1
0
Fork 0
arangodb/arangod/Aql/OptimizerRules.cpp

4396 lines
140 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Max Neunhoeffer
/// @author Jan Steemann
////////////////////////////////////////////////////////////////////////////////
#include "OptimizerRules.h"
#include "Aql/CollectOptions.h"
#include "Aql/ClusterNodes.h"
#include "Aql/CollectNode.h"
#include "Aql/ConditionFinder.h"
#include "Aql/ExecutionEngine.h"
#include "Aql/ExecutionNode.h"
#include "Aql/Function.h"
#include "Aql/IndexNode.h"
#include "Aql/ModificationNodes.h"
#include "Aql/ShortestPathNode.h"
#include "Aql/SortCondition.h"
#include "Aql/SortNode.h"
#include "Aql/TraversalConditionFinder.h"
#include "Aql/TraversalNode.h"
#include "Aql/Variable.h"
#include "Aql/types.h"
#include "Basics/AttributeNameParser.h"
#include "Basics/SmallVector.h"
#include "Basics/StaticStrings.h"
#include "Basics/StringBuffer.h"
#include "Cluster/ClusterInfo.h"
#include "Utils/Transaction.h"
#include "VocBase/TraverserOptions.h"
#include "Indexes/Index.h"
#include <boost/optional.hpp>
#include <tuple>
#include <iostream>
using namespace arangodb;
using namespace arangodb::aql;
using EN = arangodb::aql::ExecutionNode;
/// @brief adds a SORT operation for IN right-hand side operands
void arangodb::aql::sortInValuesRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::FILTER, true);
bool modified = false;
for (auto const& n : nodes) {
// filter nodes always have one input variable
auto varsUsedHere = n->getVariablesUsedHere();
TRI_ASSERT(varsUsedHere.size() == 1);
// now check who introduced our variable
auto variable = varsUsedHere[0];
auto setter = plan->getVarSetBy(variable->id);
if (setter == nullptr || setter->getType() != EN::CALCULATION) {
// filter variable was not introduced by a calculation.
continue;
}
// filter variable was introduced a CalculationNode. now check the
// expression
auto s = static_cast<CalculationNode*>(setter);
auto filterExpression = s->expression();
auto const* inNode = filterExpression->node();
TRI_ASSERT(inNode != nullptr);
// check the filter condition
if ((inNode->type != NODE_TYPE_OPERATOR_BINARY_IN &&
inNode->type != NODE_TYPE_OPERATOR_BINARY_NIN) ||
inNode->canThrow() || !inNode->isDeterministic()) {
// we better not tamper with this filter
continue;
}
auto rhs = inNode->getMember(1);
if (rhs->type != NODE_TYPE_REFERENCE) {
continue;
}
auto loop = n->getLoop();
if (loop == nullptr) {
// FILTER is not used inside a loop. so it will be used at most once
// not need to sort the IN values then
continue;
}
variable = static_cast<Variable const*>(rhs->getData());
setter = plan->getVarSetBy(variable->id);
if (setter == nullptr || (setter->getType() != EN::CALCULATION &&
setter->getType() != EN::SUBQUERY)) {
// variable itself was not introduced by a calculation.
continue;
}
if (loop == setter->getLoop()) {
// the FILTER and its value calculation are contained in the same loop
// this means the FILTER will be executed as many times as its value
// calculation. sorting the IN values will not provide a benefit here
continue;
}
auto ast = plan->getAst();
AstNode const* originalArg = nullptr;
if (setter->getType() == EN::CALCULATION) {
AstNode const* originalNode =
static_cast<CalculationNode*>(setter)->expression()->node();
TRI_ASSERT(originalNode != nullptr);
AstNode const* testNode = originalNode;
if (originalNode->type == NODE_TYPE_FCALL &&
static_cast<Function const*>(originalNode->getData())->externalName ==
"NOOPT") {
// bypass NOOPT(...)
TRI_ASSERT(originalNode->numMembers() == 1);
auto args = originalNode->getMember(0);
if (args->numMembers() > 0) {
testNode = args->getMember(0);
}
}
if (testNode->type == NODE_TYPE_VALUE ||
testNode->type == NODE_TYPE_OBJECT) {
// not really usable...
continue;
}
if (testNode->type == NODE_TYPE_ARRAY &&
testNode->numMembers() < AstNode::SortNumberThreshold) {
// number of values is below threshold
continue;
}
if (testNode->isSorted()) {
// already sorted
continue;
}
originalArg = originalNode;
} else {
TRI_ASSERT(setter->getType() == EN::SUBQUERY);
auto sub = static_cast<SubqueryNode*>(setter);
// estimate items in subquery
size_t nrItems = 0;
sub->getSubquery()->getCost(nrItems);
if (nrItems < AstNode::SortNumberThreshold) {
continue;
}
originalArg = ast->createNodeReference(sub->outVariable());
}
TRI_ASSERT(originalArg != nullptr);
auto args = ast->createNodeArray();
args->addMember(originalArg);
auto sorted = ast->createNodeFunctionCall("SORTED_UNIQUE", args);
auto outVar = ast->variables()->createTemporaryVariable();
ExecutionNode* calculationNode = nullptr;
auto expression = new Expression(ast, sorted);
try {
calculationNode =
new CalculationNode(plan, plan->nextId(), expression, outVar);
} catch (...) {
delete expression;
throw;
}
plan->registerNode(calculationNode);
// make the new node a parent of the original calculation node
TRI_ASSERT(setter != nullptr);
calculationNode->addDependency(setter);
auto oldParent = setter->getFirstParent();
TRI_ASSERT(oldParent != nullptr);
calculationNode->addParent(oldParent);
oldParent->removeDependencies();
oldParent->addDependency(calculationNode);
setter->setParent(calculationNode);
if (setter->getType() == EN::CALCULATION) {
// mark the original node as being removable, even if it can throw
// this is special as the optimizer will normally not remove any nodes
// if they throw - even when fully unused otherwise
static_cast<CalculationNode*>(setter)->canRemoveIfThrows(true);
}
AstNode* clone = ast->clone(inNode);
// set sortedness bit for the IN operator
clone->setBoolValue(true);
// finally adjust the variable inside the IN calculation
clone->changeMember(1, ast->createNodeReference(outVar));
filterExpression->replaceNode(clone);
modified = true;
}
opt->addPlan(plan, rule, modified);
}
/// @brief remove redundant sorts
/// this rule modifies the plan in place:
/// - sorts that are covered by earlier sorts will be removed
void arangodb::aql::removeRedundantSortsRule(Optimizer* opt,
ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::SORT, true);
if (nodes.empty()) {
// quick exit
opt->addPlan(plan, rule, false);
return;
}
std::unordered_set<ExecutionNode*> toUnlink;
arangodb::basics::StringBuffer buffer(TRI_UNKNOWN_MEM_ZONE, false);
for (auto const& n : nodes) {
if (toUnlink.find(n) != toUnlink.end()) {
// encountered a sort node that we already deleted
continue;
}
auto const sortNode = static_cast<SortNode*>(n);
auto sortInfo = sortNode->getSortInformation(plan, &buffer);
if (sortInfo.isValid && !sortInfo.criteria.empty()) {
// we found a sort that we can understand
std::vector<ExecutionNode*> stack;
sortNode->addDependencies(stack);
int nodesRelyingOnSort = 0;
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
if (current->getType() == EN::SORT) {
// we found another sort. now check if they are compatible!
auto other = static_cast<SortNode*>(current)
->getSortInformation(plan, &buffer);
switch (sortInfo.isCoveredBy(other)) {
case SortInformation::unequal: {
// different sort criteria
if (nodesRelyingOnSort == 0) {
// a sort directly followed by another sort: now remove one of
// them
if (other.canThrow || !other.isDeterministic) {
// if the sort can throw or is non-deterministic, we must not
// remove it
break;
}
if (sortNode->isStable()) {
// we should not optimize predecessors of a stable sort (used
// in a COLLECT node)
// the stable sort is for a reason, and removing any
// predecessors sorts might
// change the result
break;
}
// remove sort that is a direct predecessor of a sort
toUnlink.emplace(current);
}
break;
}
case SortInformation::otherLessAccurate: {
toUnlink.emplace(current);
break;
}
case SortInformation::ourselvesLessAccurate: {
// the sort at the start of the pipeline makes the sort at the end
// superfluous, so we'll remove it
toUnlink.emplace(n);
break;
}
case SortInformation::allEqual: {
// the sort at the end of the pipeline makes the sort at the start
// superfluous, so we'll remove it
toUnlink.emplace(current);
break;
}
}
} else if (current->getType() == EN::FILTER) {
// ok: a filter does not depend on sort order
} else if (current->getType() == EN::CALCULATION) {
// ok: a filter does not depend on sort order only if it does not
// throw
if (current->canThrow()) {
++nodesRelyingOnSort;
}
} else if (current->getType() == EN::ENUMERATE_LIST ||
current->getType() == EN::ENUMERATE_COLLECTION ||
current->getType() == EN::TRAVERSAL ||
current->getType() == EN::SHORTEST_PATH) {
// ok, but we cannot remove two different sorts if one of these node
// types is between them
// example: in the following query, the one sort will be optimized
// away:
// FOR i IN [ { a: 1 }, { a: 2 } , { a: 3 } ] SORT i.a ASC SORT i.a
// DESC RETURN i
// but in the following query, the sorts will stay:
// FOR i IN [ { a: 1 }, { a: 2 } , { a: 3 } ] SORT i.a ASC LET a =
// i.a SORT i.a DESC RETURN i
++nodesRelyingOnSort;
} else {
// abort at all other type of nodes. we cannot remove a sort beyond
// them
// this includes COLLECT and LIMIT
break;
}
if (!current->hasDependency()) {
// node either has no or more than one dependency. we don't know what
// to do and must abort
// note: this will also handle Singleton nodes
break;
}
current->addDependencies(stack);
}
if (toUnlink.find(n) == toUnlink.end() && sortNode->simplify(plan)) {
// sort node had only constant expressions. it will make no difference
// if we execute it or not
// so we can remove it
toUnlink.emplace(n);
}
}
}
if (!toUnlink.empty()) {
plan->unlinkNodes(toUnlink);
}
opt->addPlan(plan, rule, !toUnlink.empty());
}
/// @brief remove all unnecessary filters
/// this rule modifies the plan in place:
/// - filters that are always true are removed completely
/// - filters that are always false will be replaced by a NoResults node
void arangodb::aql::removeUnnecessaryFiltersRule(Optimizer* opt,
ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::FILTER, true);
bool modified = false;
std::unordered_set<ExecutionNode*> toUnlink;
for (auto const& n : nodes) {
// filter nodes always have one input variable
auto varsUsedHere = n->getVariablesUsedHere();
TRI_ASSERT(varsUsedHere.size() == 1);
// now check who introduced our variable
auto variable = varsUsedHere[0];
auto setter = plan->getVarSetBy(variable->id);
if (setter == nullptr || setter->getType() != EN::CALCULATION) {
// filter variable was not introduced by a calculation.
continue;
}
// filter variable was introduced a CalculationNode. now check the
// expression
auto s = static_cast<CalculationNode*>(setter);
auto root = s->expression()->node();
TRI_ASSERT(root != nullptr);
if (root->canThrow() || !root->isDeterministic()) {
// we better not tamper with this filter
continue;
}
// filter expression is constant and thus cannot throw
// we can now evaluate it safely
TRI_ASSERT(!s->expression()->canThrow());
if (root->isTrue()) {
// filter is always true
// remove filter node and merge with following node
toUnlink.emplace(n);
modified = true;
} else if (root->isFalse()) {
// filter is always false
// now insert a NoResults node below it
auto noResults = new NoResultsNode(plan, plan->nextId());
plan->registerNode(noResults);
plan->replaceNode(n, noResults);
modified = true;
}
}
if (!toUnlink.empty()) {
plan->unlinkNodes(toUnlink);
}
opt->addPlan(plan, rule, modified);
}
/// @brief remove INTO of a COLLECT if not used
/// additionally remove all unused aggregate calculations from a COLLECT
void arangodb::aql::removeCollectVariablesRule(Optimizer* opt,
ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::COLLECT, true);
bool modified = false;
for (auto const& n : nodes) {
auto collectNode = static_cast<CollectNode*>(n);
TRI_ASSERT(collectNode != nullptr);
auto varsUsedLater = n->getVarsUsedLater();
auto outVariable = collectNode->outVariable();
if (outVariable != nullptr &&
varsUsedLater.find(outVariable) == varsUsedLater.end()) {
// outVariable not used later
collectNode->clearOutVariable();
modified = true;
}
collectNode->clearAggregates(
[&varsUsedLater, &modified](
std::pair<Variable const*,
std::pair<Variable const*, std::string>> const& aggregate)
-> bool {
if (varsUsedLater.find(aggregate.first) == varsUsedLater.end()) {
// result of aggregate function not used later
modified = true;
return true;
}
return false;
});
}
opt->addPlan(plan, rule, modified);
}
class PropagateConstantAttributesHelper {
public:
PropagateConstantAttributesHelper() : _constants(), _modified(false) {}
bool modified() const { return _modified; }
/// @brief inspects a plan and propages constant values in expressions
void propagateConstants(ExecutionPlan* plan) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::FILTER, true);
for (auto const& node : nodes) {
auto fn = static_cast<FilterNode*>(node);
auto inVar = fn->getVariablesUsedHere();
TRI_ASSERT(inVar.size() == 1);
auto setter = plan->getVarSetBy(inVar[0]->id);
if (setter != nullptr && setter->getType() == EN::CALCULATION) {
auto cn = static_cast<CalculationNode*>(setter);
auto expression = cn->expression();
if (expression != nullptr) {
collectConstantAttributes(const_cast<AstNode*>(expression->node()));
}
}
}
if (!_constants.empty()) {
for (auto const& node : nodes) {
auto fn = static_cast<FilterNode*>(node);
auto inVar = fn->getVariablesUsedHere();
TRI_ASSERT(inVar.size() == 1);
auto setter = plan->getVarSetBy(inVar[0]->id);
if (setter != nullptr && setter->getType() == EN::CALCULATION) {
auto cn = static_cast<CalculationNode*>(setter);
auto expression = cn->expression();
if (expression != nullptr) {
insertConstantAttributes(const_cast<AstNode*>(expression->node()));
}
}
}
}
}
private:
AstNode const* getConstant(Variable const* variable,
std::string const& attribute) const {
auto it = _constants.find(variable);
if (it == _constants.end()) {
return nullptr;
}
auto it2 = (*it).second.find(attribute);
if (it2 == (*it).second.end()) {
return nullptr;
}
return (*it2).second;
}
/// @brief inspects an expression (recursively) and notes constant attribute
/// values so they can be propagated later
void collectConstantAttributes(AstNode* node) {
if (node == nullptr) {
return;
}
if (node->type == NODE_TYPE_OPERATOR_BINARY_AND) {
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
collectConstantAttributes(lhs);
collectConstantAttributes(rhs);
} else if (node->type == NODE_TYPE_OPERATOR_BINARY_EQ) {
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
if (lhs->isConstant() && rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
inspectConstantAttribute(rhs, lhs);
} else if (rhs->isConstant() && lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
inspectConstantAttribute(lhs, rhs);
}
}
}
/// @brief traverses an AST part recursively and patches it by inserting
/// constant values
void insertConstantAttributes(AstNode* node) {
if (node == nullptr) {
return;
}
if (node->type == NODE_TYPE_OPERATOR_BINARY_AND) {
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
insertConstantAttributes(lhs);
insertConstantAttributes(rhs);
} else if (node->type == NODE_TYPE_OPERATOR_BINARY_EQ) {
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
if (!lhs->isConstant() && rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
insertConstantAttribute(node, 1);
}
if (!rhs->isConstant() && lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
insertConstantAttribute(node, 0);
}
}
}
/// @brief extract an attribute and its variable from an attribute access
/// (e.g. `a.b.c` will return variable `a` and attribute name `b.c.`.
