ERROR_NO_ERROR; // just in case the length is 0
auto len = reinterpret_cast<TRI_shape_length_list_t const*>(data);
auto offsets = reinterpret_cast<TRI_shape_size_t const*>(len + 1);
TRI_shape_length_list_t i;
for (i = 0; i < *len; i++) {
res = addShape(shape_spec->_sidEntry, data + offsets[i], static_cast<uint32_t>(offsets[i + 1] - offsets[i]));
if (res != TRI_ERROR_NO_ERROR) {
break;
}
}
}
else if (shape->_type == TRI_SHAPE_LIST) {
// Handle an inhomogeneous list:
// We have to scan recursively all entries of the list since they
// contain sids in the data area.
res = TRI_ERROR_NO_ERROR; // just in case the length is 0
auto len = reinterpret_cast<TRI_shape_length_list_t const*>(data);
auto sids = reinterpret_cast<TRI_shape_sid_t const*>(len + 1);
auto offsets = reinterpret_cast<TRI_shape_size_t const*>(sids + *len);
TRI_shape_length_list_t i;
for (i = 0; i < *len; i++) {
res = addShape(sids[i], data + offsets[i], static_cast<uint32_t>(offsets[i + 1] - offsets[i]));
if (res != TRI_ERROR_NO_ERROR) {
break;
}
}
}
else if (shape->_type == TRI_SHAPE_ARRAY) {
// Handle an array:
// Distinguish between fixed size subobjects and variable size
// subobjects. The fixed ones cannot contain inhomogeneous lists.
auto shape_spec = reinterpret_cast<TRI_array_shape_t const*>(shape);
auto sids = reinterpret_cast<TRI_shape_sid_t const*>(shape_spec + 1);
auto aids = reinterpret_cast<TRI_shape_aid_t const*>(sids + (shape_spec->_fixedEntries + shape_spec->_variableEntries));
auto offsetsF = reinterpret_cast<TRI_shape_size_t const*>(aids + (shape_spec->_fixedEntries + shape_spec->_variableEntries));
auto offsetsV = reinterpret_cast<TRI_shape_size_t const*>(data);
TRI_shape_size_t i;
for (i = 0; res == TRI_ERROR_NO_ERROR &&
i < shape_spec->_fixedEntries + shape_spec->_variableEntries;
i++) {
res = addAttributeId(aids[i]);
}
for (i = 0; res == TRI_ERROR_NO_ERROR && i < shape_spec->_fixedEntries;
i++) {
// Fixed size subdocs cannot have inhomogeneous lists as subdocs:
res = addShape(sids[i], data + offsetsF[i], static_cast<uint32_t>(offsetsF[i + 1] - offsetsF[i]));
}
for (i = 0; res == TRI_ERROR_NO_ERROR && i < shape_spec->_variableEntries;
i++) {
addShape(sids[i + shape_spec->_fixedEntries], data + offsetsV[i], static_cast<uint32_t>(offsetsV[i + 1] - offsetsV[i]));
}
}
return res;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief round a value to the next multiple of 8
////////////////////////////////////////////////////////////////////////////////
static inline TRI_shape_size_t roundup8 (TRI_shape_size_t x) {
return (x + 7) - ((x + 7) & 7);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief get the total size in bytes of the legend
////////////////////////////////////////////////////////////////////////////////
size_t JsonLegend::getSize () const {
// Add string pool size and shape pool size and add space for header
// and tables in bytes.
return sizeof(TRI_shape_size_t) // number of aids
+ sizeof(AttributeId) * _attribs.size() // aid entries
+ sizeof(TRI_shape_size_t) // number of sids
+ sizeof(Shape) * _shapes.size() // sid entries
+ static_cast<size_t>(roundup8(_att_data.length())) // string data, padded
+ static_cast<size_t>(roundup8(_shape_data.length())); // shape data, padded
}
JsonLegend::AttributeComparerClass JsonLegend::AttributeComparerObject;
JsonLegend::ShapeComparerClass JsonLegend::ShapeComparerObject;
////////////////////////////////////////////////////////////////////////////////
/// @brief dump the legend to the buffer pointed to by buf
////////////////////////////////////////////////////////////////////////////////
void JsonLegend::dump (void* buf) {
// Dump the resulting legend to a given buffer.
// First sort the aids in ascending order:
sort(_attribs.begin(), _attribs.end(), AttributeComparerObject);
// Then sort the sids in ascending order:
sort(_shapes.begin(), _shapes.end(), ShapeComparerObject);
// Total length of table data to add to offsets:
TRI_shape_size_t socle = sizeof(TRI_shape_size_t)
+ sizeof(AttributeId) * _attribs.size()
+ sizeof(TRI_shape_size_t)
+ sizeof(Shape) * _shapes.size();
// Attribute ID table:
TRI_shape_size_t* p = reinterpret_cast<TRI_shape_size_t*>(buf);
*p++ = _attribs.size();
AttributeId* a = reinterpret_cast<AttributeId*>(p);
for (size_t i = 0; i < _attribs.size(); i++) {
_attribs[i].offset += socle;
*a++ = _attribs[i];
_attribs[i].offset -= socle;
}
// Add the length of the string data to socle for second table:
size_t const attDataLength = _att_data.length();
socle += roundup8(attDataLength);
// shape table:
size_t const n = _shapes.size();
p = reinterpret_cast<TRI_shape_size_t*>(a);
*p++ = n;
Shape* s = reinterpret_cast<Shape*>(p);
for (size_t i = 0; i < n; i++) {
_shapes[i].offset += socle;
*s++ = _shapes[i];
_shapes[i].offset -= socle;
}
// Attribute ID string data:
char* c = reinterpret_cast<char*>(s);
memcpy(c, _att_data.c_str(), attDataLength);
TRI_shape_size_t i = roundup8(attDataLength);
if (i > attDataLength) {
memset(c + attDataLength, 0, static_cast<size_t>(i) - attDataLength);
}
c += i;
// Shape data:
size_t const shapeDataLength = _shape_data.length();
memcpy(c, _shape_data.c_str(), shapeDataLength);
i = roundup8(shapeDataLength);
if (i > shapeDataLength) {
memset(c + shapeDataLength, 0, static_cast<size_t>(i) - shapeDataLength);
}
}
// -----------------------------------------------------------------------------
// --SECTION-- END-OF-FILE
// -----------------------------------------------------------------------------
// Local Variables:
// mode: outline-minor
// outline-regexp: "/// @brief\\|/// {@inheritDoc}\\|/// @page\\|// --SECTION--\\|/// @\\}"
// End: