1
0
Fork 0
arangodb/lib/SimpleHttpClient/GeneralClientConnection.cpp

415 lines
13 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Jan Steemann
////////////////////////////////////////////////////////////////////////////////
#include "GeneralClientConnection.h"
#include "SimpleHttpClient/ClientConnection.h"
#include "SimpleHttpClient/SslClientConnection.h"
#include "Basics/socket-utils.h"
#ifdef TRI_HAVE_POLL_H
#include <poll.h>
#endif
#ifdef TRI_HAVE_WINSOCK2_H
#include <WinSock2.h>
#include <WS2tcpip.h>
#endif
#include <sys/types.h>
#ifdef _WIN32
#define STR_ERROR() \
windowsErrorBuf; \
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, NULL, GetLastError(), 0, \
windowsErrorBuf, sizeof(windowsErrorBuf), NULL); \
errno = GetLastError();
#else
#define STR_ERROR() strerror(errno)
#endif
using namespace arangodb;
using namespace arangodb::basics;
using namespace arangodb::httpclient;
////////////////////////////////////////////////////////////////////////////////
/// @brief creates a new client connection
////////////////////////////////////////////////////////////////////////////////
GeneralClientConnection::GeneralClientConnection(Endpoint* endpoint,
double requestTimeout,
double connectTimeout,
size_t connectRetries)
: _endpoint(endpoint),
_freeEndpointOnDestruction(false),
_requestTimeout(requestTimeout),
_connectTimeout(connectTimeout),
_connectRetries(connectRetries),
_numConnectRetries(0),
_isConnected(false),
_isInterrupted(false) {
TRI_invalidatesocket(&_socket);
}
GeneralClientConnection::GeneralClientConnection(
std::unique_ptr<Endpoint>& endpoint, double requestTimeout,
double connectTimeout, size_t connectRetries)
: _endpoint(endpoint.release()),
_freeEndpointOnDestruction(true),
_requestTimeout(requestTimeout),
_connectTimeout(connectTimeout),
_connectRetries(connectRetries),
_numConnectRetries(0),
_isConnected(false),
_isInterrupted(false) {
TRI_invalidatesocket(&_socket);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief destroys a client connection
////////////////////////////////////////////////////////////////////////////////
GeneralClientConnection::~GeneralClientConnection() {
if (_freeEndpointOnDestruction) {
delete _endpoint;
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief create a new connection from an endpoint
////////////////////////////////////////////////////////////////////////////////
GeneralClientConnection* GeneralClientConnection::factory(
Endpoint* endpoint, double requestTimeout, double connectTimeout,
size_t numRetries, uint64_t sslProtocol) {
if (endpoint->encryption() == Endpoint::EncryptionType::NONE) {
return new ClientConnection(endpoint, requestTimeout, connectTimeout,
numRetries);
} else if (endpoint->encryption() == Endpoint::EncryptionType::SSL) {
return new SslClientConnection(endpoint, requestTimeout, connectTimeout,
numRetries, sslProtocol);
}
return nullptr;
}
GeneralClientConnection* GeneralClientConnection::factory(
std::unique_ptr<Endpoint>& endpoint, double requestTimeout, double connectTimeout,
size_t numRetries, uint64_t sslProtocol) {
if (endpoint->encryption() == Endpoint::EncryptionType::NONE) {
return new ClientConnection(endpoint, requestTimeout, connectTimeout,
numRetries);
} else if (endpoint->encryption() == Endpoint::EncryptionType::SSL) {
return new SslClientConnection(endpoint, requestTimeout, connectTimeout,
numRetries, sslProtocol);
}
return nullptr;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief connect
////////////////////////////////////////////////////////////////////////////////
bool GeneralClientConnection::connect() {
disconnect();
if (_numConnectRetries < _connectRetries + 1) {
_numConnectRetries++;
} else {
return false;
}
connectSocket();
if (!_isConnected) {
return false;
}
_numConnectRetries = 0;
return true;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief disconnect
////////////////////////////////////////////////////////////////////////////////
void GeneralClientConnection::disconnect() {
if (isConnected()) {
disconnectSocket();
}
_isConnected = false;
_numConnectRetries = 0;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief prepare connection for read/write I/O
////////////////////////////////////////////////////////////////////////////////
bool GeneralClientConnection::prepare(TRI_socket_t socket, double timeout, bool isWrite) const {
// wait for at most 0.5 seconds for poll/select to complete
// if it takes longer, break each poll/select into smaller chunks so we can
// interrupt the whole process if it takes too long in total
static constexpr double POLL_DURATION = 0.5;
auto const fd = TRI_get_fd_or_handle_of_socket(socket);
double start = TRI_microtime();
int res;
#ifdef TRI_HAVE_POLL_H
// Here we have poll, on all other platforms we use select
bool nowait = (timeout == 0.0);
int towait;
if (timeout * 1000.0 > static_cast<double>(INT_MAX)) {
towait = INT_MAX;
} else {
towait = static_cast<int>(timeout * 1000.0);
}
struct pollfd poller;
memset(&poller, 0, sizeof(struct pollfd)); // for our old friend Valgrind
poller.fd = fd;
poller.events = (isWrite ? POLLOUT : POLLIN);
while (true) { // will be left by break
res = poll(&poller, 1, towait > static_cast<int>(POLL_DURATION * 1000.0)
? static_cast<int>(POLL_DURATION * 1000.0)
: towait);
if (res == -1 && errno == EINTR) {
if (!nowait) {
double end = TRI_microtime();
towait -= static_cast<int>((end - start) * 1000.0);
start = end;
if (towait <= 0) { // Should not happen, but there might be rounding
// errors, so just to prevent a poll call with
// negative timeout...
res = 0;
break;
}
}
continue;
}
if (res == 0) {
if (isInterrupted()) {
_errorDetails = std::string("command locally aborted");
TRI_set_errno(TRI_ERROR_REQUEST_CANCELED);
return false;
}
double end = TRI_microtime();
towait -= static_cast<int>((end - start) * 1000.0);
if (towait <= 0) {
break;
}
start = end;
continue;
}
break;
}
// Now res can be:
// 1 : if the file descriptor was ready
// 0 : if the timeout happened
// -1: if an error happened, EINTR within the timeout is already caught
#else
// All versions use select:
// An fd_set is a fixed size buffer.