bool getAttribute(AstNode const* attribute, Variable const*& variable,
std::string& name) {
TRI_ASSERT(attribute != nullptr &&
attribute->type == NODE_TYPE_ATTRIBUTE_ACCESS);
TRI_ASSERT(name.empty());
while (attribute->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
name = std::string(".") + attribute->getString() + name;
attribute = attribute->getMember(0);
}
if (attribute->type != NODE_TYPE_REFERENCE) {
return false;
}
variable = static_cast<Variable const*>(attribute->getData());
TRI_ASSERT(variable != nullptr);
return true;
}
/// @brief inspect the constant value assigned to an attribute
/// the attribute value will be stored so it can be inserted for the attribute
/// later
void inspectConstantAttribute(AstNode const* attribute,
AstNode const* value) {
Variable const* variable = nullptr;
std::string name;
if (!getAttribute(attribute, variable, name)) {
return;
}
auto it = _constants.find(variable);
if (it == _constants.end()) {
_constants.emplace(
variable,
std::unordered_map<std::string, AstNode const*>{{name, value}});
return;
}
auto it2 = (*it).second.find(name);
if (it2 == (*it).second.end()) {
// first value for the attribute
(*it).second.emplace(name, value);
} else {
auto previous = (*it2).second;
if (previous == nullptr) {
// we have multiple different values for the attribute. better not use
// this attribute
return;
}
if (!value->computeValue().equals(previous->computeValue())) {
// different value found for an already tracked attribute. better not
// use this attribute
(*it2).second = nullptr;
}
}
}
/// @brief patches an AstNode by inserting a constant value into it
void insertConstantAttribute(AstNode* parentNode, size_t accessIndex) {
Variable const* variable = nullptr;
std::string name;
if (!getAttribute(parentNode->getMember(accessIndex), variable, name)) {
return;
}
auto constantValue = getConstant(variable, name);
if (constantValue != nullptr) {
parentNode->changeMember(accessIndex,
const_cast<AstNode*>(constantValue));
_modified = true;
}
}
std::unordered_map<Variable const*,
std::unordered_map<std::string, AstNode const*>>
_constants;
bool _modified;
};
/// @brief propagate constant attributes in FILTERs
void arangodb::aql::propagateConstantAttributesRule(
Optimizer* opt, ExecutionPlan* plan, Optimizer::Rule const* rule) {
PropagateConstantAttributesHelper helper;
helper.propagateConstants(plan);
opt->addPlan(plan, rule, helper.modified());
}
/// @brief remove SORT RAND() if appropriate
void arangodb::aql::removeSortRandRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::SORT, true);
bool modified = false;
for (auto const& n : nodes) {
auto node = static_cast<SortNode*>(n);
auto const& elements = node->getElements();
if (elements.size() != 1) {
// we're looking for "SORT RAND()", which has just one sort criterion
continue;
}
auto const variable = elements[0].first;
TRI_ASSERT(variable != nullptr);
auto setter = plan->getVarSetBy(variable->id);
if (setter == nullptr || setter->getType() != EN::CALCULATION) {
continue;
}
auto cn = static_cast<CalculationNode*>(setter);
auto const expression = cn->expression();
if (expression == nullptr || expression->node() == nullptr ||
expression->node()->type != NODE_TYPE_FCALL) {
// not the right type of node
continue;
}
auto funcNode = expression->node();
auto func = static_cast<Function const*>(funcNode->getData());
// we're looking for "RAND()", which is a function call
// with an empty parameters array
if (func->externalName != "RAND" || funcNode->numMembers() != 1 ||
funcNode->getMember(0)->numMembers() != 0) {
continue;
}
// now we're sure we got SORT RAND() !
// we found what we were looking for!
// now check if the dependencies qualify
if (!n->hasDependency()) {
break;
}
auto current = n->getFirstDependency();
ExecutionNode* collectionNode = nullptr;
while (current != nullptr) {
if (current->canThrow()) {
// we shouldn't bypass a node that can throw
collectionNode = nullptr;
break;
}
switch (current->getType()) {
case EN::SORT:
case EN::COLLECT:
case EN::FILTER:
case EN::SUBQUERY:
case EN::ENUMERATE_LIST:
case EN::TRAVERSAL:
case EN::SHORTEST_PATH:
case EN::INDEX: {
// if we found another SortNode, a CollectNode, FilterNode, a
// SubqueryNode, an EnumerateListNode, a TraversalNode or an IndexNode
// this means we cannot apply our optimization
collectionNode = nullptr;
current = nullptr;
continue; // this will exit the while loop
}
case EN::ENUMERATE_COLLECTION: {
if (collectionNode == nullptr) {
// note this node
collectionNode = current;
break;
} else {
// we already found another collection node before. this means we
// should not apply our optimization
collectionNode = nullptr;
current = nullptr;
continue; // this will exit the while loop
}
// cannot get here
TRI_ASSERT(false);
}
default: {
// ignore all other nodes
}
}
if (!current->hasDependency()) {
break;
}
current = current->getFirstDependency();
}
if (collectionNode != nullptr) {
// we found a node to modify!
TRI_ASSERT(collectionNode->getType() == EN::ENUMERATE_COLLECTION);
// set the random iteration flag for the EnumerateCollectionNode
static_cast<EnumerateCollectionNode*>(collectionNode)->setRandom();
// remove the SortNode
// note: the CalculationNode will be removed by
// "remove-unnecessary-calculations"
// rule if not used
plan->unlinkNode(n);
modified = true;
}
}
opt->addPlan(plan, rule, modified);
}
/// @brief move calculations up in the plan
/// this rule modifies the plan in place
/// it aims to move up calculations as far up in the plan as possible, to
/// avoid redundant calculations in inner loops
void arangodb::aql::moveCalculationsUpRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::CALCULATION, true);
bool modified = false;
for (auto const& n : nodes) {
auto nn = static_cast<CalculationNode*>(n);
if (nn->expression()->canThrow() || !nn->expression()->isDeterministic()) {
// we will only move expressions up that cannot throw and that are
// deterministic
continue;
}
std::unordered_set<Variable const*> neededVars;
n->getVariablesUsedHere(neededVars);
std::vector<ExecutionNode*> stack;
n->addDependencies(stack);
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
bool found = false;
for (auto const& v : current->getVariablesSetHere()) {
if (neededVars.find(v) != neededVars.end()) {
// shared variable, cannot move up any more
found = true;
break;
}
}
if (found) {
// done with optimizing this calculation node
break;
}
if (!current->hasDependency()) {
// node either has no or more than one dependency. we don't know what to
// do and must abort
// note: this will also handle Singleton nodes
break;
}
current->addDependencies(stack);
// first, unlink the calculation from the plan
plan->unlinkNode(n);
// and re-insert into before the current node
plan->insertDependency(current, n);
modified = true;
}
}
opt->addPlan(plan, rule, modified);
}
/// @brief move calculations down in the plan
/// this rule modifies the plan in place
/// it aims to move calculations as far down in the plan as possible, beyond
/// FILTER and LIMIT operations
void arangodb::aql::moveCalculationsDownRule(Optimizer* opt,
ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::CALCULATION, true);
bool modified = false;
for (auto const& n : nodes) {
auto nn = static_cast<CalculationNode*>(n);
if (nn->expression()->canThrow() || !nn->expression()->isDeterministic()) {
// we will only move expressions down that cannot throw and that are
// deterministic
continue;
}
// this is the variable that the calculation will set
auto variable = nn->outVariable();
std::vector<ExecutionNode*> stack;
n->addParents(stack);
bool shouldMove = false;
ExecutionNode* lastNode = nullptr;
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
lastNode = current;
bool done = false;
for (auto const& v : current->getVariablesUsedHere()) {
if (v == variable) {
// the node we're looking at needs the variable we're setting.
// can't push further!
done = true;
break;
}
}
if (done) {
// done with optimizing this calculation node
break;
}
auto const currentType = current->getType();
if (currentType == EN::FILTER || currentType == EN::SORT ||
currentType == EN::LIMIT || currentType == EN::SUBQUERY) {
// we found something interesting that justifies moving our node down
shouldMove = true;
} else if (currentType == EN::INDEX ||
currentType == EN::ENUMERATE_COLLECTION ||
currentType == EN::ENUMERATE_LIST ||
currentType == EN::TRAVERSAL ||
currentType == EN::SHORTEST_PATH ||
currentType == EN::COLLECT ||
currentType == EN::NORESULTS) {
// we will not push further down than such nodes
shouldMove = false;
break;
}
if (!current->hasParent()) {
break;
}
current->addParents(stack);
}
if (shouldMove && lastNode != nullptr) {
// first, unlink the calculation from the plan
plan->unlinkNode(n);
// and re-insert into before the current node
plan->insertDependency(lastNode, n);
modified = true;
}
}
opt->addPlan(plan, rule, modified);
}
/// @brief determine the "right" type of CollectNode and
/// add a sort node for each COLLECT (note: the sort may be removed later)
/// this rule cannot be turned off (otherwise, the query result might be wrong!)
void arangodb::aql::specializeCollectRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::COLLECT, true);
bool modified = false;
for (auto const& n : nodes) {
auto collectNode = static_cast<CollectNode*>(n);
if (collectNode->isSpecialized()) {
// already specialized this node
continue;
}
auto const& groupVariables = collectNode->groupVariables();
// test if we can use an alternative version of COLLECT with a hash table
bool const canUseHashAggregation =
(!groupVariables.empty() &&
(!collectNode->hasOutVariable() || collectNode->count()) &&
collectNode->getOptions().canUseHashMethod());
if (canUseHashAggregation) {
// create a new plan with the adjusted COLLECT node
std::unique_ptr<ExecutionPlan> newPlan(plan->clone());
// use the cloned COLLECT node
auto newCollectNode =
static_cast<CollectNode*>(newPlan->getNodeById(collectNode->id()));
TRI_ASSERT(newCollectNode != nullptr);
// specialize the CollectNode so it will become a HashedCollectBlock
// later
// additionally, add a SortNode BEHIND the CollectNode (to sort the
// final result)
newCollectNode->aggregationMethod(
CollectOptions::CollectMethod::COLLECT_METHOD_HASH);
newCollectNode->specialized();
if (!collectNode->isDistinctCommand()) {
// add the post-SORT
std::vector<std::pair<Variable const*, bool>> sortElements;
for (auto const& v : newCollectNode->groupVariables()) {
sortElements.emplace_back(std::make_pair(v.first, true));
}
auto sortNode =
new SortNode(newPlan.get(), newPlan->nextId(), sortElements, false);
newPlan->registerNode(sortNode);
TRI_ASSERT(newCollectNode->hasParent());
auto parent = newCollectNode->getFirstParent();
TRI_ASSERT(parent != nullptr);
sortNode->addDependency(newCollectNode);
parent->replaceDependency(newCollectNode, sortNode);
}
newPlan->findVarUsage();
if (nodes.size() > 1) {
// this will tell the optimizer to optimize the cloned plan with this
// specific rule again
opt->addPlan(newPlan.release(), rule, true,
static_cast<int>(rule->level - 1));
} else {
// no need to run this specific rule again on the cloned plan
opt->addPlan(newPlan.release(), rule, true);
}
}
// mark node as specialized, so we do not process it again
collectNode->specialized();
// finally, adjust the original plan and create a sorted version of COLLECT
// specialize the CollectNode so it will become a SortedCollectBlock
// later
collectNode->aggregationMethod(
CollectOptions::CollectMethod::COLLECT_METHOD_SORTED);
// insert a SortNode IN FRONT OF the CollectNode
if (!groupVariables.empty()) {
std::vector<std::pair<Variable const*, bool>> sortElements;
for (auto const& v : groupVariables) {
sortElements.emplace_back(std::make_pair(v.second, true));
}
auto sortNode = new SortNode(plan, plan->nextId(), sortElements, true);
plan->registerNode(sortNode);
TRI_ASSERT(collectNode->hasDependency());
auto dep = collectNode->getFirstDependency();
TRI_ASSERT(dep != nullptr);
sortNode->addDependency(dep);
collectNode->replaceDependency(dep, sortNode);
modified = true;
}
}
opt->addPlan(plan, rule, modified);
}
/// @brief split and-combined filters and break them into smaller parts
void arangodb::aql::splitFiltersRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::FILTER, true);
bool modified = false;
for (auto const& n : nodes) {
auto inVars(n->getVariablesUsedHere());
TRI_ASSERT(inVars.size() == 1);
auto setter = plan->getVarSetBy(inVars[0]->id);
if (setter == nullptr || setter->getType() != EN::CALCULATION) {
continue;
}
auto cn = static_cast<CalculationNode*>(setter);
auto const expression = cn->expression();
if (expression->canThrow() || !expression->isDeterministic() ||
expression->node()->type != NODE_TYPE_OPERATOR_BINARY_AND) {
continue;
}
std::vector<AstNode*> stack{expression->nodeForModification()};
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
if (current->type == NODE_TYPE_OPERATOR_BINARY_AND) {
stack.emplace_back(current->getMember(0));
stack.emplace_back(current->getMember(1));
} else {
modified = true;
ExecutionNode* calculationNode = nullptr;
auto outVar = plan->getAst()->variables()->createTemporaryVariable();
auto expression = new Expression(plan->getAst(), current);
try {
calculationNode =
new CalculationNode(plan, plan->nextId(), expression, outVar);
} catch (...) {
delete expression;
throw;
}
plan->registerNode(calculationNode);
plan->insertDependency(n, calculationNode);
auto filterNode = new FilterNode(plan, plan->nextId(), outVar);
plan->registerNode(filterNode);
plan->insertDependency(n, filterNode);
}
}
if (modified) {
plan->unlinkNode(n, false);
}
}
opt->addPlan(plan, rule, modified);
}
/// @brief move filters up in the plan
/// this rule modifies the plan in place
/// filters are moved as far up in the plan as possible to make result sets
/// as small as possible as early as possible
/// filters are not pushed beyond limits
void arangodb::aql::moveFiltersUpRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::FILTER, true);
bool modified = false;
for (auto const& n : nodes) {
auto neededVars = n->getVariablesUsedHere();
TRI_ASSERT(neededVars.size() == 1);
std::vector<ExecutionNode*> stack;
n->addDependencies(stack);
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
if (current->getType() == EN::LIMIT) {
// cannot push a filter beyond a LIMIT node
break;
}
if (current->canThrow()) {
// must not move a filter beyond a node that can throw
break;
}
if (current->isModificationNode()) {
// must not move a filter beyond a modification node
break;
}
if (current->getType() == EN::CALCULATION) {
// must not move a filter beyond a node with a non-deterministic result
auto calculation = static_cast<CalculationNode const*>(current);
if (!calculation->expression()->isDeterministic()) {
break;
}
}
bool found = false;
for (auto const& v : current->getVariablesSetHere()) {
for (auto it = neededVars.begin(); it != neededVars.end(); ++it) {
if ((*it)->id == v->id) {
// shared variable, cannot move up any more
found = true;
break;
}
}
}
if (found) {
// done with optimizing this calculation node
break;
}
if (!current->hasDependency()) {
// node either has no or more than one dependency. we don't know what to
// do and must abort
// note: this will also handle Singleton nodes
break;
}
current->addDependencies(stack);
// first, unlink the filter from the plan
plan->unlinkNode(n);
// and re-insert into plan in front of the current node
plan->insertDependency(current, n);
modified = true;
}
}
opt->addPlan(plan, rule, modified);
}
class arangodb::aql::RedundantCalculationsReplacer final
: public WalkerWorker<ExecutionNode> {
public:
explicit RedundantCalculationsReplacer(
std::unordered_map<VariableId, Variable const*> const& replacements)
: _replacements(replacements) {
}
template <typename T>
void replaceStartTargetVariables(ExecutionNode* en) {
auto node = static_cast<T*>(en);
if (node->_inStartVariable != nullptr) {
node->_inStartVariable = Variable::replace(node->_inStartVariable, _replacements);
}
