1
0
Fork 0
arangodb/arangod/Aql/ExecutionNode.h

1205 lines
37 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Max Neunhoeffer
////////////////////////////////////////////////////////////////////////////////
#ifndef ARANGOD_AQL_EXECUTION_NODE_H
#define ARANGOD_AQL_EXECUTION_NODE_H 1
#include "Basics/Common.h"
#include "Aql/types.h"
#include "Aql/Expression.h"
#include "Aql/Variable.h"
#include "Aql/WalkerWorker.h"
#include "VocBase/voc-types.h"
#include "VocBase/vocbase.h"
namespace arangodb {
namespace velocypack {
class Builder;
class Slice;
}
namespace aql {
class Ast;
struct Collection;
class ExecutionBlock;
class TraversalBlock;
class ExecutionPlan;
struct Index;
class RedundantCalculationsReplacer;
/// @brief pairs, consisting of variable and sort direction
/// (true = ascending | false = descending)
typedef std::vector<std::pair<Variable const*, bool>> SortElementVector;
/// @brief class ExecutionNode, abstract base class of all execution Nodes
class ExecutionNode {
/// @brief node type
friend class ExecutionBlock;
friend class TraversalBlock;
public:
enum NodeType : int {
ILLEGAL = 0,
SINGLETON = 1,
ENUMERATE_COLLECTION = 2,
// INDEX_RANGE = 3, // not used anymore
ENUMERATE_LIST = 4,
FILTER = 5,
LIMIT = 6,
CALCULATION = 7,
SUBQUERY = 8,
SORT = 9,
COLLECT = 10,
SCATTER = 11,
GATHER = 12,
REMOTE = 13,
INSERT = 14,
REMOVE = 15,
REPLACE = 16,
UPDATE = 17,
RETURN = 18,
NORESULTS = 19,
DISTRIBUTE = 20,
UPSERT = 21,
TRAVERSAL = 22,
INDEX = 23,
SHORTEST_PATH = 24
};
ExecutionNode() = delete;
ExecutionNode(ExecutionNode const&) = delete;
ExecutionNode& operator=(ExecutionNode const&) = delete;
/// @brief constructor using an id
ExecutionNode(ExecutionPlan* plan, size_t id)
: _id(id),
_estimatedCost(0.0),
_estimatedNrItems(0),
_estimatedCostSet(false),
_depth(0),
_varUsageValid(false),
_plan(plan) {}
/// @brief constructor using a VPackSlice
ExecutionNode(ExecutionPlan* plan, arangodb::velocypack::Slice const& slice);
/// @brief destructor, free dependencies;
virtual ~ExecutionNode() {}
public:
/// @brief factory from json.
static ExecutionNode* fromVPackFactory(ExecutionPlan* plan,
arangodb::velocypack::Slice const& slice);
/// @brief return the node's id
inline size_t id() const { return _id; }
/// @brief return the type of the node
virtual NodeType getType() const = 0;
/// @brief return the type name of the node
std::string const& getTypeString() const;
/// @brief checks whether we know a type of this kind; throws exception if
/// not.
