1
0
Fork 0
arangodb/arangod/Aql/TraversalNode.cpp

631 lines
21 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// @brief Implementation of Traversal Execution Node
///
/// @file arangod/Aql/TraversalNode.cpp
///
/// DISCLAIMER
///
/// Copyright 2010-2014 triagens GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Michael Hackstein
/// @author Copyright 2015, ArangoDB GmbH, Cologne, Germany
////////////////////////////////////////////////////////////////////////////////
#include "TraversalNode.h"
#include "Aql/Ast.h"
#include "Aql/Collection.h"
#include "Aql/ExecutionPlan.h"
#include "Aql/Query.h"
#include "Aql/SortCondition.h"
#include "Aql/Variable.h"
#include "Graph/BaseOptions.h"
#include "Graph/TraverserOptions.h"
#include "Indexes/Index.h"
#include "Utils/CollectionNameResolver.h"
#include "VocBase/ticks.h"
#include <velocypack/Iterator.h>
#include <velocypack/velocypack-aliases.h>
using namespace arangodb::aql;
using namespace arangodb::basics;
using namespace arangodb::graph;
using namespace arangodb::traverser;
TraversalNode::TraversalEdgeConditionBuilder::TraversalEdgeConditionBuilder(TraversalNode const* tn)
: EdgeConditionBuilder(tn->_plan->getAst()->createNodeNaryOperator(NODE_TYPE_OPERATOR_NARY_AND)),
_tn(tn) {}
TraversalNode::TraversalEdgeConditionBuilder::TraversalEdgeConditionBuilder(
TraversalNode const* tn, arangodb::velocypack::Slice const& condition)
: EdgeConditionBuilder(new AstNode(tn->_plan->getAst(), condition)), _tn(tn) {}
TraversalNode::TraversalEdgeConditionBuilder::TraversalEdgeConditionBuilder(
TraversalNode const* tn, TraversalEdgeConditionBuilder const* other)
: EdgeConditionBuilder(other->_modCondition), _tn(tn) {
_fromCondition = other->_fromCondition;
_toCondition = other->_toCondition;
_containsCondition = other->_containsCondition;
}
void TraversalNode::TraversalEdgeConditionBuilder::buildFromCondition() {
// TODO Move computation in here.
_fromCondition = _tn->_fromCondition;
}
void TraversalNode::TraversalEdgeConditionBuilder::buildToCondition() {
// TODO Move computation in here.
_toCondition = _tn->_toCondition;
}
void TraversalNode::TraversalEdgeConditionBuilder::toVelocyPack(VPackBuilder& builder,
bool verbose) {
if (_containsCondition) {
_modCondition->removeMemberUnchecked(_modCondition->numMembers() - 1);
_containsCondition = false;
}
_modCondition->toVelocyPack(builder, verbose);
}
TraversalNode::TraversalNode(ExecutionPlan* plan, size_t id, TRI_vocbase_t* vocbase,
AstNode const* direction, AstNode const* start,
AstNode const* graph, std::unique_ptr<BaseOptions>& options)
: GraphNode(plan, id, vocbase, direction, graph, options),
_pathOutVariable(nullptr),
_inVariable(nullptr),
_condition(nullptr),
_fromCondition(nullptr),
_toCondition(nullptr) {
TRI_ASSERT(start != nullptr);
auto ast = _plan->getAst();
// Let us build the conditions on _from and _to. Just in case we need them.
{
auto const* access =
ast->createNodeAttributeAccess(_tmpObjVarNode, StaticStrings::FromString.c_str(),
StaticStrings::FromString.length());
_fromCondition = ast->createNodeBinaryOperator(NODE_TYPE_OPERATOR_BINARY_EQ,
access, _tmpIdNode);
}
TRI_ASSERT(_fromCondition != nullptr);
TRI_ASSERT(_fromCondition->type == NODE_TYPE_OPERATOR_BINARY_EQ);
{
auto const* access =
ast->createNodeAttributeAccess(_tmpObjVarNode, StaticStrings::ToString.c_str(),
StaticStrings::ToString.length());
_toCondition = ast->createNodeBinaryOperator(NODE_TYPE_OPERATOR_BINARY_EQ,
access, _tmpIdNode);
}
TRI_ASSERT(_toCondition != nullptr);
TRI_ASSERT(_toCondition->type == NODE_TYPE_OPERATOR_BINARY_EQ);
// Parse start node
switch (start->type) {
case NODE_TYPE_REFERENCE:
_inVariable = static_cast<Variable*>(start->getData());
_vertexId = "";
break;
case NODE_TYPE_VALUE:
if (start->value.type != VALUE_TYPE_STRING) {
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_QUERY_PARSE,
"invalid start vertex. Must either be "
"an _id string or an object with _id.");
}
_inVariable = nullptr;
_vertexId = start->getString();
break;
default:
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_QUERY_PARSE,
"invalid start vertex. Must either be an "
"_id string or an object with _id.");
}
#ifdef TRI_ENABLE_MAINTAINER_MODE
checkConditionsDefined();
#endif
}
/// @brief Internal constructor to clone the node.
