1
0
Fork 0
arangodb/arangod/Aql/ExecutionNode.h

1156 lines
38 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Max Neunhoeffer
////////////////////////////////////////////////////////////////////////////////
// Execution plans like the one below are made of Nodes that inherit the
// ExecutionNode class as a base class.
//
// Execution plan:
// Id NodeType Est. Comment
// 1 SingletonNode 1 * ROOT
// 2 EnumerateCollectionNode 6400 - FOR d IN coll /* full collection
// scan */ 3 CalculationNode 6400 - LET #1 =
// DISTANCE(d.`lat`, d.`lon`, 0, 0) /* simple expression */ /* collections
// used: d : coll */ 4 SortNode 6400 - SORT #1 ASC 5
// LimitNode 5 - LIMIT 0, 5 6 ReturnNode 5 -
// RETURN d
//
// Even though the Singleton Node has a label saying it is the "ROOT" node it
// is not in our definiton. Root Nodes are leaf nodes (at the bottom of the
// list).
//
// To get down (direction to root) from 4 to 5 you need to call getFirst Parent
// on the SortNode(4) to receive a pointer to the LimitNode(5). If you want to
// go up from 5 to 4 (away from root) you need to call getFirstDependency at
// the LimitNode (5) to get a pointer to the SortNode(4).
//
// For most maybe all operations you will only need to operate on the
// Dependencies the parents will be updated automatically.
//
// If you wish to unlink (remove) or replace a node you should do it by using
// one of the plans operations.
#ifndef ARANGOD_AQL_EXECUTION_NODE_H
#define ARANGOD_AQL_EXECUTION_NODE_H 1
#include "Aql/CollectionAccessingNode.h"
#include "Aql/CostEstimate.h"
#include "Aql/DocumentProducingNode.h"
#include "Aql/Expression.h"
#include "Aql/IndexHint.h"
#include "Aql/Variable.h"
#include "Aql/WalkerWorker.h"
#include "Aql/types.h"
#include "Basics/Common.h"
#include "VocBase/LogicalView.h"
#include "VocBase/voc-types.h"
#include "VocBase/vocbase.h"
#include <type_traits>
namespace arangodb {
namespace velocypack {
class Builder;
class Slice;
} // namespace velocypack
class Index;
namespace aql {
class Ast;
struct Collection;
class Condition;
class ExecutionBlock;
class ExecutionEngine;
class TraversalBlock;
class ExecutionPlan;
class RedundantCalculationsReplacer;
/// @brief sort element, consisting of variable, sort direction, and a possible
/// attribute path to dig into the document
struct SortElement {
Variable const* var;
bool ascending;
std::vector<std::string> attributePath;
SortElement(Variable const* v, bool asc) : var(v), ascending(asc) {}
SortElement(Variable const* v, bool asc, std::vector<std::string> const& path)
: var(v), ascending(asc), attributePath(path) {}
/// @brief stringify a sort element. note: the output of this should match the
/// stringification output of an AstNode for an attribute access
/// (e.g. foo.bar => $0.bar)
std::string toString() const {
std::string result("$");
result += std::to_string(var->id);
for (auto const& it : attributePath) {
result += "." + it;
}
return result;
}
};
typedef std::vector<SortElement> SortElementVector;
/// @brief class ExecutionNode, abstract base class of all execution Nodes
class ExecutionNode {
/// @brief node type
friend class ExecutionBlock;
public:
enum NodeType : int {
SINGLETON = 1,
ENUMERATE_COLLECTION = 2,
// INDEX_RANGE = 3, // not used anymore
ENUMERATE_LIST = 4,
FILTER = 5,
LIMIT = 6,
CALCULATION = 7,
SUBQUERY = 8,
SORT = 9,
COLLECT = 10,
SCATTER = 11,
GATHER = 12,
REMOTE = 13,
INSERT = 14,
REMOVE = 15,
REPLACE = 16,
UPDATE = 17,
RETURN = 18,
NORESULTS = 19,
DISTRIBUTE = 20,
UPSERT = 21,
TRAVERSAL = 22,
INDEX = 23,
SHORTEST_PATH = 24,
REMOTESINGLE = 25,
#ifdef USE_IRESEARCH
ENUMERATE_IRESEARCH_VIEW,
#endif
MAX_NODE_TYPE_VALUE
};
ExecutionNode() = delete;
ExecutionNode(ExecutionNode const&) = delete;
ExecutionNode& operator=(ExecutionNode const&) = delete;
/// @brief constructor using an id
ExecutionNode(ExecutionPlan* plan, size_t id)
: _id(id), _depth(0), _varUsageValid(false), _plan(plan) {}
/// @brief constructor using a VPackSlice
ExecutionNode(ExecutionPlan* plan, arangodb::velocypack::Slice const& slice);
/// @brief destructor, free dependencies
virtual ~ExecutionNode() {}
public:
/// @brief factory from JSON
static ExecutionNode* fromVPackFactory(ExecutionPlan* plan,
arangodb::velocypack::Slice const& slice);
/// @brief cast an ExecutionNode to a specific sub-type
/// in maintainer mode, this function will perform a dynamic_cast and abort
/// the program if the cast is invalid. in release mode, this function will
/// perform a static_cast and will not abort the program
template <typename T, typename FromType>
static inline T castTo(FromType node) noexcept {
static_assert(std::is_pointer<T>::value,
"invalid type passed into ExecutionNode::castTo");
static_assert(std::is_pointer<FromType>::value,
"invalid type passed into ExecutionNode::castTo");
static_assert(std::remove_pointer<FromType>::type::IsExecutionNode,
"invalid type passed into ExecutionNode::castTo");
#ifdef ARANGODB_ENABLE_MAINTAINER_MODE
T result = dynamic_cast<T>(node);
TRI_ASSERT(result != nullptr);
return result;
#else
return static_cast<T>(node);
#endif
}
/// @brief return the node's id
inline size_t id() const { return _id; }
/// @brief return the type of the node
virtual NodeType getType() const = 0;
/// @brief resolve nodeType to a string.