static void validateType(int type);
/// @brief add a dependency
void addDependency(ExecutionNode* ep) {
_dependencies.emplace_back(ep);
ep->_parents.emplace_back(this);
}
/// @brief add a parent
void addParent(ExecutionNode* ep) {
ep->_dependencies.emplace_back(this);
_parents.emplace_back(ep);
}
/// @brief get all dependencies
std::vector<ExecutionNode*> getDependencies() const { return _dependencies; }
/// @brief returns the first dependency, or a nullptr if none present
ExecutionNode* getFirstDependency() const {
if (_dependencies.empty()) {
return nullptr;
}
return _dependencies[0];
}
/// @brief whether or not the node has a dependency
bool hasDependency() const { return (_dependencies.size() == 1); }
/// @brief add the node dependencies to a vector
void addDependencies(std::vector<ExecutionNode*>& result) const {
for (auto const& it : _dependencies) {
result.emplace_back(it);
}
}
/// @brief get all parents
std::vector<ExecutionNode*> getParents() const { return _parents; }
/// @brief whether or not the node has a parent
bool hasParent() const { return (_parents.size() == 1); }
/// @brief returns the first parent, or a nullptr if none present
ExecutionNode* getFirstParent() const {
if (_parents.empty()) {
return nullptr;
}
return _parents[0];
}
/// @brief add the node parents to a vector
void addParents(std::vector<ExecutionNode*>& result) const {
for (auto const& it : _parents) {
result.emplace_back(it);
}
}
/// @brief get the node and its dependencies as a vector
std::vector<ExecutionNode*> getDependencyChain(bool includeSelf) {
std::vector<ExecutionNode*> result;
auto current = this;
while (current != nullptr) {
if (includeSelf || current != this) {
result.emplace_back(current);
}
if (! current->hasDependency()) {
break;
}
current = current->getFirstDependency();
}
return result;
}
/// @brief inspect one index; only skiplist indices which match attrs in
/// sequence.
/// returns a a qualification how good they match;
/// match->index==nullptr means no match at all.
enum MatchType {
FORWARD_MATCH,
REVERSE_MATCH,
NOT_COVERED_IDX,
NOT_COVERED_ATTR,
NO_MATCH
};
struct IndexMatch {
IndexMatch() : index(nullptr), doesMatch(false), reverse(false) {}
Index const* index; // The index concerned; if null, this is a nonmatch.
std::vector<MatchType> matches; // qualification of the attrs match quality
bool doesMatch; // do all criteria match?
bool reverse; // reverse index scan required
};
typedef std::vector<std::pair<std::string, bool>> IndexMatchVec;
/// @brief make a new node the (only) parent of the node
void setParent(ExecutionNode* p) {
_parents.clear();
_parents.emplace_back(p);
}
/// @brief replace a dependency, returns true if the pointer was found and
/// replaced, please note that this does not delete oldNode!
bool replaceDependency(ExecutionNode* oldNode, ExecutionNode* newNode) {
auto it = _dependencies.begin();
while (it != _dependencies.end()) {
if (*it == oldNode) {
*it = newNode;
try {
newNode->_parents.emplace_back(this);
} catch (...) {
*it = oldNode; // roll back
return false;
}
try {
for (auto it2 = oldNode->_parents.begin();
it2 != oldNode->_parents.end(); ++it2) {
if (*it2 == this) {
oldNode->_parents.erase(it2);
break;
}
}
} catch (...) {
// If this happens, we ignore that the _parents of oldNode
// are not set correctly
}
return true;
}
++it;
}
return false;
}
/// @brief remove a dependency, returns true if the pointer was found and
/// removed, please note that this does not delete ep!
bool removeDependency(ExecutionNode* ep) {
bool ok = false;
for (auto it = _dependencies.begin(); it != _dependencies.end(); ++it) {
if (*it == ep) {
try {
it = _dependencies.erase(it);
} catch (...) {
return false;
}
ok = true;
break;
}
}
if (!ok) {
return false;
}
// Now remove us as a parent of the old dependency as well:
for (auto it = ep->_parents.begin(); it != ep->_parents.end(); ++it) {
if (*it == this) {
try {
ep->_parents.erase(it);
} catch (...) {
}
return true;
}
}
return false;
}
/// @brief remove all dependencies for the given node
void removeDependencies() {
for (auto& x : _dependencies) {
for (auto it = x->_parents.begin(); it != x->_parents.end(); ++it) {
if (*it == this) {
try {
x->_parents.erase(it);
} catch (...) {
}
break;
}
}
}
_dependencies.clear();
}
/// @brief clone execution Node recursively, this makes the class abstract
virtual ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const = 0;
/// @brief execution Node clone utility to be called by derives
void cloneHelper(ExecutionNode* Other, ExecutionPlan* plan,
bool withDependencies, bool withProperties) const;
/// @brief helper for cloning, use virtual clone methods for dependencies
void cloneDependencies(ExecutionPlan* plan, ExecutionNode* theClone,
bool withProperties) const;
/// @brief convert to a string, basically for debugging purposes
virtual void appendAsString(std::string& st, int indent = 0);
/// @brief invalidate the cost estimation for the node and its dependencies
void invalidateCost();
/// @brief estimate the cost of the node . . .