TraversalNode::TraversalNode(ExecutionPlan* plan, size_t id, TRI_vocbase_t* vocbase,
std::vector<std::unique_ptr<Collection>> const& edgeColls,
std::vector<std::unique_ptr<Collection>> const& vertexColls,
Variable const* inVariable, std::string const& vertexId,
std::vector<TRI_edge_direction_e> const& directions,
std::unique_ptr<BaseOptions>& options)
: GraphNode(plan, id, vocbase, edgeColls, vertexColls, directions, options),
_pathOutVariable(nullptr),
_inVariable(inVariable),
_vertexId(vertexId),
_condition(nullptr),
_fromCondition(nullptr),
_toCondition(nullptr) {}
TraversalNode::TraversalNode(ExecutionPlan* plan, arangodb::velocypack::Slice const& base)
: GraphNode(plan, base),
_pathOutVariable(nullptr),
_inVariable(nullptr),
_condition(nullptr),
_fromCondition(nullptr),
_toCondition(nullptr) {
// In Vertex
if (base.hasKey("inVariable")) {
_inVariable = Variable::varFromVPack(plan->getAst(), base, "inVariable");
} else {
VPackSlice v = base.get("vertexId");
if (!v.isString()) {
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_QUERY_BAD_JSON_PLAN,
"start vertex must be a string");
}
_vertexId = v.copyString();
if (_vertexId.empty()) {
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_QUERY_BAD_JSON_PLAN,
"start vertex mustn't be empty");
}
}
if (base.hasKey("condition")) {
VPackSlice condition = base.get("condition");
if (!condition.isObject()) {
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_QUERY_BAD_JSON_PLAN,
"condition must be an object");
}
_condition = Condition::fromVPack(plan, condition);
}
auto list = base.get("conditionVariables");
if (list.isArray()) {
for (auto const& v : VPackArrayIterator(list)) {
_conditionVariables.emplace(_plan->getAst()->variables()->createVariable(v));
}
}
// Out variables
if (base.hasKey("pathOutVariable")) {
_pathOutVariable =
Variable::varFromVPack(plan->getAst(), base, "pathOutVariable");
}
// Filter Condition Parts
TRI_ASSERT(base.hasKey("fromCondition"));
_fromCondition = new AstNode(plan->getAst(), base.get("fromCondition"));
TRI_ASSERT(base.hasKey("toCondition"));
_toCondition = new AstNode(plan->getAst(), base.get("toCondition"));
list = base.get("globalEdgeConditions");
if (list.isArray()) {
for (auto const& cond : VPackArrayIterator(list)) {
_globalEdgeConditions.emplace_back(new AstNode(plan->getAst(), cond));
}
}
list = base.get("globalVertexConditions");
if (list.isArray()) {
for (auto const& cond : VPackArrayIterator(list)) {
_globalVertexConditions.emplace_back(new AstNode(plan->getAst(), cond));
}
}
list = base.get("vertexConditions");
if (list.isObject()) {
for (auto const& cond : VPackObjectIterator(list)) {
std::string key = cond.key.copyString();
_vertexConditions.emplace(StringUtils::uint64(key),
new AstNode(plan->getAst(), cond.value));
}
}
list = base.get("edgeConditions");
if (list.isObject()) {
for (auto const& cond : VPackObjectIterator(list)) {
std::string key = cond.key.copyString();
auto ecbuilder = std::make_unique<TraversalEdgeConditionBuilder>(this, cond.value);
_edgeConditions.emplace(StringUtils::uint64(key), std::move(ecbuilder));
}
}
#ifdef TRI_ENABLE_MAINTAINER_MODE
checkConditionsDefined();
#endif
}
TraversalNode::~TraversalNode() {
if (_condition != nullptr) {
delete _condition;
}
}
int TraversalNode::checkIsOutVariable(size_t variableId) const {
if (_vertexOutVariable != nullptr && _vertexOutVariable->id == variableId) {
return 0;
}
if (_edgeOutVariable != nullptr && _edgeOutVariable->id == variableId) {
return 1;
}
if (_pathOutVariable != nullptr && _pathOutVariable->id == variableId) {
return 2;
}
return -1;
}
/// @brief check whether an access is inside the specified range
bool TraversalNode::isInRange(uint64_t depth, bool isEdge) const {
auto opts = static_cast<TraverserOptions*>(options());
if (isEdge) {
return (depth < opts->maxDepth);
}
return (depth <= opts->maxDepth);
}
/// @brief check if all directions are equal
bool TraversalNode::allDirectionsEqual() const {
if (_directions.empty()) {
// no directions!
