mirror of https://gitee.com/bigwinds/arangodb
109 lines
3.5 KiB
C++
109 lines
3.5 KiB
C++
|
|
#include "RandMT.h"
|
|
|
|
using namespace std;
|
|
|
|
//
|
|
// uint32_t must be an unsigned integer type capable of holding at least 32
|
|
// bits; exactly 32 should be fastest, but 64 is better on an Alpha with
|
|
// GCC at -O3 optimization so try your options and see what's best for you
|
|
//
|
|
|
|
RandMT::RandMT() {
|
|
seedMT(1U);
|
|
}
|
|
|
|
RandMT::RandMT(uint32_t seed) {
|
|
seedMT(seed);
|
|
}
|
|
|
|
void RandMT::seedMT(uint32_t seed) {
|
|
//
|
|
// We initialize state[0..(N-1)] via the generator
|
|
//
|
|
// x_new = (69069 * x_old) mod 2^32
|
|
//
|
|
// from Line 15 of Table 1, p. 106, Sec. 3.3.4 of Knuth's
|
|
// _The Art of Computer Programming_, Volume 2, 3rd ed.
|
|
//
|
|
// Notes (SJC): I do not know what the initial state requirements
|
|
// of the Mersenne Twister are, but it seems this seeding generator
|
|
// could be better. It achieves the maximum period for its modulus
|
|
// (2^30) iff x_initial is odd (p. 20-21, Sec. 3.2.1.2, Knuth); if
|
|
// x_initial can be even, you have sequences like 0, 0, 0, ...;
|
|
// 2^31, 2^31, 2^31, ...; 2^30, 2^30, 2^30, ...; 2^29, 2^29 + 2^31,
|
|
// 2^29, 2^29 + 2^31, ..., etc. so I force seed to be odd below.
|
|
//
|
|
// Even if x_initial is odd, if x_initial is 1 mod 4 then
|
|
//
|
|
// the lowest bit of x is always 1,
|
|
// the next-to-lowest bit of x is always 0,
|
|
// the 2nd-from-lowest bit of x alternates ... 0 1 0 1 0 1 0 1 ... ,
|
|
// the 3rd-from-lowest bit of x 4-cycles ... 0 1 1 0 0 1 1 0 ... ,
|
|
// the 4th-from-lowest bit of x has the 8-cycle ... 0 0 0 1 1 1 1 0 ... ,
|
|
// ...
|
|
//
|
|
// and if x_initial is 3 mod 4 then
|
|
//
|
|
// the lowest bit of x is always 1,
|
|
// the next-to-lowest bit of x is always 1,
|
|
// the 2nd-from-lowest bit of x alternates ... 0 1 0 1 0 1 0 1 ... ,
|
|
// the 3rd-from-lowest bit of x 4-cycles ... 0 0 1 1 0 0 1 1 ... ,
|
|
// the 4th-from-lowest bit of x has the 8-cycle ... 0 0 1 1 1 1 0 0 ... ,
|
|
// ...
|
|
//
|
|
// The generator's potency (min. s>=0 with (69069-1)^s = 0 mod 2^32) is
|
|
// 16, which seems to be alright by p. 25, Sec. 3.2.1.3 of Knuth. It
|
|
// also does well in the dimension 2..5 spectral tests, but it could be
|
|
// better in dimension 6 (Line 15, Table 1, p. 106, Sec. 3.3.4, Knuth).
|
|
//
|
|
// Note that the random number user does not see the values generated
|
|
// here directly since reloadMT() will always munge them first, so maybe
|
|
// none of all of this matters. In fact, the seed values made here could
|
|
// even be extra-special desirable if the Mersenne Twister theory says
|
|
// so-- that's why the only change I made is to restrict to odd seeds.
|
|
//
|
|
initseed = seed;
|
|
|
|
register uint32_t x = (seed | 1U) & 0xFFFFFFFFU, *s = state;
|
|
register int j;
|
|
left = 0;
|
|
for(*s++=x, j=N; --j; *s++ = (x*=69069U) & 0xFFFFFFFFU);
|
|
}
|
|
|
|
uint32_t RandMT::reloadMT(void) {
|
|
register uint32_t *p0=state, *p2=state+2, *pM=state+M, s0, s1;
|
|
register int j;
|
|
|
|
if(left < -1)
|
|
seedMT(initseed);
|
|
|
|
left=N-1, next=state+1;
|
|
|
|
for(s0=state[0], s1=state[1], j=N-M+1; --j; s0=s1, s1=*p2++)
|
|
*p0++ = *pM++ ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
|
|
|
|
for(pM=state, j=M; --j; s0=s1, s1=*p2++)
|
|
*p0++ = *pM++ ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
|
|
|
|
s1=state[0], *p0 = *pM ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
|
|
s1 ^= (s1 >> 11);
|
|
s1 ^= (s1 << 7) & 0x9D2C5680U;
|
|
s1 ^= (s1 << 15) & 0xEFC60000U;
|
|
return(s1 ^ (s1 >> 18));
|
|
}
|
|
|
|
uint32_t RandMT::randomMT(void) {
|
|
uint32_t y;
|
|
|
|
if(--left < 0)
|
|
return(reloadMT());
|
|
|
|
y = *next++;
|
|
y ^= (y >> 11);
|
|
y ^= (y << 7) & 0x9D2C5680U;
|
|
y ^= (y << 15) & 0xEFC60000U;
|
|
return(y ^ (y >> 18));
|
|
}
|
|
|