double getCost(size_t& nrItems) const {
if (!_estimatedCostSet) {
_estimatedCost = estimateCost(_estimatedNrItems);
nrItems = _estimatedNrItems;
_estimatedCostSet = true;
TRI_ASSERT(_estimatedCost >= 0.0);
} else {
nrItems = _estimatedNrItems;
}
return _estimatedCost;
}
/// @brief this actually estimates the costs as well as the number of items
/// coming out of the node
virtual double estimateCost(size_t& nrItems) const = 0;
/// @brief walk a complete execution plan recursively
bool walk(WalkerWorker<ExecutionNode>* worker);
/// @brief toVelocyPack, export an ExecutionNode to VelocyPack
void toVelocyPack(arangodb::velocypack::Builder&, bool, bool = false) const;
/// @brief toVelocyPack
virtual void toVelocyPackHelper(arangodb::velocypack::Builder&,
bool) const = 0;
/// @brief getVariablesUsedHere, returning a vector
virtual std::vector<Variable const*> getVariablesUsedHere() const {
return std::vector<Variable const*>();
}
/// @brief getVariablesUsedHere, modifying the set in-place
virtual void getVariablesUsedHere(
std::unordered_set<Variable const*>&) const {
// do nothing!
}
/// @brief getVariablesSetHere
virtual std::vector<Variable const*> getVariablesSetHere() const {
return std::vector<Variable const*>();
}
/// @brief getVariableIdsUsedHere
std::unordered_set<VariableId> getVariableIdsUsedHere() const {
auto v(getVariablesUsedHere());
std::unordered_set<VariableId> ids;
ids.reserve(v.size());
for (auto& it : v) {
ids.emplace(it->id);
}
return ids;
}
/// @brief setVarsUsedLater
void setVarsUsedLater(std::unordered_set<Variable const*>& v) {
_varsUsedLater = v;
}
/// @brief getVarsUsedLater, this returns the set of variables that will be
/// used later than this node, i.e. in the repeated parents.
std::unordered_set<Variable const*> const& getVarsUsedLater() const {
TRI_ASSERT(_varUsageValid);
return _varsUsedLater;
}
/// @brief setVarsValid
void setVarsValid(std::unordered_set<Variable const*>& v) { _varsValid = v; }
/// @brief getVarsValid, this returns the set of variables that is valid
/// for items leaving this node, this includes those that will be set here
/// (see getVariablesSetHere).
std::unordered_set<Variable const*> const& getVarsValid() const {
TRI_ASSERT(_varUsageValid);
return _varsValid;
}
/// @brief setVarUsageValid
void setVarUsageValid() { _varUsageValid = true; }
/// @brief invalidateVarUsage
void invalidateVarUsage() {
_varsUsedLater.clear();
_varsValid.clear();
_varUsageValid = false;
}
/// @brief can the node throw?