return false;
}
size_t const n = _directions.size();
TRI_edge_direction_e const expected = _directions[0];
for (size_t i = 1; i < n; ++i) {
if (_directions[i] != expected) {
return false;
}
}
return true;
}
void TraversalNode::toVelocyPackHelper(arangodb::velocypack::Builder& nodes, bool verbose) const {
GraphNode::toVelocyPackHelper(nodes, verbose); // call base class method
// In variable
if (usesInVariable()) {
nodes.add(VPackValue("inVariable"));
inVariable()->toVelocyPack(nodes);
} else {
nodes.add("vertexId", VPackValue(_vertexId));
}
// Condition
if (_condition != nullptr) {
nodes.add(VPackValue("condition"));
_condition->toVelocyPack(nodes, verbose);
}
if (!_conditionVariables.empty()) {
nodes.add(VPackValue("conditionVariables"));
nodes.openArray();
for (auto const& it : _conditionVariables) {
it->toVelocyPack(nodes);
}
nodes.close();
}
// Out variables
if (usesPathOutVariable()) {
nodes.add(VPackValue("pathOutVariable"));
pathOutVariable()->toVelocyPack(nodes);
}
// Traversal Filter Conditions
TRI_ASSERT(_fromCondition != nullptr);
nodes.add(VPackValue("fromCondition"));
_fromCondition->toVelocyPack(nodes, verbose);
TRI_ASSERT(_toCondition != nullptr);
nodes.add(VPackValue("toCondition"));
_toCondition->toVelocyPack(nodes, verbose);
if (!_globalEdgeConditions.empty()) {
nodes.add(VPackValue("globalEdgeConditions"));
nodes.openArray();
for (auto const& it : _globalEdgeConditions) {
it->toVelocyPack(nodes, verbose);
}
nodes.close();
}
if (!_globalVertexConditions.empty()) {
nodes.add(VPackValue("globalVertexConditions"));
nodes.openArray();
for (auto const& it : _globalVertexConditions) {
it->toVelocyPack(nodes, verbose);
}
nodes.close();
}
if (!_vertexConditions.empty()) {
nodes.add(VPackValue("vertexConditions"));
nodes.openObject();
for (auto const& it : _vertexConditions) {
nodes.add(VPackValue(basics::StringUtils::itoa(it.first)));
it.second->toVelocyPack(nodes, verbose);
}
nodes.close();
}
if (!_edgeConditions.empty()) {
nodes.add(VPackValue("edgeConditions"));
nodes.openObject();
for (auto& it : _edgeConditions) {
nodes.add(VPackValue(basics::StringUtils::itoa(it.first)));
it.second->toVelocyPack(nodes, verbose);
}
nodes.close();
}
nodes.add(VPackValue("indexes"));
_options->toVelocyPackIndexes(nodes);
// And close it:
nodes.close();
}
/// @brief clone ExecutionNode recursively
ExecutionNode* TraversalNode::clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const {
TRI_ASSERT(!_optionsBuilt);
auto oldOpts = static_cast<TraverserOptions*>(options());
std::unique_ptr<BaseOptions> tmp = std::make_unique<TraverserOptions>(*oldOpts);
auto c = new TraversalNode(plan, _id, _vocbase, _edgeColls, _vertexColls,
_inVariable, _vertexId, _directions, tmp);
if (usesVertexOutVariable()) {
auto vertexOutVariable = _vertexOutVariable;
if (withProperties) {
vertexOutVariable = plan->getAst()->variables()->createVariable(vertexOutVariable);
}
TRI_ASSERT(vertexOutVariable != nullptr);
c->setVertexOutput(vertexOutVariable);
}
if (usesEdgeOutVariable()) {
auto edgeOutVariable = _edgeOutVariable;
if (withProperties) {
edgeOutVariable = plan->getAst()->variables()->createVariable(edgeOutVariable);
}
TRI_ASSERT(edgeOutVariable != nullptr);