// Executing FD_CLR() or FD_SET() with a value of fd that is negative or is
// equal to or larger than FD_SETSIZE
// will result in undefined behavior. Moreover, POSIX requires fd to be a
// valid file descriptor.
if (fd < 0 || fd >= FD_SETSIZE) {
// invalid or too high file descriptor value...
// if we call FD_ZERO() or FD_SET() with it, the program behavior will be
// undefined
_errorDetails = std::string("file descriptor value too high");
return false;
}
// handle interrupt
do {
retry:
fd_set fdset;
FD_ZERO(&fdset);
FD_SET(fd, &fdset);
fd_set* readFds = nullptr;
fd_set* writeFds = nullptr;
if (isWrite) {
writeFds = &fdset;
} else {
readFds = &fdset;
}
int sockn = (int)(fd + 1);
double waitTimeout = timeout;
if (waitTimeout > POLL_DURATION) {
waitTimeout = POLL_DURATION;
}
struct timeval t;
t.tv_sec = (long)waitTimeout;
t.tv_usec = (long)((waitTimeout - (double)t.tv_sec) * 1000000.0);
res = select(sockn, readFds, writeFds, nullptr, &t);
if ((res == -1 && errno == EINTR)) {
int myerrno = errno;
double end = TRI_microtime();
errno = myerrno;
timeout = timeout - (end - start);
start = end;
} else if (res == 0) {
if (isInterrupted()) {
_errorDetails = std::string("command locally aborted");
TRI_set_errno(TRI_ERROR_REQUEST_CANCELED);
return false;
}
double end = TRI_microtime();
timeout = timeout - (end - start);
if (timeout <= 0.0) {
break;
}
start = end;
goto retry;
}
} while (res == -1 && errno == EINTR && timeout > 0.0);
#endif
if (res > 0) {
if (isInterrupted()) {
_errorDetails = std::string("command locally aborted");
TRI_set_errno(TRI_ERROR_REQUEST_CANCELED);
return false;
}
return true;
}
if (res == 0) {
if (isWrite) {
_errorDetails = std::string("timeout during write");
TRI_set_errno(TRI_SIMPLE_CLIENT_COULD_NOT_WRITE);
} else {
_errorDetails = std::string("timeout during read");
TRI_set_errno(TRI_SIMPLE_CLIENT_COULD_NOT_READ);
}
} else { // res < 0
#ifdef _WIN32
char windowsErrorBuf[256];
#endif
char const* pErr = STR_ERROR();
_errorDetails = std::string("during prepare: ") + std::to_string(errno) +
std::string(" - ") + pErr;
TRI_set_errno(errno);
}
return false;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief check whether the socket is still alive
////////////////////////////////////////////////////////////////////////////////
bool GeneralClientConnection::checkSocket() {
int so_error = -1;
socklen_t len = sizeof so_error;
TRI_ASSERT(TRI_isvalidsocket(_socket));
int res =
TRI_getsockopt(_socket, SOL_SOCKET, SO_ERROR, (void*)&so_error, &len);
if (res != TRI_ERROR_NO_ERROR) {
TRI_set_errno(errno);
disconnect();
return false;
}
if (so_error == 0) {
return true;
}
TRI_set_errno(so_error);
disconnect();
return false;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief handleWrite
/// Write data to endpoint, this uses select to block until some
/// data can be written. Then it writes as much as it can without further
/// blocking, not calling select again. What has happened is
/// indicated by the return value and the bytesWritten variable,
/// which is always set by this method. The bytesWritten indicates
/// how many bytes have been written from the buffer
/// (regardless of whether there was an error or not). The return value
/// indicates, whether an error has happened. Note that the other side
/// closing the connection is not considered to be an error! The call to
/// prepare() does a select and the call to readClientConnection does
/// what is described here.
////////////////////////////////////////////////////////////////////////////////
bool GeneralClientConnection::handleWrite(double timeout, void const* buffer,
size_t length, size_t* bytesWritten) {
*bytesWritten = 0;
if (prepare(_socket, timeout, true)) {
return this->writeClientConnection(buffer, length, bytesWritten);
}
return false;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief handleRead
/// Read data from endpoint, this uses select to block until some
/// data has arrived. Then it reads as much as it can without further
/// blocking, using select multiple times. What has happened is
/// indicated by two flags, the return value and the connectionClosed flag,
/// which is always set by this method. The connectionClosed flag indicates
/// whether or not the connection has been closed by the other side
/// (regardless of whether there was an error or not). The return value
/// indicates, whether an error has happened. Note that the other side
/// closing the connection is not considered to be an error! The call to
/// prepare() does a select and the call to readClientCollection does
/// what is described here.
////////////////////////////////////////////////////////////////////////////////
bool GeneralClientConnection::handleRead(double timeout, StringBuffer& buffer,
bool& connectionClosed) {
connectionClosed = false;
if (prepare(_socket, timeout, false)) {
return this->readClientConnection(buffer, connectionClosed);
}
connectionClosed = true;
return false;
}