virtual bool canThrow() { return false; }
/// @brief whether or not the subquery is deterministic
virtual bool isDeterministic() { return true; }
/// @brief whether or not the node is a data modification node
virtual bool isModificationNode() const {
// derived classes can change this
return false;
}
/// @brief static analysis, walker class and information collector
struct VarInfo {
unsigned int depth;
RegisterId registerId;
VarInfo() = delete;
VarInfo(int depth, RegisterId registerId)
: depth(depth), registerId(registerId) {
TRI_ASSERT(registerId < MaxRegisterId);
}
};
struct RegisterPlan final : public WalkerWorker<ExecutionNode> {
// The following are collected for global usage in the ExecutionBlock,
// although they are stored here in the node:
// map VariableIds to their depth and registerId:
std::unordered_map<VariableId, VarInfo> varInfo;
// number of variables in the frame of the current depth:
std::vector<RegisterId> nrRegsHere;
// number of variables in this and all outer frames together,
// the entry with index i here is always the sum of all values
// in nrRegsHere from index 0 to i (inclusively) and the two
// have the same length:
std::vector<RegisterId> nrRegs;
// We collect the subquery nodes to deal with them at the end:
std::vector<ExecutionNode*> subQueryNodes;
// Local for the walk:
unsigned int depth;
unsigned int totalNrRegs;
private:
// This is used to tell all nodes and share a pointer to ourselves
std::shared_ptr<RegisterPlan>* me;
public:
RegisterPlan() : depth(0), totalNrRegs(0), me(nullptr) {
nrRegsHere.emplace_back(0);
nrRegs.emplace_back(0);
};
void clear();
void setSharedPtr(std::shared_ptr<RegisterPlan>* shared) { me = shared; }
// Copy constructor used for a subquery:
RegisterPlan(RegisterPlan const& v, unsigned int newdepth);
~RegisterPlan(){};
virtual bool enterSubquery(ExecutionNode*, ExecutionNode*) override final {
return false; // do not walk into subquery
}
virtual void after(ExecutionNode* eb) override final;
RegisterPlan* clone(ExecutionPlan* otherPlan, ExecutionPlan* plan);
};
/// @brief static analysis
void planRegisters(ExecutionNode* super = nullptr);
/// @brief get RegisterPlan
RegisterPlan const* getRegisterPlan() const {
TRI_ASSERT(_registerPlan.get() != nullptr);
return _registerPlan.get();
}
/// @brief get depth
int getDepth() const { return _depth; }
/// @brief get registers to clear
std::unordered_set<RegisterId> const& getRegsToClear() const {
return _regsToClear;
}
/// @brief check if a variable will be used later
bool isVarUsedLater(Variable const* variable) const {
return (_varsUsedLater.find(variable) != _varsUsedLater.end());
}
/// @brief whether or not the node is in an inner loop
bool isInInnerLoop() const { return getLoop() != nullptr; }
/// @brief get the surrounding loop
ExecutionNode const* getLoop() const;
protected:
static Variable* varFromVPack(Ast* ast, arangodb::velocypack::Slice const& base,
char const* variableName, bool optional = false);
/// @brief factory for sort elements
static void getSortElements(SortElementVector& elements, ExecutionPlan* plan,
arangodb::velocypack::Slice const& slice,
char const* which);
/// @brief toVelocyPackHelper, for a generic node
void toVelocyPackHelperGeneric(arangodb::velocypack::Builder&, bool) const;
/// @brief set regs to be deleted
void setRegsToClear(std::unordered_set<RegisterId> const& toClear) {
_regsToClear = toClear;
}
protected:
/// @brief node id
size_t const _id;
/// @brief our dependent nodes
std::vector<ExecutionNode*> _dependencies;
/// @brief our parent nodes
std::vector<ExecutionNode*> _parents;
/// @brief _estimatedCost = 0 if uninitialized and otherwise stores the result
/// of estimateCost(), the bool indicates if the cost has been set, it starts
/// out as false, _estimatedNrItems is the estimated number of items coming
/// out of this node.
double mutable _estimatedCost;
size_t mutable _estimatedNrItems;
bool mutable _estimatedCostSet;
/// @brief _varsUsedLater and _varsValid, the former contains those
/// variables that are still needed further down in the chain. The
/// latter contains the variables that are set from the dependent nodes
/// when an item comes into the current node. Both are only valid if
/// _varUsageValid is true. Use ExecutionPlan::findVarUsage to set
/// this.
std::unordered_set<Variable const*> _varsUsedLater;
std::unordered_set<Variable const*> _varsValid;
/// @brief depth of the current frame, will be filled in by planRegisters
int _depth;
/// @brief whether or not _varsUsedLater and _varsValid are actually valid
bool _varUsageValid;
/// @brief _plan, the ExecutionPlan object
ExecutionPlan* _plan;
/// @brief info about variables, filled in by planRegisters
std::shared_ptr<RegisterPlan> _registerPlan;
/// @brief the following contains the registers which should be cleared
/// just before this node hands on results. This is computed during
/// the static analysis for each node using the variable usage in the plan.
std::unordered_set<RegisterId> _regsToClear;
public:
/// @brief NodeType to string mapping
static std::unordered_map<int, std::string const> const TypeNames;
/// @brief maximum register id that can be assigned.