c->setEdgeOutput(edgeOutVariable);
}
if (usesPathOutVariable()) {
auto pathOutVariable = _pathOutVariable;
if (withProperties) {
pathOutVariable = plan->getAst()->variables()->createVariable(pathOutVariable);
}
TRI_ASSERT(pathOutVariable != nullptr);
c->setPathOutput(pathOutVariable);
}
c->_conditionVariables.reserve(_conditionVariables.size());
for (auto const& it : _conditionVariables) {
c->_conditionVariables.emplace(it->clone());
}
#ifdef TRI_ENABLE_MAINTAINER_MODE
checkConditionsDefined();
#endif
// Temporary Filter Objects
c->_tmpObjVariable = _tmpObjVariable;
c->_tmpObjVarNode = _tmpObjVarNode;
c->_tmpIdNode = _tmpIdNode;
// Filter Condition Parts
c->_fromCondition = _fromCondition->clone(_plan->getAst());
c->_toCondition = _toCondition->clone(_plan->getAst());
c->_globalEdgeConditions.insert(c->_globalEdgeConditions.end(),
_globalEdgeConditions.begin(),
_globalEdgeConditions.end());
c->_globalVertexConditions.insert(c->_globalVertexConditions.end(),
_globalVertexConditions.begin(),
_globalVertexConditions.end());
for (auto const& it : _edgeConditions) {
// Copy the builder
auto ecBuilder =
std::make_unique<TraversalEdgeConditionBuilder>(this, it.second.get());
c->_edgeConditions.emplace(it.first, std::move(ecBuilder));
}
for (auto const& it : _vertexConditions) {
c->_vertexConditions.emplace(it.first, it.second->clone(_plan->getAst()));
}
#ifdef TRI_ENABLE_MAINTAINER_MODE
c->checkConditionsDefined();
#endif
cloneHelper(c, withDependencies, withProperties);
return static_cast<ExecutionNode*>(c);
}
/// @brief the cost of a traversal node
double TraversalNode::estimateCost(size_t& nrItems) const {
size_t incoming = 0;
double depCost = _dependencies.at(0)->getCost(incoming);
return depCost + (incoming * _options->estimateCost(nrItems));
}
void TraversalNode::prepareOptions() {
if (_optionsBuilt) {
return;
}
TRI_ASSERT(!_optionsBuilt);
_options->setVariable(_tmpObjVariable);
size_t numEdgeColls = _edgeColls.size();
TraversalEdgeConditionBuilder globalEdgeConditionBuilder(this);
for (auto& it : _globalEdgeConditions) {
globalEdgeConditionBuilder.addConditionPart(it);
}
Ast* ast = _plan->getAst();
// Compute Edge Indexes. First default indexes:
for (size_t i = 0; i < numEdgeColls; ++i) {
auto dir = _directions[i];
switch (dir) {
case TRI_EDGE_IN:
_options->addLookupInfo(
_plan, _edgeColls[i]->getName(), StaticStrings::ToString,
globalEdgeConditionBuilder.getInboundCondition()->clone(ast));
break;
case TRI_EDGE_OUT:
_options->addLookupInfo(
_plan, _edgeColls[i]->getName(), StaticStrings::FromString,
globalEdgeConditionBuilder.getOutboundCondition()->clone(ast));
break;
case TRI_EDGE_ANY:
TRI_ASSERT(false);
break;
}
}
auto opts = static_cast<TraverserOptions*>(options());
TRI_ASSERT(opts != nullptr);
for (auto& it : _edgeConditions) {
uint64_t depth = it.first;
// We probably have to adopt minDepth. We cannot fulfill a condition of
// larger depth anyway
auto& builder = it.second;
for (auto& it : _globalEdgeConditions) {
builder->addConditionPart(it);
}
for (size_t i = 0; i < numEdgeColls; ++i) {
auto dir = _directions[i];
// TODO we can optimize here. indexCondition and Expression could be
// made non-overlapping.