if (node->_inTargetVariable != nullptr) {
node->_inTargetVariable = Variable::replace(node->_inTargetVariable, _replacements);
}
}
template <typename T>
void replaceInVariable(ExecutionNode* en) {
auto node = static_cast<T*>(en);
node->_inVariable = Variable::replace(node->_inVariable, _replacements);
}
void replaceInCalculation(ExecutionNode* en) {
auto node = static_cast<CalculationNode*>(en);
std::unordered_set<Variable const*> variables;
node->expression()->variables(variables);
// check if the calculation uses any of the variables that we want to
// replace
for (auto const& it : variables) {
if (_replacements.find(it->id) != _replacements.end()) {
// calculation uses a to-be-replaced variable
node->expression()->replaceVariables(_replacements);
return;
}
}
}
bool before(ExecutionNode* en) override final {
switch (en->getType()) {
case EN::ENUMERATE_LIST: {
replaceInVariable<EnumerateListNode>(en);
break;
}
case EN::RETURN: {
replaceInVariable<ReturnNode>(en);
break;
}
case EN::CALCULATION: {
replaceInCalculation(en);
break;
}
case EN::FILTER: {
replaceInVariable<FilterNode>(en);
break;
}
case EN::TRAVERSAL: {
replaceInVariable<TraversalNode>(en);
break;
}
case EN::SHORTEST_PATH: {
replaceStartTargetVariables<ShortestPathNode>(en);
break;
}
case EN::COLLECT: {
auto node = static_cast<CollectNode*>(en);
for (auto& variable : node->_groupVariables) {
variable.second = Variable::replace(variable.second, _replacements);
}
for (auto& variable : node->_aggregateVariables) {
variable.second.first = Variable::replace(variable.second.first, _replacements);
}
if (node->_expressionVariable != nullptr) {
node->_expressionVariable = Variable::replace(node->_expressionVariable, _replacements);
}
for (auto const& it : _replacements) {
node->_variableMap.emplace(it.second->id, it.second->name);
}
// node->_keepVariables does not need to be updated at the moment as the
// "remove-redundant-calculations" rule will stop when it finds a COLLECT
// with an INTO, and the "inline-subqueries" rule will abort there as well
break;
}
case EN::SORT: {
auto node = static_cast<SortNode*>(en);
for (auto& variable : node->_elements) {
variable.first = Variable::replace(variable.first, _replacements);
}
break;
}
case EN::REMOVE: {
replaceInVariable<RemoveNode>(en);
break;
}
case EN::INSERT: {
replaceInVariable<InsertNode>(en);
break;
}
case EN::UPSERT: {
auto node = static_cast<UpsertNode*>(en);
if (node->_inDocVariable != nullptr) {
node->_inDocVariable = Variable::replace(node->_inDocVariable, _replacements);
}
if (node->_insertVariable != nullptr) {
node->_insertVariable = Variable::replace(node->_insertVariable, _replacements);
}
if (node->_updateVariable != nullptr) {
node->_updateVariable = Variable::replace(node->_updateVariable, _replacements);
}
break;
}
case EN::UPDATE: {
auto node = static_cast<UpdateNode*>(en);
if (node->_inDocVariable != nullptr) {
node->_inDocVariable = Variable::replace(node->_inDocVariable, _replacements);
}
if (node->_inKeyVariable != nullptr) {
node->_inKeyVariable = Variable::replace(node->_inKeyVariable, _replacements);
}
break;
}
case EN::REPLACE: {
auto node = static_cast<ReplaceNode*>(en);
if (node->_inDocVariable != nullptr) {
node->_inDocVariable = Variable::replace(node->_inDocVariable, _replacements);
}
if (node->_inKeyVariable != nullptr) {
node->_inKeyVariable = Variable::replace(node->_inKeyVariable, _replacements);
}
break;
}
default: {
// ignore all other types of nodes
}
}
// always continue
return false;
}
private:
std::unordered_map<VariableId, Variable const*> const& _replacements;
};
/// @brief remove CalculationNode(s) that are repeatedly used in a query
/// (i.e. common expressions)
void arangodb::aql::removeRedundantCalculationsRule(
Optimizer* opt, ExecutionPlan* plan, Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::CALCULATION, true);
if (nodes.size() < 2) {
// quick exit
opt->addPlan(plan, rule, false);
return;
}
arangodb::basics::StringBuffer buffer(TRI_UNKNOWN_MEM_ZONE, false);
std::unordered_map<VariableId, Variable const*> replacements;
for (auto const& n : nodes) {
auto nn = static_cast<CalculationNode*>(n);
if (!nn->expression()->isDeterministic()) {
// If this node is non-deterministic, we must not touch it!
continue;
}
auto outvar = n->getVariablesSetHere();
TRI_ASSERT(outvar.size() == 1);
try {
nn->expression()->stringifyIfNotTooLong(&buffer);
} catch (...) {
// expression could not be stringified (maybe because not all node types
// are supported). this is not an error, we just skip the optimization
buffer.reset();
continue;
}
std::string const referenceExpression(buffer.c_str(), buffer.length());
buffer.reset();
std::vector<ExecutionNode*> stack;
n->addDependencies(stack);
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
if (current->getType() == EN::CALCULATION) {
try {
static_cast<CalculationNode*>(current)
->expression()
->stringifyIfNotTooLong(&buffer);
} catch (...) {
// expression could not be stringified (maybe because not all node
// types
// are supported). this is not an error, we just skip the optimization
buffer.reset();
continue;
}
bool const isEqual = (buffer.length() == referenceExpression.size() &&
memcmp(buffer.c_str(), referenceExpression.c_str(), buffer.length()) == 0);
buffer.reset();
if (isEqual) {
// expressions are identical
auto outvars = current->getVariablesSetHere();
TRI_ASSERT(outvars.size() == 1);
// check if target variable is already registered as a replacement
// this covers the following case:
// - replacements is set to B => C
// - we're now inserting a replacement A => B
// the goal now is to enter a replacement A => C instead of A => B
auto target = outvars[0];
while (target != nullptr) {
auto it = replacements.find(target->id);
if (it != replacements.end()) {
target = (*it).second;
} else {
break;
}
}
replacements.emplace(outvar[0]->id, target);
// also check if the insertion enables further shortcuts
// this covers the following case:
// - replacements is set to A => B
// - we have just inserted a replacement B => C
// the goal now is to change the replacement A => B to A => C
for (auto it = replacements.begin(); it != replacements.end(); ++it) {
if ((*it).second == outvar[0]) {
(*it).second = target;
}
}
}
}
if (current->getType() == EN::COLLECT) {
if (static_cast<CollectNode*>(current)->hasOutVariable()) {
// COLLECT ... INTO is evil (tm): it needs to keep all already defined
// variables
// we need to abort optimization here
break;
}
}
if (!current->hasDependency()) {
// node either has no or more than one dependency. we don't know what to
// do and must abort
// note: this will also handle Singleton nodes
break;
}
current->addDependencies(stack);
}
}
if (!replacements.empty()) {
// finally replace the variables
RedundantCalculationsReplacer finder(replacements);
plan->root()->walk(&finder);
opt->addPlan(plan, rule, true);
} else {
// no changes
opt->addPlan(plan, rule, false);
}
}
/// @brief remove CalculationNodes and SubqueryNodes that are never needed
/// this modifies an existing plan in place
void arangodb::aql::removeUnnecessaryCalculationsRule(
Optimizer* opt, ExecutionPlan* plan, Optimizer::Rule const* rule) {
std::vector<ExecutionNode::NodeType> const types{EN::CALCULATION,
EN::SUBQUERY};
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, types, true);
std::unordered_set<ExecutionNode*> toUnlink;
for (auto const& n : nodes) {
if (n->getType() == EN::CALCULATION) {
auto nn = static_cast<CalculationNode*>(n);
if (nn->canThrow() && !nn->canRemoveIfThrows()) {
// If this node can throw, we must not optimize it away!
continue;
}
// will remove calculation when we get here
} else if (n->getType() == EN::SUBQUERY) {
auto nn = static_cast<SubqueryNode*>(n);
if (nn->canThrow()) {
// subqueries that can throw must not be optimized away
continue;
}
if (nn->isModificationQuery()) {
// subqueries that modify data must not be optimized away
continue;
}
// will remove subquery when we get here
}
auto outvars = n->getVariablesSetHere();
TRI_ASSERT(outvars.size() == 1);
auto varsUsedLater = n->getVarsUsedLater();
if (varsUsedLater.find(outvars[0]) == varsUsedLater.end()) {
// The variable whose value is calculated here is not used at
// all further down the pipeline! We remove the whole
// calculation node,
toUnlink.emplace(n);
} else if (n->getType() == EN::CALCULATION) {
// variable is still used later, but...
// ...if it's used exactly once later by another calculation,
// it's a temporary variable that we can fuse with the other
// calculation easily
if (n->canThrow() ||
!static_cast<CalculationNode*>(n)->expression()->isDeterministic()) {
continue;
}
AstNode const* rootNode = static_cast<CalculationNode*>(n)->expression()->node();
if (rootNode->type == NODE_TYPE_REFERENCE) {
// if the LET is a simple reference to another variable, e.g. LET a = b
// then replace all references to a with references to b
bool hasCollectWithOutVariable = false;
auto current = n->getFirstParent();
// check first if we have a COLLECT with an INTO later in the query
// in this case we must not perform the replacements
while (current != nullptr) {
if (current->getType() == EN::COLLECT) {
if (static_cast<CollectNode const*>(current)->hasOutVariable()) {
hasCollectWithOutVariable = true;
break;
}
}
current = current->getFirstParent();
}
if (!hasCollectWithOutVariable) {
// no COLLECT found, now replace
std::unordered_map<VariableId, Variable const*> replacements;
replacements.emplace(outvars[0]->id, static_cast<Variable const*>(rootNode->getData()));
RedundantCalculationsReplacer finder(replacements);
plan->root()->walk(&finder);
toUnlink.emplace(n);
continue;
}
}
std::unordered_set<Variable const*> vars;
size_t usageCount = 0;
CalculationNode* other = nullptr;
auto current = n->getFirstParent();
while (current != nullptr) {
current->getVariablesUsedHere(vars);
if (vars.find(outvars[0]) != vars.end()) {
if (current->getType() == EN::COLLECT) {
if (static_cast<CollectNode const*>(current)->hasOutVariable()) {
// COLLECT with an INTO variable will collect all variables from
// the scope, so we shouldn't try to remove or change the meaning
// of variables
usageCount = 0;
break;
}
}
if (current->getType() != EN::CALCULATION) {
// don't know how to replace the variable in a non-LET node
// abort the search
usageCount = 0;
break;
}
// got a LET. we can replace the variable reference in it by
// something else
++usageCount;
other = static_cast<CalculationNode*>(current);
}
if (usageCount > 1) {
break;
}
current = current->getFirstParent();
vars.clear();
}
if (usageCount == 1) {
// our variable is used by exactly one other calculation
// now we can replace the reference to our variable in the other
// calculation with the variable's expression directly
auto otherExpression = other->expression();
TRI_ASSERT(otherExpression != nullptr);
if (rootNode->type != NODE_TYPE_ATTRIBUTE_ACCESS &&
Ast::countReferences(otherExpression->node(), outvars[0]) > 1) {
// used more than once... better give up
continue;
}
if (rootNode->isSimple() != otherExpression->node()->isSimple()) {
// expression types (V8 vs. non-V8) do not match. give up
continue;
}
TRI_ASSERT(other != nullptr);
otherExpression->replaceVariableReference(outvars[0], rootNode);
toUnlink.emplace(n);
}
}
}
if (!toUnlink.empty()) {
plan->unlinkNodes(toUnlink);
}
opt->addPlan(plan, rule, !toUnlink.empty());
}
/// @brief useIndex, try to use an index for filtering
void arangodb::aql::useIndexesRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
// These are all the nodes where we start traversing (including all
// subqueries)
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findEndNodes(nodes, true);
std::unordered_map<size_t, ExecutionNode*> changes;
auto cleanupChanges = [&changes]() -> void {
for (auto& v : changes) {
delete v.second;
}
changes.clear();
};
TRI_DEFER(cleanupChanges());
bool hasEmptyResult = false;
for (auto const& n : nodes) {
ConditionFinder finder(plan, &changes, &hasEmptyResult);
n->walk(&finder);
}
if (!changes.empty()) {
for (auto& it : changes) {
plan->registerNode(it.second);
plan->replaceNode(plan->getNodeById(it.first), it.second);
// prevent double deletion by cleanupChanges()
it.second = nullptr;
}
opt->addPlan(plan, rule, true);
} else {
opt->addPlan(plan, rule, hasEmptyResult);
}
}
struct SortToIndexNode final : public WalkerWorker<ExecutionNode> {
ExecutionPlan* _plan;
SortNode* _sortNode;
std::vector<std::pair<VariableId, bool>> _sorts;
std::unordered_map<VariableId, AstNode const*> _variableDefinitions;
bool _modified;
public:
explicit SortToIndexNode(ExecutionPlan* plan)
: _plan(plan),
_sortNode(nullptr),
_sorts(),
_variableDefinitions(),
_modified(false) {}
bool handleEnumerateCollectionNode(
EnumerateCollectionNode* enumerateCollectionNode) {
if (_sortNode == nullptr) {
return true;
}
if (enumerateCollectionNode->isInInnerLoop()) {
// index node contained in an outer loop. must not optimize away the sort!
return true;
}
SortCondition sortCondition(_sorts, std::vector<std::vector<arangodb::basics::AttributeName>>(), _variableDefinitions);
if (!sortCondition.isEmpty() && sortCondition.isOnlyAttributeAccess() &&
sortCondition.isUnidirectional()) {
// we have found a sort condition, which is unidirectionl
// now check if any of the collection's indexes covers it
Variable const* outVariable = enumerateCollectionNode->outVariable();
std::vector<arangodb::Transaction::IndexHandle> usedIndexes;
auto trx = _plan->getAst()->query()->trx();
size_t coveredAttributes = 0;
auto resultPair = trx->getIndexForSortCondition(
enumerateCollectionNode->collection()->getName(),
&sortCondition, outVariable,
enumerateCollectionNode->collection()->count(),
usedIndexes, coveredAttributes);
if (resultPair.second) {
// If this bit is set, then usedIndexes has length exactly one
// and contains the best index found.
auto condition = std::make_unique<Condition>(_plan->getAst());
condition->normalize(_plan);
std::unique_ptr<ExecutionNode> newNode(new IndexNode(
_plan, _plan->nextId(), enumerateCollectionNode->vocbase(),
enumerateCollectionNode->collection(), outVariable,
usedIndexes, condition.get(), sortCondition.isDescending()));
condition.release();
auto n = newNode.release();
_plan->registerNode(n);
_plan->replaceNode(enumerateCollectionNode, n);
_modified = true;
if (coveredAttributes == sortCondition.numAttributes()) {
// if the index covers the complete sort condition, we can also remove
// the sort node
_plan->unlinkNode(_plan->getNodeById(_sortNode->id()));
}
}
}
return true; // always abort further searching here
}
bool handleIndexNode(IndexNode* indexNode) {
if (_sortNode == nullptr) {
return true;
}
if (indexNode->isInInnerLoop()) {
// index node contained in an outer loop. must not optimize away the sort!
return true;
}
auto const& indexes = indexNode->getIndexes();
auto cond = indexNode->condition();
TRI_ASSERT(cond != nullptr);
Variable const* outVariable = indexNode->outVariable();
TRI_ASSERT(outVariable != nullptr);
auto index = indexes[0];
arangodb::Transaction* trx = indexNode->trx();
bool isSorted = false;
bool isSparse = false;
std::vector<std::vector<arangodb::basics::AttributeName>> fields =
trx->getIndexFeatures(index, isSorted, isSparse);
if (indexes.size() != 1) {
// can only use this index node if it uses exactly one index or multiple
// indexes on exactly the same attributes
if (!cond->isSorted()) {
// index conditions do not guarantee sortedness
return true;
}
if (isSparse) {
return true;
}
for (auto& idx : indexes) {
if (idx != index) {
// Can only be sorted iff only one index is used.
return true;
}
}
// all indexes use the same attributes and index conditions guarantee
// sorted output
}
TRI_ASSERT(indexes.size() == 1 || cond->isSorted());
// if we get here, we either have one index or multiple indexes on the same
// attributes
bool handled = false;
if (indexes.size() == 1 && isSorted) {
// if we have just a single index and we can use it for the filtering condition,
// then we can use the index for sorting, too. regardless of it the index is sparse or not.