/// this is used for assertions
static RegisterId const MaxRegisterId;
};
/// @brief class SingletonNode
class SingletonNode : public ExecutionNode {
friend class ExecutionBlock;
friend class SingletonBlock;
/// @brief constructor with an id
public:
SingletonNode(ExecutionPlan* plan, size_t id) : ExecutionNode(plan, id) {}
SingletonNode(ExecutionPlan* plan, arangodb::velocypack::Slice const& base)
: ExecutionNode(plan, base) {}
/// @brief return the type of the node
NodeType getType() const override final { return SINGLETON; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&,
bool) const override final;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final {
auto c = new SingletonNode(plan, _id);
cloneHelper(c, plan, withDependencies, withProperties);
return static_cast<ExecutionNode*>(c);
}
/// @brief the cost of a singleton is 1
double estimateCost(size_t&) const override final;
};
/// @brief class EnumerateCollectionNode
class EnumerateCollectionNode : public ExecutionNode {
friend class ExecutionNode;
friend class ExecutionBlock;
friend class EnumerateCollectionBlock;
/// @brief constructor with a vocbase and a collection name
public:
EnumerateCollectionNode(ExecutionPlan* plan, size_t id,
TRI_vocbase_t* vocbase, Collection* collection,
Variable const* outVariable, bool random)
: ExecutionNode(plan, id),
_vocbase(vocbase),
_collection(collection),
_outVariable(outVariable),
_random(random) {
TRI_ASSERT(_vocbase != nullptr);
TRI_ASSERT(_collection != nullptr);
TRI_ASSERT(_outVariable != nullptr);
}
EnumerateCollectionNode(ExecutionPlan* plan,
arangodb::velocypack::Slice const& base);
/// @brief return the type of the node
NodeType getType() const override final { return ENUMERATE_COLLECTION; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&,
bool) const override final;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief the cost of an enumerate collection node is a multiple of the cost
/// of
/// its unique dependency
double estimateCost(size_t&) const override final;
/// @brief getVariablesSetHere
std::vector<Variable const*> getVariablesSetHere() const override final {
return std::vector<Variable const*>{_outVariable};
}
/// @brief the node is only non-deterministic if it uses a random sort order
bool isDeterministic() override final { return !_random; }
/// @brief enable random iteration of documents in collection
void setRandom() { _random = true; }
/// @brief return the database
TRI_vocbase_t* vocbase() const { return _vocbase; }
/// @brief return the collection
Collection const* collection() const { return _collection; }
/// @brief return the out variable
Variable const* outVariable() const { return _outVariable; }
private:
/// @brief the database
TRI_vocbase_t* _vocbase;
/// @brief collection
Collection* _collection;
/// @brief output variable
Variable const* _outVariable;
/// @brief whether or not we want random iteration
bool _random;
};
/// @brief class EnumerateListNode
class EnumerateListNode : public ExecutionNode {
friend class ExecutionNode;
friend class ExecutionBlock;
friend class EnumerateListBlock;
friend class RedundantCalculationsReplacer;
public:
EnumerateListNode(ExecutionPlan* plan, size_t id, Variable const* inVariable,
Variable const* outVariable)
: ExecutionNode(plan, id),
_inVariable(inVariable),
_outVariable(outVariable) {
TRI_ASSERT(_inVariable != nullptr);
TRI_ASSERT(_outVariable != nullptr);
}
EnumerateListNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
/// @brief return the type of the node
NodeType getType() const override final { return ENUMERATE_LIST; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&,
bool) const override final;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief the cost of an enumerate list node
double estimateCost(size_t&) const override final;
/// @brief getVariablesUsedHere, returning a vector
std::vector<Variable const*> getVariablesUsedHere() const override final {
return std::vector<Variable const*>{_inVariable};
}
/// @brief getVariablesUsedHere, modifying the set in-place
void getVariablesUsedHere(
std::unordered_set<Variable const*>& vars) const override final {
vars.emplace(_inVariable);
}
/// @brief getVariablesSetHere
std::vector<Variable const*> getVariablesSetHere() const override final {
return std::vector<Variable const*>{_outVariable};
}
/// @brief return in variable
Variable const* inVariable() const { return _inVariable; }
