1
0
Fork 0
arangodb/tests/Cache/Rebalancer.cpp

316 lines
10 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// @brief test suite for arangodb::cache::Rebalancer
///
/// @file
///
/// DISCLAIMER
///
/// Copyright 2017 ArangoDB GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Daniel H. Larkin
/// @author Copyright 2017, ArangoDB GmbH, Cologne, Germany
////////////////////////////////////////////////////////////////////////////////
#include "Cache/Rebalancer.h"
#include "Basics/Common.h"
#include "Cache/Common.h"
#include "Cache/Manager.h"
#include "Cache/PlainCache.h"
#include "Cache/Transaction.h"
#include "Cache/TransactionalCache.h"
#include "Random/RandomGenerator.h"
#include "MockScheduler.h"
#include "catch.hpp"
#include <stdint.h>
#include <queue>
#include <string>
#include <thread>
#include <vector>
using namespace arangodb;
using namespace arangodb::cache;
TEST_CASE("cache::Rebalancer", "[cache][!hide][longRunning]") {
SECTION("test rebalancing with PlainCache") {
RandomGenerator::initialize(RandomGenerator::RandomType::MERSENNE);
MockScheduler scheduler(4);
auto postFn = [&scheduler](std::function<void(bool)> fn) -> bool {
scheduler.post(fn);
return true;
};
Manager manager(postFn, 128 * 1024 * 1024);
Rebalancer rebalancer(&manager);
size_t cacheCount = 4;
size_t threadCount = 4;
std::vector<std::shared_ptr<Cache>> caches;
for (size_t i = 0; i < cacheCount; i++) {
caches.emplace_back(manager.createCache(CacheType::Plain));
}
bool doneRebalancing = false;
auto rebalanceWorker = [&rebalancer, &doneRebalancing]() -> void {
while (!doneRebalancing) {
int status = rebalancer.rebalance();
if (status != TRI_ERROR_ARANGO_BUSY) {
std::this_thread::sleep_for(std::chrono::microseconds(500 * 1000));
} else {
std::this_thread::sleep_for(std::chrono::microseconds(10 * 1000));
}
}
};
auto rebalancerThread = new std::thread(rebalanceWorker);
uint64_t chunkSize = 4 * 1024 * 1024;
uint64_t initialInserts = 1 * 1024 * 1024;
uint64_t operationCount = 4 * 1024 * 1024;
std::atomic<uint64_t> hitCount(0);
std::atomic<uint64_t> missCount(0);
auto worker = [&caches, cacheCount, initialInserts,
operationCount, &hitCount,
&missCount](uint64_t lower, uint64_t upper) -> void {
// fill with some initial data
for (uint64_t i = 0; i < initialInserts; i++) {
uint64_t item = lower + i;
size_t cacheIndex = item % cacheCount;
CachedValue* value = CachedValue::construct(&item, sizeof(uint64_t),
&item, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = caches[cacheIndex]->insert(value);
if (status.fail()) {
delete value;
}
}
// initialize valid range for keys that *might* be in cache
uint64_t validLower = lower;
uint64_t validUpper = lower + initialInserts - 1;
// commence mixed workload
for (uint64_t i = 0; i < operationCount; i++) {
uint32_t r = RandomGenerator::interval(static_cast<uint32_t>(99UL));
if (r >= 99) { // remove something
if (validLower == validUpper) {
continue; // removed too much
}
uint64_t item = validLower++;
size_t cacheIndex = item % cacheCount;
caches[cacheIndex]->remove(&item, sizeof(uint64_t));
} else if (r >= 95) { // insert something
if (validUpper == upper) {
continue; // already maxed out range
}
uint64_t item = ++validUpper;
size_t cacheIndex = item % cacheCount;
CachedValue* value = CachedValue::construct(&item, sizeof(uint64_t),
&item, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = caches[cacheIndex]->insert(value);
if (status.fail()) {
delete value;
}
} else { // lookup something
uint64_t item =
RandomGenerator::interval(static_cast<int64_t>(validLower),
static_cast<int64_t>(validUpper));
size_t cacheIndex = item % cacheCount;
Finding f = caches[cacheIndex]->find(&item, sizeof(uint64_t));
if (f.found()) {
hitCount++;
TRI_ASSERT(f.value() != nullptr);
TRI_ASSERT(f.value()->sameKey(&item, sizeof(uint64_t)));
} else {
missCount++;
TRI_ASSERT(f.value() == nullptr);
}
}
}
};
std::vector<std::thread*> threads;
// dispatch threads
for (size_t i = 0; i < threadCount; i++) {
uint64_t lower = i * chunkSize;
uint64_t upper = ((i + 1) * chunkSize) - 1;
threads.push_back(new std::thread(worker, lower, upper));