// because the index would only return non-null attributes anyway, so we do not need
// to care about null values when sorting here
isSparse = false;
}
SortCondition sortCondition(_sorts, cond->getConstAttributes(outVariable, !isSparse), _variableDefinitions);
bool const isOnlyAttributeAccess =
(!sortCondition.isEmpty() && sortCondition.isOnlyAttributeAccess());
if (isOnlyAttributeAccess && isSorted && !isSparse &&
sortCondition.isUnidirectional() &&
sortCondition.isDescending() == indexNode->reverse()) {
// we have found a sort condition, which is unidirectional and in the same
// order as the IndexNode...
// now check if the sort attributes match the ones of the index
size_t const numCovered =
sortCondition.coveredAttributes(outVariable, fields);
if (numCovered >= sortCondition.numAttributes()) {
// sort condition is fully covered by index... now we can remove the
// sort node from the plan
_plan->unlinkNode(_plan->getNodeById(_sortNode->id()));
_modified = true;
handled = true;
}
}
if (!handled && isOnlyAttributeAccess && indexes.size() == 1) {
// special case... the index cannot be used for sorting, but we only
// compare with equality
// lookups. now check if the equality lookup attributes are the same as
// the index attributes
auto root = cond->root();
if (root != nullptr) {
auto condNode = root->getMember(0);
if (condNode->isOnlyEqualityMatch()) {
// now check if the index fields are the same as the sort condition
// fields
// e.g. FILTER c.value1 == 1 && c.value2 == 42 SORT c.value1, c.value2
size_t const numCovered =
sortCondition.coveredAttributes(outVariable, fields);
if (numCovered == sortCondition.numAttributes() &&
sortCondition.isUnidirectional() &&
(isSorted || fields.size() >= sortCondition.numAttributes())) {
// no need to sort
_plan->unlinkNode(_plan->getNodeById(_sortNode->id()));
indexNode->reverse(sortCondition.isDescending());
_modified = true;
} else if (numCovered > 0 && sortCondition.isUnidirectional()) {
// remove the first few attributes if they are constant
SortNode* sortNode = static_cast<SortNode*>(_plan->getNodeById(_sortNode->id()));
sortNode->removeConditions(numCovered);
_modified = true;
}
}
}
}
return true; // always abort after we found an IndexNode
}
bool enterSubquery(ExecutionNode*, ExecutionNode*) override final {
return false;
}
bool before(ExecutionNode* en) override final {
switch (en->getType()) {
case EN::TRAVERSAL:
case EN::SHORTEST_PATH:
case EN::ENUMERATE_LIST:
case EN::SUBQUERY:
case EN::FILTER:
return false; // skip. we don't care.
case EN::CALCULATION: {
auto outvars = en->getVariablesSetHere();
TRI_ASSERT(outvars.size() == 1);
_variableDefinitions.emplace(
outvars[0]->id,
static_cast<CalculationNode const*>(en)->expression()->node());
return false;
}
case EN::SINGLETON:
case EN::COLLECT:
case EN::INSERT:
case EN::REMOVE:
case EN::REPLACE:
case EN::UPDATE:
case EN::UPSERT:
case EN::RETURN:
case EN::NORESULTS:
case EN::SCATTER:
case EN::DISTRIBUTE:
case EN::GATHER:
case EN::REMOTE:
case EN::ILLEGAL:
case EN::LIMIT: // LIMIT is criterion to stop
return true; // abort.
case EN::SORT: // pulling two sorts together is done elsewhere.
if (!_sorts.empty() || _sortNode != nullptr) {
return true; // a different SORT node. abort
}
_sortNode = static_cast<SortNode*>(en);
for (auto& it : _sortNode->getElements()) {
_sorts.emplace_back((it.first)->id, it.second);
}
return false;
case EN::INDEX:
return handleIndexNode(static_cast<IndexNode*>(en));
case EN::ENUMERATE_COLLECTION:
return handleEnumerateCollectionNode(
static_cast<EnumerateCollectionNode*>(en));
}
return true;
}
};
void arangodb::aql::useIndexForSortRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::SORT, true);
bool modified = false;
for (auto const& n : nodes) {
auto sortNode = static_cast<SortNode*>(n);
SortToIndexNode finder(plan);
sortNode->walk(&finder);
if (finder._modified) {
modified = true;
}
}
opt->addPlan(plan, rule, modified);
}
/// @brief try to remove filters which are covered by indexes
void arangodb::aql::removeFiltersCoveredByIndexRule(
Optimizer* opt, ExecutionPlan* plan, Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::FILTER, true);
std::unordered_set<ExecutionNode*> toUnlink;
bool modified = false;
for (auto const& node : nodes) {
auto fn = static_cast<FilterNode const*>(node);
// find the node with the filter expression
auto inVar = fn->getVariablesUsedHere();
TRI_ASSERT(inVar.size() == 1);
auto setter = plan->getVarSetBy(inVar[0]->id);
if (setter == nullptr || setter->getType() != EN::CALCULATION) {
continue;
}
auto calculationNode = static_cast<CalculationNode*>(setter);
auto conditionNode = calculationNode->expression()->node();
// build the filter condition
auto condition = std::make_unique<Condition>(plan->getAst());
condition->andCombine(conditionNode);
condition->normalize(plan);
if (condition->root() == nullptr) {
continue;
}
size_t const n = condition->root()->numMembers();
if (n != 1) {
// either no condition or multiple ORed conditions...
continue;
}
bool handled = false;
auto current = node;
while (current != nullptr) {
if (current->getType() == EN::INDEX) {
auto indexNode = static_cast<IndexNode const*>(current);
// found an index node, now check if the expression is covered by the
// index
auto indexCondition = indexNode->condition();
if (indexCondition != nullptr && !indexCondition->isEmpty()) {
auto const& indexesUsed = indexNode->getIndexes();
if (indexesUsed.size() == 1) {
// single index. this is something that we can handle
auto newNode = condition->removeIndexCondition(plan,
indexNode->outVariable(), indexCondition->root());
if (newNode == nullptr) {
// no condition left...
// FILTER node can be completely removed
toUnlink.emplace(node);
// note: we must leave the calculation node intact, in case it is
// still used by other nodes in the plan
modified = true;
handled = true;
} else if (newNode != condition->root()) {
// some condition is left, but it is a different one than
// the one from the FILTER node
auto expr = std::make_unique<Expression>(plan->getAst(), newNode);
CalculationNode* cn =
new CalculationNode(plan, plan->nextId(), expr.get(),
calculationNode->outVariable());
expr.release();
plan->registerNode(cn);
plan->replaceNode(setter, cn);
modified = true;
handled = true;
}
}
}
if (handled) {
break;
}
}
if (handled || current->getType() == EN::LIMIT ||
!current->hasDependency()) {
break;
}
current = current->getFirstDependency();
}
}
if (!toUnlink.empty()) {
plan->unlinkNodes(toUnlink);
}
opt->addPlan(plan, rule, modified);
}
/// @brief helper to compute lots of permutation tuples
/// a permutation tuple is represented as a single vector together with
/// another vector describing the boundaries of the tuples.
/// Example:
/// data: 0,1,2, 3,4, 5,6
/// starts: 0, 3, 5, (indices of starts of sections)
/// means a tuple of 3 permutations of 3, 2 and 2 points respectively
/// This function computes the next permutation tuple among the
/// lexicographically sorted list of all such tuples. It returns true
/// if it has successfully computed this and false if the tuple is already
/// the lexicographically largest one. If false is returned, the permutation
/// tuple is back to the beginning.
static bool NextPermutationTuple(std::vector<size_t>& data,
std::vector<size_t>& starts) {
auto begin = data.begin(); // a random access iterator
for (size_t i = starts.size(); i-- != 0;) {
std::vector<size_t>::iterator from = begin + starts[i];
std::vector<size_t>::iterator to;
if (i == starts.size() - 1) {
to = data.end();
} else {
to = begin + starts[i + 1];
}
if (std::next_permutation(from, to)) {
return true;
}
}
return false;
}
/// @brief interchange adjacent EnumerateCollectionNodes in all possible ways
void arangodb::aql::interchangeAdjacentEnumerationsRule(
Optimizer* opt, ExecutionPlan* plan, Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
std::vector<ExecutionNode::NodeType> const types = {
ExecutionNode::ENUMERATE_COLLECTION, ExecutionNode::ENUMERATE_LIST };
plan->findNodesOfType(nodes, types, true);
std::unordered_set<ExecutionNode*> nodesSet;
for (auto const& n : nodes) {
TRI_ASSERT(nodesSet.find(n) == nodesSet.end());
nodesSet.emplace(n);
}
std::vector<ExecutionNode*> nodesToPermute;
std::vector<size_t> permTuple;
std::vector<size_t> starts;
// We use that the order of the nodes is such that a node B that is among the
// recursive dependencies of a node A is later in the vector.
for (auto const& n : nodes) {
if (nodesSet.find(n) != nodesSet.end()) {
std::vector<ExecutionNode*> nn{n};
nodesSet.erase(n);
// Now follow the dependencies as long as we see further such nodes:
auto nwalker = n;
while (true) {
if (!nwalker->hasDependency()) {
break;
}
auto dep = nwalker->getFirstDependency();
if (dep->getType() != EN::ENUMERATE_COLLECTION &&
dep->getType() != EN::ENUMERATE_LIST) {
break;
}
if (n->getType() == EN::ENUMERATE_LIST && dep->getType() == EN::ENUMERATE_LIST) {
break;
}
nwalker = dep;
nn.emplace_back(nwalker);
nodesSet.erase(nwalker);
}
if (nn.size() > 1) {
// Move it into the permutation tuple:
starts.emplace_back(permTuple.size());
for (auto const& nnn : nn) {
nodesToPermute.emplace_back(nnn);
permTuple.emplace_back(permTuple.size());
}
}
}
}
// Now we have collected all the runs of EnumerateCollectionNodes in the
// plan, we need to compute all possible permutations of all of them,
// independently. This is why we need to compute all permutation tuples.
opt->addPlan(plan, rule, false);
if (!starts.empty()) {
NextPermutationTuple(permTuple, starts); // will never return false
do {
// Clone the plan:
auto newPlan = plan->clone();
try { // get rid of plan if any of this fails
// Find the nodes in the new plan corresponding to the ones in the
// old plan that we want to permute:
std::vector<ExecutionNode*> newNodes;
for (size_t j = 0; j < nodesToPermute.size(); j++) {
newNodes.emplace_back(newPlan->getNodeById(nodesToPermute[j]->id()));
}
// Now get going with the permutations:
for (size_t i = 0; i < starts.size(); i++) {
size_t lowBound = starts[i];
size_t highBound =
(i < starts.size() - 1) ? starts[i + 1] : permTuple.size();
// We need to remove the nodes
// newNodes[lowBound..highBound-1] in newPlan and replace
// them by the same ones in a different order, given by
// permTuple[lowBound..highBound-1].
auto parent = newNodes[lowBound]->getFirstParent();
TRI_ASSERT(parent != nullptr);
// Unlink all those nodes:
for (size_t j = lowBound; j < highBound; j++) {
newPlan->unlinkNode(newNodes[j]);
}
// And insert them in the new order:
for (size_t j = highBound; j-- != lowBound;) {
newPlan->insertDependency(parent, newNodes[permTuple[j]]);
}
}
// OK, the new plan is ready, let's report it:
if (!opt->addPlan(newPlan, rule, true)) {
// have enough plans. stop permutations
break;
}
} catch (...) {
delete newPlan;
throw;
}
} while (NextPermutationTuple(permTuple, starts));
}
}
/// @brief scatter operations in cluster
/// this rule inserts scatter, gather and remote nodes so operations on sharded
/// collections actually work
/// it will change plans in place
void arangodb::aql::scatterInClusterRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
bool wasModified = false;
if (arangodb::ServerState::instance()->isCoordinator()) {
// find subqueries
std::unordered_map<ExecutionNode*, ExecutionNode*> subqueries;
SmallVector<ExecutionNode*>::allocator_type::arena_type s;
SmallVector<ExecutionNode*> subs{s};
plan->findNodesOfType(subs, ExecutionNode::SUBQUERY, true);
for (auto& it : subs) {
subqueries.emplace(static_cast<SubqueryNode const*>(it)->getSubquery(),
it);
}
// we are a coordinator. now look in the plan for nodes of type
// EnumerateCollectionNode, IndexNode and modification nodes
std::vector<ExecutionNode::NodeType> const types = {
ExecutionNode::ENUMERATE_COLLECTION, ExecutionNode::INDEX,
ExecutionNode::INSERT, ExecutionNode::UPDATE, ExecutionNode::REPLACE,
ExecutionNode::REMOVE, ExecutionNode::UPSERT};
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, types, true);
for (auto& node : nodes) {
// found a node we need to replace in the plan
auto const& parents = node->getParents();
auto const& deps = node->getDependencies();
TRI_ASSERT(deps.size() == 1);
// don't do this if we are already distributing!
if (deps[0]->getType() == ExecutionNode::REMOTE &&
deps[0]->getFirstDependency()->getType() ==
ExecutionNode::DISTRIBUTE) {
continue;
}
bool const isRootNode = plan->isRoot(node);
plan->unlinkNode(node, true);
auto const nodeType = node->getType();
// extract database and collection from plan node
TRI_vocbase_t* vocbase = nullptr;
Collection const* collection = nullptr;
if (nodeType == ExecutionNode::ENUMERATE_COLLECTION) {
vocbase = static_cast<EnumerateCollectionNode*>(node)->vocbase();
collection = static_cast<EnumerateCollectionNode*>(node)->collection();
} else if (nodeType == ExecutionNode::INDEX) {
vocbase = static_cast<IndexNode*>(node)->vocbase();
collection = static_cast<IndexNode*>(node)->collection();
} else if (nodeType == ExecutionNode::INSERT ||
nodeType == ExecutionNode::UPDATE ||
nodeType == ExecutionNode::REPLACE ||
nodeType == ExecutionNode::REMOVE ||
nodeType == ExecutionNode::UPSERT) {
vocbase = static_cast<ModificationNode*>(node)->vocbase();
collection = static_cast<ModificationNode*>(node)->collection();
if (nodeType == ExecutionNode::REMOVE ||
nodeType == ExecutionNode::UPDATE) {
// Note that in the REPLACE or UPSERT case we are not getting here,
// since
// the distributeInClusterRule fires and a DistributionNode is
// used.