/// @brief return out variable
Variable const* outVariable() const { return _outVariable; }
private:
/// @brief input variable to read from
Variable const* _inVariable;
/// @brief output variable to write to
Variable const* _outVariable;
};
/// @brief class LimitNode
class LimitNode : public ExecutionNode {
friend class ExecutionBlock;
friend class LimitBlock;
/// @brief constructors for various arguments, always with offset and limit
public:
LimitNode(ExecutionPlan* plan, size_t id, size_t offset, size_t limit)
: ExecutionNode(plan, id),
_offset(offset),
_limit(limit),
_fullCount(false) {}
LimitNode(ExecutionPlan* plan, size_t id, size_t limit)
: ExecutionNode(plan, id), _offset(0), _limit(limit), _fullCount(false) {}
LimitNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
/// @brief return the type of the node
NodeType getType() const override final { return LIMIT; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&,
bool) const override final;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final {
auto c = new LimitNode(plan, _id, _offset, _limit);
if (_fullCount) {
c->setFullCount();
}
cloneHelper(c, plan, withDependencies, withProperties);
return static_cast<ExecutionNode*>(c);
}
/// @brief estimateCost
double estimateCost(size_t&) const override final;
/// @brief tell the node to fully count what it will limit
void setFullCount() { _fullCount = true; }
/// @brief return the offset value
size_t offset() const { return _offset; }
/// @brief return the limit value
size_t limit() const { return _limit; }
private:
/// @brief the offset
size_t _offset;
/// @brief the limit
size_t _limit;
/// @brief whether or not the node should fully count what it limits
bool _fullCount;
};
/// @brief class CalculationNode
class CalculationNode : public ExecutionNode {
friend class ExecutionNode;
friend class ExecutionBlock;
friend class CalculationBlock;
friend class RedundantCalculationsReplacer;
public:
CalculationNode(ExecutionPlan* plan, size_t id, Expression* expr,
Variable const* conditionVariable,
Variable const* outVariable)
: ExecutionNode(plan, id),
_conditionVariable(conditionVariable),
_outVariable(outVariable),
_expression(expr),
_canRemoveIfThrows(false) {
TRI_ASSERT(_expression != nullptr);
TRI_ASSERT(_outVariable != nullptr);
}
CalculationNode(ExecutionPlan* plan, size_t id, Expression* expr,
Variable const* outVariable)
: CalculationNode(plan, id, expr, nullptr, outVariable) {}
CalculationNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
~CalculationNode() { delete _expression; }
/// @brief return the type of the node
NodeType getType() const override final { return CALCULATION; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&,
bool) const override final;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief return out variable
Variable const* outVariable() const { return _outVariable; }
/// @brief return the expression
Expression* expression() const { return _expression; }
/// @brief allow removal of this calculation even if it can throw
/// this can only happen if the optimizer added a clone of this expression
/// elsewhere, and if the clone will stand in
bool canRemoveIfThrows() const { return _canRemoveIfThrows; }
/// @brief allow removal of this calculation even if it can throw
/// this can only happen if the optimizer added a clone of this expression
/// elsewhere, and if the clone will stand in
void canRemoveIfThrows(bool value) { _canRemoveIfThrows = value; }
/// @brief estimateCost
double estimateCost(size_t&) const override final;
/// @brief getVariablesUsedHere, returning a vector
std::vector<Variable const*> getVariablesUsedHere() const override final {
std::unordered_set<Variable const*> vars;
_expression->variables(vars);
std::vector<Variable const*> v;
v.reserve(vars.size());
for (auto const& vv : vars) {
v.emplace_back(vv);
}
if (_conditionVariable != nullptr) {
v.emplace_back(_conditionVariable);
}
return v;
}
/// @brief getVariablesUsedHere, modifying the set in-place
void getVariablesUsedHere(
std::unordered_set<Variable const*>& vars) const override final {
_expression->variables(vars);
if (_conditionVariable != nullptr) {
vars.emplace(_conditionVariable);
}
}
/// @brief getVariablesSetHere
virtual std::vector<Variable const*> getVariablesSetHere()
const override final {
return std::vector<Variable const*>{_outVariable};
}
/// @brief can the node throw?