switch (dir) {
case TRI_EDGE_IN:
opts->addDepthLookupInfo(_plan, _edgeColls[i]->getName(), StaticStrings::ToString,
builder->getInboundCondition()->clone(ast), depth);
break;
case TRI_EDGE_OUT:
opts->addDepthLookupInfo(_plan, _edgeColls[i]->getName(), StaticStrings::FromString,
builder->getOutboundCondition()->clone(ast), depth);
break;
case TRI_EDGE_ANY:
TRI_ASSERT(false);
break;
}
}
}
for (auto& it : _vertexConditions) {
// We inject the base conditions as well here.
for (auto const& jt : _globalVertexConditions) {
it.second->addMember(jt);
}
opts->_vertexExpressions.emplace(it.first, new Expression(_plan, ast, it.second));
TRI_ASSERT(!opts->_vertexExpressions[it.first]->isV8());
}
if (!_globalVertexConditions.empty()) {
auto cond = _plan->getAst()->createNodeNaryOperator(NODE_TYPE_OPERATOR_NARY_AND);
for (auto const& it : _globalVertexConditions) {
cond->addMember(it);
}
opts->_baseVertexExpression = new Expression(_plan, ast, cond);
TRI_ASSERT(!opts->_baseVertexExpression->isV8());
}
// If we use the path output the cache should activate document
// caching otherwise it is not worth it.
if (ServerState::instance()->isCoordinator()) {
_options->activateCache(false, engines());
} else {
_options->activateCache(false, nullptr);
}
_optionsBuilt = true;
}
/// @brief remember the condition to execute for early traversal abortion.
void TraversalNode::setCondition(arangodb::aql::Condition* condition) {
std::unordered_set<Variable const*> varsUsedByCondition;
Ast::getReferencedVariables(condition->root(), varsUsedByCondition);
for (auto const& oneVar : varsUsedByCondition) {
if ((_vertexOutVariable == nullptr || oneVar->id != _vertexOutVariable->id) &&
(_edgeOutVariable == nullptr || oneVar->id != _edgeOutVariable->id) &&
(_pathOutVariable == nullptr || oneVar->id != _pathOutVariable->id) &&
(_inVariable == nullptr || oneVar->id != _inVariable->id)) {
_conditionVariables.emplace(oneVar);
}
}
_condition = condition;
}
void TraversalNode::registerCondition(bool isConditionOnEdge, uint64_t conditionLevel,
AstNode const* condition) {
Ast::getReferencedVariables(condition, _conditionVariables);
if (isConditionOnEdge) {
auto const& it = _edgeConditions.find(conditionLevel);
if (it == _edgeConditions.end()) {
auto builder = std::make_unique<TraversalEdgeConditionBuilder>(this);
builder->addConditionPart(condition);
_edgeConditions.emplace(conditionLevel, std::move(builder));
} else {
it->second->addConditionPart(condition);
}
} else {
auto const& it = _vertexConditions.find(conditionLevel);
if (it == _vertexConditions.end()) {
auto cond = _plan->getAst()->createNodeNaryOperator(NODE_TYPE_OPERATOR_NARY_AND);
cond->addMember(condition);
_vertexConditions.emplace(conditionLevel, cond);
} else {
it->second->addMember(condition);
}
}
}
void TraversalNode::registerGlobalCondition(bool isConditionOnEdge, AstNode const* condition) {
Ast::getReferencedVariables(condition, _conditionVariables);
if (isConditionOnEdge) {
_globalEdgeConditions.emplace_back(condition);
} else {
_globalVertexConditions.emplace_back(condition);
}
}
void TraversalNode::getConditionVariables(std::vector<Variable const*>& res) const {
for (auto const& it : _conditionVariables) {
if (it != _tmpObjVariable) {
res.emplace_back(it);
}
}
}
#ifdef TRI_ENABLE_MAINTAINER_MODE
void TraversalNode::checkConditionsDefined() const {
TRI_ASSERT(_tmpObjVariable != nullptr);
TRI_ASSERT(_tmpObjVarNode != nullptr);
TRI_ASSERT(_tmpIdNode != nullptr);
TRI_ASSERT(_fromCondition != nullptr);
TRI_ASSERT(_fromCondition->type == NODE_TYPE_OPERATOR_BINARY_EQ);
TRI_ASSERT(_toCondition != nullptr);
TRI_ASSERT(_toCondition->type == NODE_TYPE_OPERATOR_BINARY_EQ);
}
#endif