auto* modNode = static_cast<ModificationNode*>(node);
modNode->getOptions().ignoreDocumentNotFound = true;
}
} else {
TRI_ASSERT(false);
}
// insert a scatter node
ExecutionNode* scatterNode =
new ScatterNode(plan, plan->nextId(), vocbase, collection);
plan->registerNode(scatterNode);
TRI_ASSERT(!deps.empty());
scatterNode->addDependency(deps[0]);
// insert a remote node
ExecutionNode* remoteNode =
new RemoteNode(plan, plan->nextId(), vocbase, collection, "", "", "");
plan->registerNode(remoteNode);
TRI_ASSERT(scatterNode);
remoteNode->addDependency(scatterNode);
// re-link with the remote node
node->addDependency(remoteNode);
// insert another remote node
remoteNode =
new RemoteNode(plan, plan->nextId(), vocbase, collection, "", "", "");
plan->registerNode(remoteNode);
TRI_ASSERT(node);
remoteNode->addDependency(node);
// insert a gather node
ExecutionNode* gatherNode =
new GatherNode(plan, plan->nextId(), vocbase, collection);
plan->registerNode(gatherNode);
TRI_ASSERT(remoteNode);
gatherNode->addDependency(remoteNode);
// and now link the gather node with the rest of the plan
if (parents.size() == 1) {
parents[0]->replaceDependency(deps[0], gatherNode);
}
// check if the node that we modified was at the end of a subquery
auto it = subqueries.find(node);
if (it != subqueries.end()) {
static_cast<SubqueryNode*>((*it).second)->setSubquery(gatherNode, true);
}
if (isRootNode) {
// if we replaced the root node, set a new root node
plan->root(gatherNode);
}
wasModified = true;
}
}
opt->addPlan(plan, rule, wasModified);
}
/// @brief distribute operations in cluster
///
/// this rule inserts distribute, remote nodes so operations on sharded
/// collections actually work, this differs from scatterInCluster in that every
/// incoming row is only sent to one shard and not all as in scatterInCluster
///
/// it will change plans in place
void arangodb::aql::distributeInClusterRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
bool wasModified = false;
if (arangodb::ServerState::instance()->isCoordinator()) {
// we are a coordinator, we replace the root if it is a modification node
// only replace if it is the last node in the plan
auto node = plan->root();
TRI_ASSERT(node != nullptr);
while (node != nullptr) {
// loop until we find a modification node or the end of the plan
auto nodeType = node->getType();
if (nodeType == ExecutionNode::INSERT ||
nodeType == ExecutionNode::REMOVE ||
nodeType == ExecutionNode::UPDATE ||
nodeType == ExecutionNode::REPLACE ||
nodeType == ExecutionNode::UPSERT) {
// found a node!
break;
}
if (!node->hasDependency()) {
// reached the end
opt->addPlan(plan, rule, wasModified);
return;
}
node = node->getFirstDependency();
}
TRI_ASSERT(node != nullptr);
if (node == nullptr) {
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL, "logic error");
}
ExecutionNode* originalParent = nullptr;
{
if (node->hasParent()) {
auto const& parents = node->getParents();
originalParent = parents[0];
TRI_ASSERT(originalParent != nullptr);
TRI_ASSERT(node != plan->root());
} else {
TRI_ASSERT(node == plan->root());
}
}
// when we get here, we have found a matching data-modification node!
auto const nodeType = node->getType();
TRI_ASSERT(nodeType == ExecutionNode::INSERT ||
nodeType == ExecutionNode::REMOVE ||
nodeType == ExecutionNode::UPDATE ||
nodeType == ExecutionNode::REPLACE ||
nodeType == ExecutionNode::UPSERT);
Collection const* collection =
static_cast<ModificationNode*>(node)->collection();
#ifdef USE_ENTERPRISE
auto ci = ClusterInfo::instance();
auto collInfo = ci->getCollection(collection->vocbase->name(),
collection->name);
// Throws if collection is not found!
if (collInfo->isSmart() && collInfo->type() == TRI_COL_TYPE_EDGE) {
distributeInClusterRuleSmartEdgeCollection(opt, plan, rule);
return;
}
#endif
bool const defaultSharding = collection->usesDefaultSharding();
if (nodeType == ExecutionNode::REMOVE ||
nodeType == ExecutionNode::UPDATE) {
if (!defaultSharding) {
// We have to use a ScatterNode.
opt->addPlan(plan, rule, wasModified);
return;
}
}
// In the INSERT and REPLACE cases we use a DistributeNode...
TRI_ASSERT(node->hasDependency());
auto const& deps = node->getDependencies();
if (originalParent != nullptr) {
originalParent->removeDependency(node);
// unlink the node
auto root = plan->root();
plan->unlinkNode(node, true);
plan->root(root, true); // fix root node
} else {
// unlink the node
plan->unlinkNode(node, true);
plan->root(deps[0], true); // fix root node
}
// extract database from plan node
TRI_vocbase_t* vocbase = static_cast<ModificationNode*>(node)->vocbase();
// insert a distribute node
ExecutionNode* distNode = nullptr;
Variable const* inputVariable;
if (nodeType == ExecutionNode::INSERT ||
nodeType == ExecutionNode::REMOVE) {
TRI_ASSERT(node->getVariablesUsedHere().size() == 1);
// in case of an INSERT, the DistributeNode is responsible for generating
// keys
// if none present
bool const createKeys = (nodeType == ExecutionNode::INSERT);
inputVariable = node->getVariablesUsedHere()[0];
distNode = new DistributeNode(plan, plan->nextId(), vocbase, collection,
inputVariable->id, createKeys, true);
} else if (nodeType == ExecutionNode::REPLACE) {
std::vector<Variable const*> v = node->getVariablesUsedHere();
if (defaultSharding && v.size() > 1) {
// We only look into _inKeyVariable
inputVariable = v[1];
} else {
// We only look into _inDocVariable
inputVariable = v[0];
}
distNode = new DistributeNode(plan, plan->nextId(), vocbase, collection,
inputVariable->id, false, v.size() > 1);
} else if (nodeType == ExecutionNode::UPDATE) {
std::vector<Variable const*> v = node->getVariablesUsedHere();
if (v.size() > 1) {
// If there is a key variable:
inputVariable = v[1];
// This is the _inKeyVariable! This works, since we use a ScatterNode
// for non-default-sharding attributes.
} else {
// was only UPDATE <doc> IN <collection>
inputVariable = v[0];
}
distNode = new DistributeNode(plan, plan->nextId(), vocbase, collection,
inputVariable->id, false, v.size() > 1);
} else if (nodeType == ExecutionNode::UPSERT) {
// an UPSERT node has two input variables!
std::vector<Variable const*> v(node->getVariablesUsedHere());
TRI_ASSERT(v.size() >= 2);
auto d = new DistributeNode(plan, plan->nextId(), vocbase, collection,
v[0]->id, v[1]->id, true, true);
d->setAllowSpecifiedKeys(true);
distNode = static_cast<ExecutionNode*>(d);
} else {
TRI_ASSERT(false);
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL, "logic error");
}
TRI_ASSERT(distNode != nullptr);
plan->registerNode(distNode);
distNode->addDependency(deps[0]);
// insert a remote node
ExecutionNode* remoteNode =
new RemoteNode(plan, plan->nextId(), vocbase, collection, "", "", "");
plan->registerNode(remoteNode);
remoteNode->addDependency(distNode);
// re-link with the remote node
node->addDependency(remoteNode);
// insert another remote node
remoteNode =
new RemoteNode(plan, plan->nextId(), vocbase, collection, "", "", "");
plan->registerNode(remoteNode);
remoteNode->addDependency(node);
// insert a gather node
ExecutionNode* gatherNode =
new GatherNode(plan, plan->nextId(), vocbase, collection);
plan->registerNode(gatherNode);
gatherNode->addDependency(remoteNode);
if (originalParent != nullptr) {
// we did not replace the root node
TRI_ASSERT(gatherNode);
originalParent->addDependency(gatherNode);
} else {
// we replaced the root node, set a new root node
plan->root(gatherNode, true);
}
wasModified = true;
}
opt->addPlan(plan, rule, wasModified);
}
/// @brief move filters up into the cluster distribution part of the plan
/// this rule modifies the plan in place
/// filters are moved as far up in the plan as possible to make result sets
/// as small as possible as early as possible
void arangodb::aql::distributeFilternCalcToClusterRule(
Optimizer* opt, ExecutionPlan* plan, Optimizer::Rule const* rule) {
bool modified = false;
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::GATHER, true);
for (auto& n : nodes) {
auto const& remoteNodeList = n->getDependencies();
TRI_ASSERT(remoteNodeList.size() > 0);
auto rn = remoteNodeList[0];
if (!n->hasParent()) {
continue;
}
std::unordered_set<Variable const*> varsSetHere;
auto parents = n->getParents();
while (true) {
bool stopSearching = false;
auto inspectNode = parents[0];
switch (inspectNode->getType()) {
case EN::ENUMERATE_LIST:
case EN::SINGLETON:
case EN::INSERT:
case EN::REMOVE:
case EN::REPLACE:
case EN::UPDATE:
case EN::UPSERT: {
for (auto& v : inspectNode->getVariablesSetHere()) {
varsSetHere.emplace(v);
}
parents = inspectNode->getParents();
continue;
}
case EN::COLLECT:
case EN::SUBQUERY:
case EN::RETURN:
case EN::NORESULTS:
case EN::SCATTER:
case EN::DISTRIBUTE:
case EN::GATHER:
case EN::ILLEGAL:
case EN::REMOTE:
case EN::LIMIT:
case EN::SORT:
case EN::INDEX:
case EN::ENUMERATE_COLLECTION:
case EN::TRAVERSAL:
case EN::SHORTEST_PATH:
// do break
stopSearching = true;
break;
case EN::CALCULATION: {
auto calc = static_cast<CalculationNode const*>(inspectNode);
// check if the expression can be executed on a DB server safely
if (!calc->expression()->canRunOnDBServer()) {
stopSearching = true;
break;
}
// intentionally fall through here
}
case EN::FILTER:
for (auto& v : inspectNode->getVariablesUsedHere()) {
if (varsSetHere.find(v) != varsSetHere.end()) {
// do not move over the definition of variables that we need
stopSearching = true;
break;
}
}
if (!stopSearching) {
// remember our cursor...
parents = inspectNode->getParents();
// then unlink the filter/calculator from the plan
plan->unlinkNode(inspectNode);
// and re-insert into plan in front of the remoteNode
plan->insertDependency(rn, inspectNode);
modified = true;
// ready to rumble!
}
break;
}
if (stopSearching) {
break;
}
}
}
opt->addPlan(plan, rule, modified);
}
/// @brief move sorts up into the cluster distribution part of the plan
/// this rule modifies the plan in place
/// sorts are moved as far up in the plan as possible to make result sets
/// as small as possible as early as possible
///
/// filters are not pushed beyond limits
void arangodb::aql::distributeSortToClusterRule(Optimizer* opt,
ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::GATHER, true);
bool modified = false;
for (auto& n : nodes) {
auto const& remoteNodeList = n->getDependencies();
auto gatherNode = static_cast<GatherNode*>(n);
TRI_ASSERT(remoteNodeList.size() > 0);
auto rn = remoteNodeList[0];
if (!n->hasParent()) {
continue;
}
auto parents = n->getParents();
while (1) {
bool stopSearching = false;
auto inspectNode = parents[0];
switch (inspectNode->getType()) {
case EN::ENUMERATE_LIST:
case EN::SINGLETON:
case EN::COLLECT:
case EN::INSERT:
case EN::REMOVE:
case EN::REPLACE:
case EN::UPDATE:
case EN::UPSERT:
case EN::CALCULATION:
case EN::FILTER:
case EN::SUBQUERY:
case EN::RETURN:
case EN::NORESULTS:
case EN::SCATTER:
case EN::DISTRIBUTE:
case EN::GATHER:
case EN::ILLEGAL:
case EN::REMOTE:
case EN::LIMIT:
case EN::INDEX:
case EN::TRAVERSAL:
case EN::SHORTEST_PATH:
case EN::ENUMERATE_COLLECTION:
// For all these, we do not want to pull a SortNode further down
// out to the DBservers, note that potential FilterNodes and
// CalculationNodes that can be moved to the DBservers have
// already been moved over by the distribute-filtercalc-to-cluster
// rule which is done first.
stopSearching = true;
break;
case EN::SORT:
auto thisSortNode = static_cast<SortNode*>(inspectNode);
// remember our cursor...
parents = inspectNode->getParents();
// then unlink the filter/calculator from the plan
plan->unlinkNode(inspectNode);
// and re-insert into plan in front of the remoteNode
plan->insertDependency(rn, inspectNode);
gatherNode->setElements(thisSortNode->getElements());
modified = true;
// ready to rumble!
}
if (stopSearching) {
break;
}
}
}
opt->addPlan(plan, rule, modified);
}
/// @brief try to get rid of a RemoteNode->ScatterNode combination which has
/// only a SingletonNode and possibly some CalculationNodes as dependencies
void arangodb::aql::removeUnnecessaryRemoteScatterRule(
Optimizer* opt, ExecutionPlan* plan, Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::REMOTE, true);
std::unordered_set<ExecutionNode*> toUnlink;
for (auto& n : nodes) {
// check if the remote node is preceeded by a scatter node and any number of
// calculation and singleton nodes. if yes, remove remote and scatter
if (!n->hasDependency()) {
continue;
}
auto const dep = n->getFirstDependency();
if (dep->getType() != EN::SCATTER) {
continue;
}
bool canOptimize = true;
auto node = dep;
while (node != nullptr) {
auto const& d = node->getDependencies();
if (d.size() != 1) {
break;
}
node = d[0];
if (node->getType() != EN::SINGLETON &&
node->getType() != EN::CALCULATION) {
// found some other node type...
// this disqualifies the optimization
canOptimize = false;
break;
}
if (node->getType() == EN::CALCULATION) {
auto calc = static_cast<CalculationNode const*>(node);
// check if the expression can be executed on a DB server safely
if (!calc->expression()->canRunOnDBServer()) {
canOptimize = false;
break;
}
}
}
if (canOptimize) {
toUnlink.emplace(n);
toUnlink.emplace(dep);
}
}
if (!toUnlink.empty()) {
plan->unlinkNodes(toUnlink);
}
opt->addPlan(plan, rule, !toUnlink.empty());
}
/// WalkerWorker for undistributeRemoveAfterEnumColl
class RemoveToEnumCollFinder final : public WalkerWorker<ExecutionNode> {
ExecutionPlan* _plan;
std::unordered_set<ExecutionNode*>& _toUnlink;
bool _remove;
bool _scatter;
bool _gather;
EnumerateCollectionNode* _enumColl;
ExecutionNode* _setter;
const Variable* _variable;
ExecutionNode* _lastNode;
public:
RemoveToEnumCollFinder(ExecutionPlan* plan,
std::unordered_set<ExecutionNode*>& toUnlink)
: _plan(plan),
_toUnlink(toUnlink),
_remove(false),
_scatter(false),
_gather(false),
_enumColl(nullptr),
_setter(nullptr),
_variable(nullptr),
_lastNode(nullptr){};
~RemoveToEnumCollFinder() {}
bool before(ExecutionNode* en) override final {
switch (en->getType()) {
case EN::REMOVE: {
if (_remove) {
break;
}
// find the variable we are removing . . .
auto rn = static_cast<RemoveNode*>(en);
auto varsToRemove = rn->getVariablesUsedHere();
// remove nodes always have one input variable
TRI_ASSERT(varsToRemove.size() == 1);
_setter = _plan->getVarSetBy(varsToRemove[0]->id);
TRI_ASSERT(_setter != nullptr);
auto enumColl = _setter;
if (_setter->getType() == EN::CALCULATION) {
// this should be an attribute access for _key
auto cn = static_cast<CalculationNode*>(_setter);
if (!cn->expression()->isAttributeAccess()) {
break; // abort . . .