bool canThrow() override final { return _expression->canThrow(); }
bool isDeterministic() override final { return _expression->isDeterministic(); }
private:
/// @brief an optional condition variable for the calculation
Variable const* _conditionVariable;
/// @brief output variable to write to
Variable const* _outVariable;
/// @brief we need to have an expression and where to write the result
Expression* _expression;
/// @brief allow removal of this calculation even if it can throw
/// this can only happen if the optimizer added a clone of this expression
/// elsewhere, and if the clone will stand in
bool _canRemoveIfThrows;
};
/// @brief class SubqueryNode
class SubqueryNode : public ExecutionNode {
friend class ExecutionNode;
friend class ExecutionBlock;
friend class SubqueryBlock;
public:
SubqueryNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
SubqueryNode(ExecutionPlan* plan, size_t id, ExecutionNode* subquery,
Variable const* outVariable)
: ExecutionNode(plan, id),
_subquery(subquery),
_outVariable(outVariable) {
TRI_ASSERT(_subquery != nullptr);
TRI_ASSERT(_outVariable != nullptr);
}
/// @brief return the type of the node
NodeType getType() const override final { return SUBQUERY; }
/// @brief return the out variable
Variable const* outVariable() const { return _outVariable; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&,
bool) const override final;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief whether or not the subquery is a data-modification operation
bool isModificationQuery() const;
/// @brief getter for subquery
ExecutionNode* getSubquery() const { return _subquery; }
/// @brief setter for subquery
void setSubquery(ExecutionNode* subquery, bool forceOverwrite) {
TRI_ASSERT(subquery != nullptr);
TRI_ASSERT((forceOverwrite && _subquery != nullptr) ||
(!forceOverwrite && _subquery == nullptr));
_subquery = subquery;
}
/// @brief estimateCost
double estimateCost(size_t&) const override final;
/// @brief getVariablesUsedHere, returning a vector
std::vector<Variable const*> getVariablesUsedHere() const override final;
/// @brief getVariablesUsedHere, modifying the set in-place
void getVariablesUsedHere(
std::unordered_set<Variable const*>& vars) const override final;
/// @brief getVariablesSetHere
std::vector<Variable const*> getVariablesSetHere() const override final {
return std::vector<Variable const*>{_outVariable};
}
/// @brief replace the out variable, so we can adjust the name.
void replaceOutVariable(Variable const* var);
/// @brief can the node throw? Note that this means that an exception can
/// *originate* from this node. That is, this method does not need to
/// return true just because a dependent node can throw an exception.