}
// join threads
for (auto t : threads) {
t->join();
delete t;
}
doneRebalancing = true;
rebalancerThread->join();
delete rebalancerThread;
for (auto cache : caches) {
manager.destroyCache(cache);
}
RandomGenerator::shutdown();
}
SECTION("test rebalancing with TransactionalCache") {
RandomGenerator::initialize(RandomGenerator::RandomType::MERSENNE);
MockScheduler scheduler(4);
auto postFn = [&scheduler](std::function<void(bool)> fn) -> bool {
scheduler.post(fn);
return true;
};
Manager manager(postFn, 128 * 1024 * 1024);
Rebalancer rebalancer(&manager);
size_t cacheCount = 4;
size_t threadCount = 4;
std::vector<std::shared_ptr<Cache>> caches;
for (size_t i = 0; i < cacheCount; i++) {
caches.emplace_back(manager.createCache(CacheType::Transactional));
}
bool doneRebalancing = false;
auto rebalanceWorker = [&rebalancer, &doneRebalancing]() -> void {
while (!doneRebalancing) {
int status = rebalancer.rebalance();
if (status != TRI_ERROR_ARANGO_BUSY) {
std::this_thread::sleep_for(std::chrono::microseconds(500 * 1000));
} else {
std::this_thread::sleep_for(std::chrono::microseconds(10 * 1000));
}
}
};
auto rebalancerThread = new std::thread(rebalanceWorker);
uint64_t chunkSize = 4 * 1024 * 1024;
uint64_t initialInserts = 1 * 1024 * 1024;
uint64_t operationCount = 4 * 1024 * 1024;
std::atomic<uint64_t> hitCount(0);
std::atomic<uint64_t> missCount(0);
auto worker = [&manager, &caches, cacheCount, initialInserts,
operationCount, &hitCount,
&missCount](uint64_t lower, uint64_t upper) -> void {
Transaction* tx = manager.beginTransaction(false);
// fill with some initial data
for (uint64_t i = 0; i < initialInserts; i++) {
uint64_t item = lower + i;
size_t cacheIndex = item % cacheCount;
CachedValue* value = CachedValue::construct(&item, sizeof(uint64_t),
&item, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = caches[cacheIndex]->insert(value);
if (status.fail()) {
delete value;
}
}
// initialize valid range for keys that *might* be in cache
uint64_t validLower = lower;
uint64_t validUpper = lower + initialInserts - 1;
uint64_t blacklistUpper = validUpper;
// commence mixed workload
for (uint64_t i = 0; i < operationCount; i++) {
uint32_t r = RandomGenerator::interval(static_cast<uint32_t>(99UL));
if (r >= 99) { // remove something
if (validLower == validUpper) {
continue; // removed too much
}
uint64_t item = validLower++;
size_t cacheIndex = item % cacheCount;
caches[cacheIndex]->remove(&item, sizeof(uint64_t));
} else if (r >= 90) { // insert something
if (validUpper == upper) {
continue; // already maxed out range
}
uint64_t item = ++validUpper;
if (validUpper > blacklistUpper) {
blacklistUpper = validUpper;
}
size_t cacheIndex = item % cacheCount;
CachedValue* value = CachedValue::construct(&item, sizeof(uint64_t),
&item, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = caches[cacheIndex]->insert(value);
if (status.fail()) {
delete value;
}
} else if (r >= 80) { // blacklist something
if (blacklistUpper == upper) {
continue; // already maxed out range
}
uint64_t item = ++blacklistUpper;
size_t cacheIndex = item % cacheCount;
caches[cacheIndex]->blacklist(&item, sizeof(uint64_t));
} else { // lookup something
uint64_t item =
RandomGenerator::interval(static_cast<int64_t>(validLower),
static_cast<int64_t>(validUpper));
size_t cacheIndex = item % cacheCount;
Finding f = caches[cacheIndex]->find(&item, sizeof(uint64_t));
if (f.found()) {
hitCount++;
TRI_ASSERT(f.value() != nullptr);
TRI_ASSERT(f.value()->sameKey(&item, sizeof(uint64_t)));
} else {
missCount++;
TRI_ASSERT(f.value() == nullptr);
}
}
}
manager.endTransaction(tx);
};
std::vector<std::thread*> threads;
// dispatch threads
for (size_t i = 0; i < threadCount; i++) {
uint64_t lower = i * chunkSize;
uint64_t upper = ((i + 1) * chunkSize) - 1;
threads.push_back(new std::thread(worker, lower, upper));
}
// join threads
for (auto t : threads) {
t->join();
delete t;
}
doneRebalancing = true;
rebalancerThread->join();
delete rebalancerThread;
for (auto cache : caches) {
manager.destroyCache(cache);
}
RandomGenerator::shutdown();
}
}