}
// check the variable is the same as the remove variable
auto vars = cn->getVariablesSetHere();
if (vars.size() != 1 || vars[0]->id != varsToRemove[0]->id) {
break; // abort . . .
}
// check the remove node's collection is sharded over _key
std::vector<std::string> shardKeys = rn->collection()->shardKeys();
if (shardKeys.size() != 1 || shardKeys[0] != StaticStrings::KeyString) {
break; // abort . . .
}
// set the varsToRemove to the variable in the expression of this
// node and also define enumColl
varsToRemove = cn->getVariablesUsedHere();
TRI_ASSERT(varsToRemove.size() == 1);
enumColl = _plan->getVarSetBy(varsToRemove[0]->id);
TRI_ASSERT(_setter != nullptr);
}
if (enumColl->getType() != EN::ENUMERATE_COLLECTION) {
break; // abort . . .
}
_enumColl = static_cast<EnumerateCollectionNode*>(enumColl);
if (_enumColl->collection() != rn->collection()) {
break; // abort . . .
}
_variable = varsToRemove[0]; // the variable we'll remove
_remove = true;
_lastNode = en;
return false; // continue . . .
}
case EN::REMOTE: {
_toUnlink.emplace(en);
_lastNode = en;
return false; // continue . . .
}
case EN::DISTRIBUTE:
case EN::SCATTER: {
if (_scatter) { // met more than one scatter node
break; // abort . . .
}
_scatter = true;
_toUnlink.emplace(en);
_lastNode = en;
return false; // continue . . .
}
case EN::GATHER: {
if (_gather) { // met more than one gather node
break; // abort . . .
}
_gather = true;
_toUnlink.emplace(en);
_lastNode = en;
return false; // continue . . .
}
case EN::FILTER: {
_lastNode = en;
return false; // continue . . .
}
case EN::CALCULATION: {
TRI_ASSERT(_setter != nullptr);
if (_setter->getType() == EN::CALCULATION &&
_setter->id() == en->id()) {
_lastNode = en;
return false; // continue . . .
}
if (_lastNode == nullptr || _lastNode->getType() != EN::FILTER) {
// doesn't match the last filter node
break; // abort . . .
}
auto cn = static_cast<CalculationNode*>(en);
auto fn = static_cast<FilterNode*>(_lastNode);
// check these are a Calc-Filter pair
if (cn->getVariablesSetHere()[0]->id !=
fn->getVariablesUsedHere()[0]->id) {
break; // abort . . .
}
// check that we are filtering/calculating something with the variable
// we are to remove
auto varsUsedHere = cn->getVariablesUsedHere();
if (varsUsedHere.size() != 1) {
break; // abort . . .
}
if (varsUsedHere[0]->id != _variable->id) {
break;
}
_lastNode = en;
return false; // continue . . .
}
case EN::ENUMERATE_COLLECTION: {
// check that we are enumerating the variable we are to remove
// and that we have already seen a remove node
TRI_ASSERT(_enumColl != nullptr);
if (en->id() != _enumColl->id()) {
break;
}
return true; // reached the end!
}
case EN::SINGLETON:
case EN::ENUMERATE_LIST:
case EN::SUBQUERY:
case EN::COLLECT:
case EN::INSERT:
case EN::REPLACE:
case EN::UPDATE:
case EN::UPSERT:
case EN::RETURN:
case EN::NORESULTS:
case EN::ILLEGAL:
case EN::LIMIT:
case EN::SORT:
case EN::TRAVERSAL:
case EN::SHORTEST_PATH:
case EN::INDEX: {
// if we meet any of the above, then we abort . . .
}
}
_toUnlink.clear();
return true;
}
};
/// @brief recognizes that a RemoveNode can be moved to the shards.
void arangodb::aql::undistributeRemoveAfterEnumCollRule(
Optimizer* opt, ExecutionPlan* plan, Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::REMOVE, true);
std::unordered_set<ExecutionNode*> toUnlink;
for (auto& n : nodes) {
RemoveToEnumCollFinder finder(plan, toUnlink);
n->walk(&finder);
}
bool modified = false;
if (!toUnlink.empty()) {
plan->unlinkNodes(toUnlink);
modified = true;
}
opt->addPlan(plan, rule, modified);
}
/// @brief auxilliary struct for finding common nodes in OR conditions
struct CommonNodeFinder {
std::vector<AstNode const*> possibleNodes;
bool find(AstNode const* node, AstNodeType condition,
AstNode const*& commonNode, std::string& commonName) {
if (node->type == NODE_TYPE_OPERATOR_BINARY_OR) {
return (find(node->getMember(0), condition, commonNode, commonName) &&
find(node->getMember(1), condition, commonNode, commonName));
}
if (node->type == NODE_TYPE_VALUE) {
possibleNodes.clear();
return true;
}
if (node->type == condition ||
(condition != NODE_TYPE_OPERATOR_BINARY_EQ &&
(node->type == NODE_TYPE_OPERATOR_BINARY_LE ||
node->type == NODE_TYPE_OPERATOR_BINARY_LT ||
node->type == NODE_TYPE_OPERATOR_BINARY_GE ||
node->type == NODE_TYPE_OPERATOR_BINARY_GT ||
node->type == NODE_TYPE_OPERATOR_BINARY_IN))) {
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
bool const isIn =
(node->type == NODE_TYPE_OPERATOR_BINARY_IN && rhs->isArray());
if (node->type == NODE_TYPE_OPERATOR_BINARY_IN &&
rhs->type == NODE_TYPE_EXPANSION) {
// ooh, cannot optimize this (yet)
possibleNodes.clear();
return false;
}
if (!isIn && lhs->isConstant()) {
commonNode = rhs;
commonName = commonNode->toString();
possibleNodes.clear();
return true;
}
if (rhs->isConstant()) {
commonNode = lhs;
commonName = commonNode->toString();
possibleNodes.clear();
return true;
}
if (rhs->type == NODE_TYPE_FCALL || rhs->type == NODE_TYPE_FCALL_USER ||
rhs->type == NODE_TYPE_REFERENCE) {
commonNode = lhs;
commonName = commonNode->toString();
possibleNodes.clear();
return true;
}
if (!isIn &&
(lhs->type == NODE_TYPE_FCALL || lhs->type == NODE_TYPE_FCALL_USER ||
lhs->type == NODE_TYPE_REFERENCE)) {
commonNode = rhs;
commonName = commonNode->toString();
possibleNodes.clear();
return true;
}
if (!isIn && (lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS ||
lhs->type == NODE_TYPE_INDEXED_ACCESS)) {
if (possibleNodes.size() == 2) {
for (size_t i = 0; i < 2; i++) {
if (lhs->toString() == possibleNodes[i]->toString()) {
commonNode = possibleNodes[i];
commonName = commonNode->toString();
possibleNodes.clear();
return true;
}
}
// don't return, must consider the other side of the condition
} else {
possibleNodes.emplace_back(lhs);
}
}
if (rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS ||
rhs->type == NODE_TYPE_INDEXED_ACCESS) {
if (possibleNodes.size() == 2) {
for (size_t i = 0; i < 2; i++) {
if (rhs->toString() == possibleNodes[i]->toString()) {
commonNode = possibleNodes[i];
commonName = commonNode->toString();
possibleNodes.clear();
return true;
}
}
return false;
} else {
possibleNodes.emplace_back(rhs);
return true;
}
}
}
possibleNodes.clear();
return (!commonName.empty());
}
};
/// @brief auxilliary struct for the OR-to-IN conversion
struct OrSimplifier {
Ast* ast;
explicit OrSimplifier(Ast* ast) : ast(ast) {}
std::string stringifyNode(AstNode const* node) const {
try {
return node->toString();
}
catch (...) {
}
return "";
}
bool qualifies(AstNode const* node, std::string& attributeName) const {
if (node->isConstant()) {
return false;
}
if (node->type == NODE_TYPE_ATTRIBUTE_ACCESS ||
node->type == NODE_TYPE_INDEXED_ACCESS ||
node->type == NODE_TYPE_REFERENCE) {
attributeName = stringifyNode(node);
return true;
}
return false;
}
bool detect(AstNode const* node, bool preferRight, std::string& attributeName, AstNode const*& attr, AstNode const*& value) const {
attributeName.clear();
if (node->type == NODE_TYPE_OPERATOR_BINARY_EQ) {
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
if (!preferRight && qualifies(lhs, attributeName)) {
if (rhs->isDeterministic() && !rhs->canThrow()) {
attr = lhs;
value = rhs;
return true;
}
}
if (qualifies(rhs, attributeName)) {
if (lhs->isDeterministic() && !lhs->canThrow()) {
attr = rhs;
value = lhs;
return true;
}
}
// fallthrough intentional
}
else if (node->type == NODE_TYPE_OPERATOR_BINARY_IN) {
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
if (rhs->isArray() && qualifies(lhs, attributeName)) {
if (rhs->isDeterministic() && !rhs->canThrow()) {
attr = lhs;
value = rhs;
return true;
}
}
// fallthrough intentional
}
return false;
}
AstNode* buildValues(AstNode const* attr, AstNode const* lhs, bool leftIsArray, AstNode const* rhs, bool rightIsArray) const {
auto values = ast->createNodeArray();
if (leftIsArray) {
size_t const n = lhs->numMembers();
for (size_t i = 0; i < n; ++i) {
values->addMember(lhs->getMemberUnchecked(i));
}
}
else {
values->addMember(lhs);
}
if (rightIsArray) {
size_t const n = rhs->numMembers();
for (size_t i = 0; i < n; ++i) {
values->addMember(rhs->getMemberUnchecked(i));
}
}
else {
values->addMember(rhs);
}
return ast->createNodeBinaryOperator(NODE_TYPE_OPERATOR_BINARY_IN, attr, values);
}
AstNode* simplify(AstNode const* node) const {
if (node == nullptr) {
return nullptr;
}
if (node->type == NODE_TYPE_OPERATOR_BINARY_OR) {
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
auto lhsNew = simplify(lhs);
auto rhsNew = simplify(rhs);
if (lhs != lhsNew || rhs != rhsNew) {
// create a modified node
node = ast->createNodeBinaryOperator(node->type, lhsNew, rhsNew);
}
if ((lhsNew->type == NODE_TYPE_OPERATOR_BINARY_EQ || lhsNew->type == NODE_TYPE_OPERATOR_BINARY_IN) &&
(rhsNew->type == NODE_TYPE_OPERATOR_BINARY_EQ || rhsNew->type == NODE_TYPE_OPERATOR_BINARY_IN)) {
std::string leftName;
std::string rightName;
AstNode const* leftAttr = nullptr;
AstNode const* rightAttr = nullptr;
AstNode const* leftValue = nullptr;
AstNode const* rightValue = nullptr;
for (size_t i = 0; i < 4; ++i) {
if (detect(lhsNew, i >= 2, leftName, leftAttr, leftValue) &&
detect(rhsNew, i % 2 == 0, rightName, rightAttr, rightValue) &&
leftName == rightName) {
return buildValues(leftAttr, leftValue, lhsNew->type == NODE_TYPE_OPERATOR_BINARY_IN, rightValue, rhsNew->type == NODE_TYPE_OPERATOR_BINARY_IN);
}
}
}
// return node as is
return const_cast<AstNode*>(node);
}
if (node->type == NODE_TYPE_OPERATOR_BINARY_AND) {
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
auto lhsNew = simplify(lhs);
auto rhsNew = simplify(rhs);
if (lhs != lhsNew || rhs != rhsNew) {
// return a modified node
return ast->createNodeBinaryOperator(node->type, lhsNew, rhsNew);
}
// fallthrough intentional
}
return const_cast<AstNode*>(node);
}
};
/// @brief this rule replaces expressions of the type:
/// x.val == 1 || x.val == 2 || x.val == 3
// with
// x.val IN [1,2,3]
// when the OR conditions are present in the same FILTER node, and refer to the
// same (single) attribute.