bool canThrow() override final;
bool isDeterministic() override final;
bool isConst();
private:
/// @brief we need to have an expression and where to write the result
ExecutionNode* _subquery;
/// @brief variable to write to
Variable const* _outVariable;
};
/// @brief class FilterNode
class FilterNode : public ExecutionNode {
friend class ExecutionBlock;
friend class FilterBlock;
friend class RedundantCalculationsReplacer;
/// @brief constructors for various arguments, always with offset and limit
public:
FilterNode(ExecutionPlan* plan, size_t id, Variable const* inVariable)
: ExecutionNode(plan, id), _inVariable(inVariable) {
TRI_ASSERT(_inVariable != nullptr);
}
FilterNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
/// @brief return the type of the node
NodeType getType() const override final { return FILTER; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&,
bool) const override final;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief estimateCost
double estimateCost(size_t&) const override final;
/// @brief getVariablesUsedHere, returning a vector
std::vector<Variable const*> getVariablesUsedHere() const override final {
return std::vector<Variable const*>{_inVariable};
}
/// @brief getVariablesUsedHere, modifying the set in-place
void getVariablesUsedHere(
std::unordered_set<Variable const*>& vars) const override final {
vars.emplace(_inVariable);
}
private:
/// @brief input variable to read from
Variable const* _inVariable;
};
/// @brief this is an auxilliary struct for processed sort criteria information
struct SortInformation {
enum Match {
unequal, // criteria are unequal
otherLessAccurate, // leftmost sort criteria are equal, but other sort
// criteria are less accurate than ourselves
ourselvesLessAccurate, // leftmost sort criteria are equal, but our own
// sort criteria is less accurate than the other
allEqual // all criteria are equal
};
std::vector<std::tuple<ExecutionNode const*, std::string, bool>> criteria;
bool isValid = true;
bool isDeterministic = true;
bool isComplex = false;
bool canThrow = false;
Match isCoveredBy(SortInformation const& other) {
if (!isValid || !other.isValid) {
return unequal;
}
if (isComplex || other.isComplex) {
return unequal;
}
size_t const n = criteria.size();
for (size_t i = 0; i < n; ++i) {
if (other.criteria.size() <= i) {
return otherLessAccurate;
}
auto ours = criteria[i];
auto theirs = other.criteria[i];
if (std::get<2>(ours) != std::get<2>(theirs)) {
// sort order is different
return unequal;
}
if (std::get<1>(ours) != std::get<1>(theirs)) {
// sort criterion is different
return unequal;
}
}
if (other.criteria.size() > n) {
return ourselvesLessAccurate;
}
return allEqual;
}
};
/// @brief class ReturnNode
class ReturnNode : public ExecutionNode {
friend class ExecutionBlock;
friend class ReturnBlock;
friend class RedundantCalculationsReplacer;
/// @brief constructors for various arguments, always with offset and limit
public:
ReturnNode(ExecutionPlan* plan, size_t id, Variable const* inVariable)
: ExecutionNode(plan, id), _inVariable(inVariable) {
TRI_ASSERT(_inVariable != nullptr);
}
ReturnNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
/// @brief return the type of the node
NodeType getType() const override final { return RETURN; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&,
bool) const override final;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief estimateCost
double estimateCost(size_t&) const override final;
/// @brief getVariablesUsedHere, returning a vector
std::vector<Variable const*> getVariablesUsedHere() const override final {
return std::vector<Variable const*>{_inVariable};
}
/// @brief getVariablesUsedHere, modifying the set in-place
void getVariablesUsedHere(
std::unordered_set<Variable const*>& vars) const override final {
vars.emplace(_inVariable);
}
Variable const* inVariable() const { return _inVariable; }
private:
/// @brief we need to know the offset and limit
Variable const* _inVariable;
};
/// @brief class NoResultsNode
class NoResultsNode : public ExecutionNode {
friend class ExecutionBlock;
friend class NoResultsBlock;
/// @brief constructor with an id
public:
NoResultsNode(ExecutionPlan* plan, size_t id) : ExecutionNode(plan, id) {}
NoResultsNode(ExecutionPlan* plan, arangodb::velocypack::Slice const& base)
: ExecutionNode(plan, base) {}
/// @brief return the type of the node
NodeType getType() const override final { return NORESULTS; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&,
bool) const override final;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final {
auto c = new NoResultsNode(plan, _id);
cloneHelper(c, plan, withDependencies, withProperties);
return static_cast<ExecutionNode*>(c);
}
/// @brief the cost of a NoResults is 0
double estimateCost(size_t&) const override final;
};
} // namespace arangodb::aql
} // namespace arangodb
#endif