void arangodb::aql::replaceOrWithInRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::FILTER, true);
bool modified = false;
for (auto const& n : nodes) {
TRI_ASSERT(n->hasDependency());
auto const dep = n->getFirstDependency();
if (dep->getType() != EN::CALCULATION) {
continue;
}
auto fn = static_cast<FilterNode*>(n);
auto inVar = fn->getVariablesUsedHere();
auto cn = static_cast<CalculationNode*>(dep);
auto outVar = cn->getVariablesSetHere();
if (outVar.size() != 1 || outVar[0]->id != inVar[0]->id) {
continue;
}
auto root = cn->expression()->node();
OrSimplifier simplifier(plan->getAst());
auto newRoot = simplifier.simplify(root);
if (newRoot != root) {
ExecutionNode* newNode = nullptr;
Expression* expr = new Expression(plan->getAst(), newRoot);
try {
TRI_IF_FAILURE("OptimizerRules::replaceOrWithInRuleOom") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
newNode = new CalculationNode(plan, plan->nextId(), expr, outVar[0]);
} catch (...) {
delete expr;
throw;
}
plan->registerNode(newNode);
plan->replaceNode(cn, newNode);
modified = true;
}
}
opt->addPlan(plan, rule, modified);
}
struct RemoveRedundantOr {
AstNode const* bestValue = nullptr;
AstNodeType comparison;
bool inclusive;
bool isComparisonSet = false;
CommonNodeFinder finder;
AstNode const* commonNode = nullptr;
std::string commonName;
AstNode* createReplacementNode(Ast* ast) {
TRI_ASSERT(commonNode != nullptr);
TRI_ASSERT(bestValue != nullptr);
TRI_ASSERT(isComparisonSet == true);
return ast->createNodeBinaryOperator(comparison, commonNode->clone(ast),
bestValue);
}
bool isInclusiveBound(AstNodeType type) {
return (type == NODE_TYPE_OPERATOR_BINARY_GE ||
type == NODE_TYPE_OPERATOR_BINARY_LE);
}
int isCompatibleBound(AstNodeType type, AstNode const* value) {
if ((comparison == NODE_TYPE_OPERATOR_BINARY_LE ||
comparison == NODE_TYPE_OPERATOR_BINARY_LT) &&
(type == NODE_TYPE_OPERATOR_BINARY_LE ||
type == NODE_TYPE_OPERATOR_BINARY_LT)) {
return -1; // high bound
} else if ((comparison == NODE_TYPE_OPERATOR_BINARY_GE ||
comparison == NODE_TYPE_OPERATOR_BINARY_GT) &&
(type == NODE_TYPE_OPERATOR_BINARY_GE ||
type == NODE_TYPE_OPERATOR_BINARY_GT)) {
return 1; // low bound
}
return 0; // incompatible bounds
}
// returns false if the existing value is better and true if the input value
// is
// better
bool compareBounds(AstNodeType type, AstNode const* value, int lowhigh) {
int cmp = CompareAstNodes(bestValue, value, true);
if (cmp == 0 && (isInclusiveBound(comparison) != isInclusiveBound(type))) {
return (isInclusiveBound(type) ? true : false);
}
return (cmp * lowhigh == 1);
}
bool hasRedundantCondition(AstNode const* node) {
if (finder.find(node, NODE_TYPE_OPERATOR_BINARY_LT, commonNode,
commonName)) {
return hasRedundantConditionWalker(node);
}
return false;
}
bool hasRedundantConditionWalker(AstNode const* node) {
AstNodeType type = node->type;
if (type == NODE_TYPE_OPERATOR_BINARY_OR) {
return (hasRedundantConditionWalker(node->getMember(0)) &&
hasRedundantConditionWalker(node->getMember(1)));
}
if (type == NODE_TYPE_OPERATOR_BINARY_LE ||
type == NODE_TYPE_OPERATOR_BINARY_LT ||
type == NODE_TYPE_OPERATOR_BINARY_GE ||
type == NODE_TYPE_OPERATOR_BINARY_GT) {
auto lhs = node->getMember(0);
auto rhs = node->getMember(1);
if (hasRedundantConditionWalker(rhs) &&
!hasRedundantConditionWalker(lhs) && lhs->isConstant()) {
if (!isComparisonSet) {
comparison = Ast::ReverseOperator(type);
bestValue = lhs;
isComparisonSet = true;
return true;
}
int lowhigh = isCompatibleBound(Ast::ReverseOperator(type), lhs);
if (lowhigh == 0) {
return false;
}
if (compareBounds(type, lhs, lowhigh)) {
comparison = Ast::ReverseOperator(type);
bestValue = lhs;
}
return true;
}
if (hasRedundantConditionWalker(lhs) &&
!hasRedundantConditionWalker(rhs) && rhs->isConstant()) {
if (!isComparisonSet) {
comparison = type;
bestValue = rhs;
isComparisonSet = true;
return true;
}
int lowhigh = isCompatibleBound(type, rhs);
if (lowhigh == 0) {
return false;
}
if (compareBounds(type, rhs, lowhigh)) {
comparison = type;
bestValue = rhs;
}
return true;
}
// if hasRedundantConditionWalker(lhs) and
// hasRedundantConditionWalker(rhs), then one of the conditions in the OR
// statement is of the form x == x fall-through intentional
} else if (type == NODE_TYPE_REFERENCE ||
type == NODE_TYPE_ATTRIBUTE_ACCESS ||
type == NODE_TYPE_INDEXED_ACCESS) {
// get a string representation of the node for comparisons
return (node->toString() == commonName);
}
return false;
}
};
void arangodb::aql::removeRedundantOrRule(Optimizer* opt, ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::FILTER, true);
bool modified = false;
for (auto const& n : nodes) {
TRI_ASSERT(n->hasDependency());
auto const dep = n->getFirstDependency();
if (dep->getType() != EN::CALCULATION) {
continue;
}
auto fn = static_cast<FilterNode*>(n);
auto inVar = fn->getVariablesUsedHere();
auto cn = static_cast<CalculationNode*>(dep);
auto outVar = cn->getVariablesSetHere();
if (outVar.size() != 1 || outVar[0]->id != inVar[0]->id) {
continue;
}
if (cn->expression()->node()->type != NODE_TYPE_OPERATOR_BINARY_OR) {
continue;
}
RemoveRedundantOr remover;
if (remover.hasRedundantCondition(cn->expression()->node())) {
Expression* expr = nullptr;
ExecutionNode* newNode = nullptr;
auto astNode = remover.createReplacementNode(plan->getAst());
expr = new Expression(plan->getAst(), astNode);
try {
newNode = new CalculationNode(plan, plan->nextId(), expr, outVar[0]);
} catch (...) {
delete expr;
throw;
}
plan->registerNode(newNode);
plan->replaceNode(cn, newNode);
modified = true;
}
}
opt->addPlan(plan, rule, modified);
}
/// @brief remove $OLD and $NEW variables from data-modification statements
/// if not required
void arangodb::aql::removeDataModificationOutVariablesRule(
Optimizer* opt, ExecutionPlan* plan, Optimizer::Rule const* rule) {
bool modified = false;
std::vector<ExecutionNode::NodeType> const types = {
EN::REMOVE, EN::INSERT, EN::UPDATE, EN::REPLACE, EN::UPSERT};
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, types, true);
for (auto const& n : nodes) {
auto node = static_cast<ModificationNode*>(n);
TRI_ASSERT(node != nullptr);
auto varsUsedLater = n->getVarsUsedLater();
if (varsUsedLater.find(node->getOutVariableOld()) == varsUsedLater.end()) {
// "$OLD" is not used later
node->clearOutVariableOld();
modified = true;
}
if (varsUsedLater.find(node->getOutVariableNew()) == varsUsedLater.end()) {
// "$NEW" is not used later
node->clearOutVariableNew();
modified = true;
}
}
opt->addPlan(plan, rule, modified);
}
/// @brief patch UPDATE statement on single collection that iterates over the
/// entire collection to operate in batches
void arangodb::aql::patchUpdateStatementsRule(Optimizer* opt,
ExecutionPlan* plan,
Optimizer::Rule const* rule) {
// no need to dive into subqueries here, as UPDATE needs to be on the top
// level
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::UPDATE, false);
bool modified = false;
for (auto const& n : nodes) {
// we should only get through here a single time
auto node = static_cast<ModificationNode*>(n);
TRI_ASSERT(node != nullptr);
auto& options = node->getOptions();
if (!options.readCompleteInput) {
// already ok
continue;
}
auto const collection = node->collection();
auto dep = n->getFirstDependency();
while (dep != nullptr) {
auto const type = dep->getType();
if (type == EN::ENUMERATE_LIST || type == EN::INDEX ||
type == EN::SUBQUERY) {
// not suitable
modified = false;
break;
}
if (type == EN::ENUMERATE_COLLECTION) {
auto collectionNode = static_cast<EnumerateCollectionNode const*>(dep);
if (collectionNode->collection() != collection) {
// different collection, not suitable
modified = false;
break;
} else {
modified = true;
}
}
if (type == EN::TRAVERSAL || type == EN::SHORTEST_PATH) {
// unclear what will be read by the traversal
modified = false;
break;
}
dep = dep->getFirstDependency();
}
if (modified) {
options.readCompleteInput = false;
}
}
// always re-add the original plan, be it modified or not
// only a flag in the plan will be modified
opt->addPlan(plan, rule, modified);
}
/// @brief optimizes away unused traversal output variables and
/// merges filter nodes into graph traversal nodes
void arangodb::aql::optimizeTraversalsRule(Optimizer* opt,
ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> tNodes{a};
plan->findNodesOfType(tNodes, EN::TRAVERSAL, true);
if (tNodes.empty()) {
// no traversals present
opt->addPlan(plan, rule, false);
return;
}
bool modified = false;
// first make a pass over all traversal nodes and remove unused
// variables from them
for (auto const& n : tNodes) {
TraversalNode* traversal = static_cast<TraversalNode*>(n);
auto varsUsedLater = n->getVarsUsedLater();
// note that we can NOT optimize away the vertex output variable
// yet, as many traversal internals depend on the number of vertices
// found/built
auto outVariable = traversal->edgeOutVariable();
if (outVariable != nullptr &&
varsUsedLater.find(outVariable) == varsUsedLater.end()) {
// traversal edge outVariable not used later
traversal->setEdgeOutput(nullptr);
modified = true;
}
outVariable = traversal->pathOutVariable();
if (outVariable != nullptr &&
varsUsedLater.find(outVariable) == varsUsedLater.end()) {
// traversal path outVariable not used later
traversal->setPathOutput(nullptr);
modified = true;
}
}
if (!tNodes.empty()) {
// These are all the end nodes where we start
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findEndNodes(nodes, true);
for (auto const& n : nodes) {
TraversalConditionFinder finder(plan, &modified);
n->walk(&finder);
}
}
opt->addPlan(plan, rule, modified);
}
/// @brief prepares traversals for execution (hidden rule)
void arangodb::aql::prepareTraversalsRule(Optimizer* opt,
ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> tNodes{a};
plan->findNodesOfType(tNodes, EN::TRAVERSAL, true);
if (tNodes.empty()) {
// no traversals present
opt->addPlan(plan, rule, false);
return;
}
// first make a pass over all traversal nodes and remove unused
// variables from them
for (auto const& n : tNodes) {
TraversalNode* traversal = static_cast<TraversalNode*>(n);
traversal->prepareOptions();
}
opt->addPlan(plan, rule, true);
}
/// @brief pulls out simple subqueries and merges them with the level above
///
/// For example, if we have the input query
///
/// FOR x IN (
/// FOR y IN collection FILTER y.value >= 5 RETURN y.test
/// )
/// RETURN x.a
///
/// then this rule will transform it into:
///
/// FOR tmp IN collection
/// FILTER tmp.value >= 5
/// LET x = tmp.test
/// RETURN x.a
void arangodb::aql::inlineSubqueriesRule(Optimizer* opt,
ExecutionPlan* plan,
Optimizer::Rule const* rule) {
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, EN::SUBQUERY, true);
if (nodes.empty()) {
opt->addPlan(plan, rule, false);
return;
}
bool modified = false;
for (auto const& n : nodes) {
auto subqueryNode = static_cast<SubqueryNode*>(n);
if (subqueryNode->isModificationQuery()) {
// can't modify modifying subqueries
continue;
}
if (subqueryNode->canThrow()) {
// can't inline throwing subqueries
continue;
}
// check if subquery contains a COLLECT node with an INTO variable
bool eligible = true;
auto current = subqueryNode->getSubquery();
TRI_ASSERT(current != nullptr);
while (current != nullptr) {
if (current->getType() == EN::COLLECT) {
if (static_cast<CollectNode const*>(current)->hasOutVariable()) {
eligible = false;
break;
}
}
current = current->getFirstDependency();
}
if (!eligible) {
continue;
}
Variable const* out = subqueryNode->outVariable();
TRI_ASSERT(out != nullptr);
std::unordered_set<Variable const*> varsUsed;
current = n;
// now check where the subquery is used
while (current->hasParent()) {
if (current->getType() == EN::ENUMERATE_LIST) {
// we're only interested in FOR loops...
auto listNode = static_cast<EnumerateListNode*>(current);
// ...that use our subquery as its input
if (listNode->inVariable() == out) {
// bingo!
auto queryVariables = plan->getAst()->variables();
std::vector<ExecutionNode*> subNodes(subqueryNode->getSubquery()->getDependencyChain(true));
// check if the subquery result variable is used after the FOR loop as well
std::unordered_set<Variable const*> varsUsedLater(listNode->getVarsUsedLater());
if (varsUsedLater.find(listNode->inVariable()) != varsUsedLater.end()) {
// exit the loop
current = nullptr;
break;
}
TRI_ASSERT(! subNodes.empty());
auto returnNode = static_cast<ReturnNode*>(subNodes[0]);
TRI_ASSERT(returnNode->getType() == EN::RETURN);
modified = true;
auto previous = n->getFirstDependency();
auto insert = n->getFirstParent();
TRI_ASSERT(insert != nullptr);
// unlink the original SubqueryNode
plan->unlinkNode(n, false);
for (auto& it : subNodes) {
// first unlink them all
plan->unlinkNode(it, true);
if (it->getType() == EN::SINGLETON) {
// reached the singleton node already. that means we can stop
break;
}
// and now insert them one level up
if (it != returnNode) {
// we skip over the subquery's return node. we don't need it anymore
insert->removeDependencies();
TRI_ASSERT(it != nullptr);
insert->addDependency(it);
insert = it;
// additionally rename the variables from the subquery so they cannot
// conflict with the ones from the top query
for (auto const& variable : it->getVariablesSetHere()) {
queryVariables->renameVariable(variable->id);
}
}
}
// link the top node in the subquery with the original plan
if (previous != nullptr) {
insert->addDependency(previous);
}
// remove the list node from the plan
plan->unlinkNode(listNode, false);
queryVariables->renameVariable(returnNode->inVariable()->id, listNode->outVariable()->name);
// finally replace the variables
std::unordered_map<VariableId, Variable const*> replacements;
replacements.emplace(listNode->outVariable()->id, returnNode->inVariable());
RedundantCalculationsReplacer finder(replacements);
plan->root()->walk(&finder);
// abort optimization
current = nullptr;
}
}
if (current == nullptr) {
break;
}
varsUsed.clear();
current->getVariablesUsedHere(varsUsed);
if (varsUsed.find(out) != varsUsed.end()) {
// we found another node that uses the subquery variable
// we need to stop the optimization attempts here
break;
}
current = current->getFirstParent();
}
}
opt->addPlan(plan, rule, modified);
}
///////////////////////////////////////////////////////////////////////////////
// GEO RULES //////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
struct GeoIndexInfo{
operator bool() const { return distanceNode && valid; }
void invalidate() { valid = false; }
GeoIndexInfo()
: collectionNode(nullptr)
, executionNode(nullptr)
, expressionParent(nullptr)
, expressionNode(nullptr)
, distanceNode(nullptr)
, index(nullptr)
, range(nullptr)
, executionNodeType(EN::ILLEGAL)
, within(false)
, lessgreaterequal(false)
, valid(true)
{}
EnumerateCollectionNode* collectionNode; // node that will be replaced by (geo) IndexNode
ExecutionNode* executionNode; // start node hat is a sort or filter
AstNode* expressionParent; // AstNode that is the parent of the Node
AstNode* expressionNode; // AstNode that contains the sort/filter condition
AstNode* distanceNode; // AstNode that contains the distance parameters
std::shared_ptr<arangodb::Index> index; //pointer to geoindex
AstNode const* range; // range for within
ExecutionNode::NodeType executionNodeType; // type of execution node sort or filter
bool within; // is this a within lookup
bool lessgreaterequal; // is this a check for le/ge (true) or lt/gt (false)
bool valid; // contains this node a valid condition
std::vector<std::string> longitude; // access path to longitude
std::vector<std::string> latitude; // access path to latitude
};
//////////////////////////////////////////////////////////////////////
//candidate checking
AstNode* isValueOrRefNode(AstNode* node){
//TODO - implement me
return node;
}
GeoIndexInfo isDistanceFunction(AstNode* distanceNode, AstNode* expressionParent){
// the expression must exist and it must be a function call
auto rv = GeoIndexInfo{};
if(distanceNode->type != NODE_TYPE_FCALL) {
return rv;
}
//get the ast node of the expression
auto func = static_cast<Function const*>(distanceNode->getData());
// we're looking for "DISTANCE()", which is a function call
// with an empty parameters array
if ( func->externalName != "DISTANCE" || distanceNode->numMembers() != 1 ) {
return rv;
}
//LOG_TOPIC(DEBUG, Logger::DEVEL) << "FOUND DISTANCE FUNCTION";
rv.distanceNode = distanceNode;
rv.expressionNode = distanceNode;
rv.expressionParent = expressionParent;
return rv;
}
GeoIndexInfo isGeoFilterExpression(AstNode* node, AstNode* expressionParent){
// binary compare must be on top
bool dist_first = true;
bool lessEqual = true;
auto rv = GeoIndexInfo{};
if( node->type != NODE_TYPE_OPERATOR_BINARY_GE
&& node->type != NODE_TYPE_OPERATOR_BINARY_GT
&& node->type != NODE_TYPE_OPERATOR_BINARY_LE
&& node->type != NODE_TYPE_OPERATOR_BINARY_LT) {
//LOG_TOPIC(DEBUG, Logger::DEVEL) << "expression does not contain <,<=,>=,>";
return rv;
} else {
if (node->type == NODE_TYPE_OPERATOR_BINARY_GE || node->type == NODE_TYPE_OPERATOR_BINARY_GT){
dist_first = false;
}
}
if (node->type == NODE_TYPE_OPERATOR_BINARY_GT || node->type == NODE_TYPE_OPERATOR_BINARY_LT){
lessEqual = false;
}
//LOG_TOPIC(DEBUG, Logger::DEVEL) << "binary operator found";
// binary expression has 2 members
if(node->numMembers() != 2){
return rv;
}
//LOG_TOPIC(DEBUG, Logger::DEVEL) << "operator has 2 members";
AstNode* first = node->getMember(0);
AstNode* second = node->getMember(1); //FIXME -- const node
auto eval_stuff = [](bool dist_first, bool lessEqual, GeoIndexInfo&& dist_fun, AstNode* value_node){
//LOG_TOPIC(DEBUG, Logger::DEVEL) << "1: " << dist_first;
//LOG_TOPIC(DEBUG, Logger::DEVEL) << "2: " << (bool)dist_fun;
//LOG_TOPIC(DEBUG, Logger::DEVEL) << "3: " << (bool)value_node;
if (dist_first && dist_fun && value_node){
dist_fun.within = true;
dist_fun.range = value_node; //FIXME
dist_fun.lessgreaterequal = lessEqual;
//LOG_TOPIC(DEBUG, Logger::DEVEL) << "FOUND WITHIN";
} else {
dist_fun.invalidate();
}
return dist_fun;
};
//LOG_TOPIC(DEBUG, Logger::DEVEL) << "frist check";
rv = eval_stuff(dist_first, lessEqual, isDistanceFunction(first, expressionParent), isValueOrRefNode(second));
if (!rv) {
//LOG_TOPIC(DEBUG, Logger::DEVEL) << "second check";
rv = eval_stuff(dist_first, lessEqual, isDistanceFunction(second, expressionParent), isValueOrRefNode(first));
}
//LOG_TOPIC(DEBUG, Logger::DEVEL) << "result " << (bool) rv;
if(rv){
//this must be set after checking if the node contains a distance node.
rv.expressionNode = node;
}
return rv;
}
GeoIndexInfo iterativePreorderWithCondition(AstNode* root, GeoIndexInfo(*condition)(AstNode*, AstNode*)){
// returns on first hit
if (!root){
return GeoIndexInfo{};
}
std::vector<std::pair<AstNode*,AstNode*>> nodestack;
nodestack.push_back({root,nullptr});
while(nodestack.size()){
auto current = nodestack.back();
nodestack.pop_back();
GeoIndexInfo rv = condition(current.first,current.second);
if (rv) {
return rv;
}
if (current.first->type == NODE_TYPE_OPERATOR_BINARY_AND || current.first->type == NODE_TYPE_OPERATOR_NARY_AND ){
for (std::size_t i = 0; i < current.first->numMembers(); ++i){
nodestack.push_back({current.first->getMember(i),current.first});
}
}
}
return GeoIndexInfo{};
}
//checks a single sort or filter node
GeoIndexInfo identifyGeoOptimizationCandidate(ExecutionNode::NodeType type, ExecutionPlan* plan, ExecutionNode* n){
ExecutionNode* setter = nullptr;
auto rv = GeoIndexInfo{};
//TODO - iterate over elements of conjunction / disjunction
LOG_TOPIC(DEBUG, Logger::DEVEL) << "ENTER IDENTIFY";
switch(type){
case EN::SORT: {
LOG_TOPIC(DEBUG, Logger::DEVEL) << "found sort node";
auto node = static_cast<SortNode*>(n);
auto& elements = node->getElements();
// we're looking for "SORT DISTANCE(x,y,a,b) ASC", which has just one sort criterion
if ( !(elements.size() == 1 && elements[0].second)) {
//test on second makes sure the SORT is ascending
return rv;
}
//variable of sort expression
auto variable = elements[0].first;
TRI_ASSERT(variable != nullptr);
//// find the expression that is bound to the variable
// get the expression node that holds the calculation
setter = plan->getVarSetBy(variable->id);
}
break;
case EN::FILTER: {
LOG_TOPIC(DEBUG, Logger::DEVEL) << "found filter node";
auto node = static_cast<FilterNode*>(n);
// filter nodes always have one input variable
auto varsUsedHere = node->getVariablesUsedHere();
TRI_ASSERT(varsUsedHere.size() == 1);
// now check who introduced our variable
auto variable = varsUsedHere[0];
setter = plan->getVarSetBy(variable->id);
}
break;
default:
return rv;
}
// common part - extract astNode from setter witch is a calculation node
if (setter == nullptr || setter->getType() != EN::CALCULATION) {
return rv;
}
LOG_TOPIC(DEBUG, Logger::DEVEL) << "found setter node for calcuation";
// downcast to calculation node and get expression
auto cn = static_cast<CalculationNode*>(setter);
auto expression = cn->expression();
// the expression must exist and it must have an astNode
if (expression == nullptr || expression->node() == nullptr){
// not the right type of node
return rv;
}
AstNode* node = expression->nodeForModification();
LOG_TOPIC(DEBUG, Logger::DEVEL) << "checking expression of calcaulation";
//FIXME -- technical debt -- code duplication / not all cases covered
switch(type){
case EN::SORT: {
rv = isDistanceFunction(node,nullptr);
}
break;
case EN::FILTER: {
rv = iterativePreorderWithCondition(node,&isGeoFilterExpression);
}
break;
default:
LOG_TOPIC(DEBUG, Logger::DEVEL) << "expression is not valid for geoindex";
rv.invalidate(); // not required but make sure the result is invalid
}
rv.executionNode = n;
rv.executionNodeType = type;
return rv;
};
//checks sort and filter nodes for conditions
void checkNodesForGeoOptimization(ExecutionNode::NodeType type, ExecutionPlan* plan, std::vector<GeoIndexInfo>& infos){
SmallVector<ExecutionNode*>::allocator_type::arena_type a;
SmallVector<ExecutionNode*> nodes{a};
plan->findNodesOfType(nodes, type, true);
for (auto& n : nodes) {
auto geoIndexInfo = identifyGeoOptimizationCandidate(type, plan, n);
if(!geoIndexInfo){
continue;
}
infos.push_back(std::move(geoIndexInfo));
//LOG_TOPIC(DEBUG, Logger::DEVEL) << " FOUND NEAR OR WITHIN";
}
}
//////////////////////////////////////////////////////////////////////
//modify plan
// should go to candidate checking
GeoIndexInfo geoDistanceFunctionArgCheck(std::pair<AstNode*,AstNode*> const& pair, ExecutionPlan* plan, GeoIndexInfo info){
using SV = std::vector<std::string>;
LOG_TOPIC(DEBUG, Logger::DEVEL) << " enter argument check";
// first and second should be based on the same document - need to provide the document
// in order to see which collection is bound to it and if that collections supports geo-index
if( !pair.first->isAttributeAccessForVariable() || !pair.second->isAttributeAccessForVariable()){
LOG_TOPIC(DEBUG, Logger::DEVEL) << " not both args are of type attribute access";
info.invalidate();
return info;
}
// expect access of the for doc.attribute
// TODO: more complex access path have to be added: loop until REFERENCE TYPE IS FOUND
auto setter1 = plan->getVarSetBy(static_cast<Variable const*>(pair.first->getMember(0)->getData())->id);
auto setter2 = plan->getVarSetBy(static_cast<Variable const*>(pair.second->getMember(0)->getData())->id);
SV accessPath1{pair.first->getString()};
SV accessPath2{pair.second->getString()};
LOG_TOPIC(DEBUG, Logger::DEVEL) << " got setter";
if(setter1 == setter2){
if(setter1->getType() == EN::ENUMERATE_COLLECTION){
auto collNode = reinterpret_cast<EnumerateCollectionNode*>(setter1);
auto coll = collNode->collection(); //what kind of indexes does it have on what attributes
auto lcoll = coll->getCollection();
// TODO - check collection for suitable geo-indexes
LOG_TOPIC(DEBUG, Logger::DEVEL) << " SETTER IS ENUMERATE_COLLECTION: " << coll->getName();
for(auto indexShardPtr : lcoll->getIndexes()){
// get real index
arangodb::Index& index = *indexShardPtr.get();
// check if current index is a geo-index
if( index.type() != arangodb::Index::IndexType::TRI_IDX_TYPE_GEO1_INDEX
&& index.type() != arangodb::Index::IndexType::TRI_IDX_TYPE_GEO2_INDEX){
continue;
}
/////////////////////////////////////////////////
//FIXME - REMOVE DEBUG CODE LATER
auto vecs = std::vector<std::vector<SV>>{index.fieldNames(), std::vector<SV>{accessPath1, accessPath2}};
for(auto vec : vecs ){
for(auto path : vec){
std::cout << "AccessPath VECTOR: ";
for(auto word : path){
std::cout << word << " ";
}
std::cout << std::endl;
}
}
/////////////////////////////////////////////////
//check access paths of attributes in ast and those in index match
if( index.fieldNames()[0] == accessPath1 && index.fieldNames()[1] == accessPath2 ){
info.collectionNode = collNode;
info.index = indexShardPtr;
info.longitude = std::move(accessPath1);
info.latitude = std::move(accessPath2);
return info;
}
}
}
}
info.invalidate();
return info;
}
// builds a condition that can be used with the index interface and
// contains all parameters required by the GeoIndex
std::unique_ptr<Condition> buildGeoCondition(ExecutionPlan* plan, GeoIndexInfo& info,
AstNode* lat, AstNode* lon, bool lessEqual = false, AstNode const* withRange = nullptr){
auto ast = plan->getAst();
auto varAstNode = ast->createNodeReference(info.collectionNode->outVariable());
auto nAryAnd = ast->createNodeNaryOperator(NODE_TYPE_OPERATOR_NARY_AND);
nAryAnd->reserve(withRange ? 4 : 2);
auto latKey = ast->createNodeAttributeAccess(varAstNode, "latitude",8);
auto latEq = ast->createNodeBinaryOperator(NODE_TYPE_OPERATOR_BINARY_EQ, latKey, lat);
nAryAnd->addMember(latEq);
auto lonKey = ast->createNodeAttributeAccess(varAstNode, "longitude",9);
auto lonEq = ast->createNodeBinaryOperator(NODE_TYPE_OPERATOR_BINARY_EQ, lonKey, lon);
nAryAnd->addMember(lonEq);
if(withRange){
auto withKey = ast->createNodeAttributeAccess(varAstNode, "within",6);
auto withEq = ast->createNodeBinaryOperator(NODE_TYPE_OPERATOR_BINARY_EQ, withKey, withRange);
nAryAnd->addMember(withEq);
auto lessKey = ast->createNodeAttributeAccess(varAstNode, "lesseq",6);
auto lessValue = ast->createNodeValueBool(lessEqual);
auto lessEq = ast->createNodeBinaryOperator(NODE_TYPE_OPERATOR_BINARY_EQ, lessKey, lessValue);
nAryAnd->addMember(lessEq);
}
auto unAryOr = ast->createNodeNaryOperator(NODE_TYPE_OPERATOR_NARY_OR, nAryAnd);
auto condition = std::make_unique<Condition>(ast);
condition->andCombine(unAryOr);
condition->normalize(plan);
return condition;
}
//replaces the geoCondition with true.
//void replaceGeoCondition(ExecutionPlan* plan, GeoIndexInfo& info){
void replaceGeoCondition(ExecutionPlan* plan, GeoIndexInfo& info){
if( info.expressionParent ) {
auto ast = plan->getAst();
auto replacement = ast->createNodeValueBool(true);
info.expressionParent->dump(0);
for(std::size_t i = 0; i < info.expressionParent->numMembers(); ++i){
if(info.expressionParent->getMember(i) == info.expressionNode){
info.expressionParent->removeMemberUnchecked(i);
info.expressionParent->addMember(replacement);
}
}
info.expressionParent->dump(0);
}
}
// applys the optimization for a candidate
bool applyGeoOptimization(bool near, ExecutionPlan* plan, GeoIndexInfo& info){
// FIXME -- technical debt -- this code should go to the candidate finding /////////////////////
auto const& functionArguments = info.distanceNode->getMember(0);
if(functionArguments->numMembers() < 4){
return false;
}
std::pair<AstNode*,AstNode*> argPair1 = { functionArguments->getMember(0), functionArguments->getMember(1) };
std::pair<AstNode*,AstNode*> argPair2 = { functionArguments->getMember(2), functionArguments->getMember(3) };
auto result1 = geoDistanceFunctionArgCheck(argPair1, plan, info);
auto result2 = geoDistanceFunctionArgCheck(argPair2, plan, info);
// xor only one argument pair shall have a geoIndex
if ( ( !result1 && !result2 ) || ( result1 && result2 ) ){
return false;
}
//LOG_TOPIC(DEBUG, Logger::DEVEL) << " FOUND DISTANCE RULE WITH ATTRIBUTE ACCESS";
std::pair<AstNode*,AstNode*>* constantPair;
GeoIndexInfo res;
if(result1){
res = std::move(result1);
constantPair = &argPair2;
} else {
res = std::move(result2);
constantPair = &argPair1;
}
//LOG_TOPIC(DEBUG, Logger::DEVEL) << " attributes: " << res.longitude[0]
// << ", " << res.longitude
// << " of collection:" << res.collectionNode->collection()->getName()
// << " are geoindexed";
//break; //remove this to make use of the index
// FIXME - END //////////////////////////////////////////////////////////////
std::unique_ptr<Condition> condition;
if(info.within){
condition = buildGeoCondition(plan,res, constantPair->first, constantPair->second, info.lessgreaterequal, info.range);
} else {
condition = buildGeoCondition(plan,res, constantPair->first, constantPair->second);
}
auto inode = new IndexNode(
plan, plan->nextId(), res.collectionNode->vocbase(),
res.collectionNode->collection(), res.collectionNode->outVariable(),
std::vector<Transaction::IndexHandle>{Transaction::IndexHandle{res.index}},
condition.get(), false);
plan->registerNode(inode);
condition.release();
replaceGeoCondition(plan, info);
// if executionNode is sort OR a filter without further sub conditions
// the node can be unlinked
if( info.executionNodeType == EN::SORT || !info.expressionParent){
plan->unlinkNode(info.executionNode);
}
plan->replaceNode(res.collectionNode,inode);
//signal that plan has been changed
return true;
};
void arangodb::aql::geoIndexRule(Optimizer* opt,
ExecutionPlan* plan,
Optimizer::Rule const* rule) {
LOG_TOPIC(DEBUG, Logger::DEVEL) << "ENTER GEO RULE";
std::vector<GeoIndexInfo> infos;
checkNodesForGeoOptimization(EN::SORT, plan, infos);
checkNodesForGeoOptimization(EN::FILTER, plan, infos);
bool modified = false;
for(auto& info : infos){
if (applyGeoOptimization(true, plan, info)){
modified = true;
break; // break on first replacement - might be relaxed later
}
}
opt->addPlan(plan, rule, modified);
LOG_TOPIC(DEBUG, Logger::DEVEL) << "EXIT GEO RULE - modified: " << modified;
LOG_TOPIC(DEBUG, Logger::DEVEL) << "";
}