static std::string const& getTypeString(NodeType type);
/// @brief return the type name of the node
std::string const& getTypeString() const;
/// @brief checks whether we know a type of this kind; throws exception if
/// not.
static void validateType(int type);
/// @brief add a dependency
void addDependency(ExecutionNode*);
/// @brief add a parent
void addParent(ExecutionNode*);
/// @brief get all dependencies
TEST_VIRTUAL std::vector<ExecutionNode*> const& getDependencies() const {
return _dependencies;
}
/// @brief returns the first dependency, or a nullptr if none present
ExecutionNode* getFirstDependency() const {
if (_dependencies.empty()) {
return nullptr;
}
TRI_ASSERT(_dependencies[0] != nullptr);
return _dependencies[0];
}
/// @brief whether or not the node has a dependency
bool hasDependency() const { return (_dependencies.size() == 1); }
/// @brief add the node dependencies to a vector
void dependencies(std::vector<ExecutionNode*>& result) const {
for (auto const& it : _dependencies) {
TRI_ASSERT(it != nullptr);
result.emplace_back(it);
}
}
/// @brief get all parents
std::vector<ExecutionNode*> getParents() const { return _parents; }
/// @brief whether or not the node has a parent
bool hasParent() const { return (_parents.size() == 1); }
/// @brief returns the first parent, or a nullptr if none present
ExecutionNode* getFirstParent() const {
if (_parents.empty()) {
return nullptr;
}
TRI_ASSERT(_parents[0] != nullptr);
return _parents[0];
}
/// @brief add the node parents to a vector
void parents(std::vector<ExecutionNode*>& result) const {
for (auto const& it : _parents) {
TRI_ASSERT(it != nullptr);
result.emplace_back(it);
}
}
/// @brief get the singleton node of the node
ExecutionNode const* getSingleton() const {
auto node = this;
do {
node = node->getFirstDependency();
} while (node != nullptr && node->getType() != SINGLETON);
return node;
}
/// @brief get the node and its dependencies as a vector
void getDependencyChain(std::vector<ExecutionNode*>& result, bool includeSelf) {
auto current = this;
while (current != nullptr) {
if (includeSelf || current != this) {
result.emplace_back(current);
}
current = current->getFirstDependency();
}
}
/// @brief inspect one index; only skiplist indices which match attrs in
/// sequence.
/// returns a a qualification how good they match;
/// match->index==nullptr means no match at all.
enum MatchType {
FORWARD_MATCH,
REVERSE_MATCH,
NOT_COVERED_IDX,
NOT_COVERED_ATTR,
NO_MATCH
};
/// @brief make a new node the (only) parent of the node
void setParent(ExecutionNode* p) {
_parents.clear();
_parents.emplace_back(p);
}
/// @brief replace a dependency, returns true if the pointer was found and
/// replaced, please note that this does not delete oldNode!
bool replaceDependency(ExecutionNode* oldNode, ExecutionNode* newNode);
/// @brief remove a dependency, returns true if the pointer was found and
/// removed, please note that this does not delete ep!
bool removeDependency(ExecutionNode*);
/// @brief remove all dependencies for the given node
void removeDependencies();
/// @brief creates corresponding ExecutionBlock
virtual std::unique_ptr<ExecutionBlock> createBlock(
ExecutionEngine& engine,
std::unordered_map<ExecutionNode*, ExecutionBlock*> const& cache) const = 0;
/// @brief clone execution Node recursively, this makes the class abstract
virtual ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const = 0;
/// @brief execution Node clone utility to be called by derives
/// @return pointer to a registered node owned by a plan
ExecutionNode* cloneHelper(std::unique_ptr<ExecutionNode> Other,
bool withDependencies, bool withProperties) const;
/// @brief helper for cloning, use virtual clone methods for dependencies
void cloneDependencies(ExecutionPlan* plan, ExecutionNode* theClone, bool withProperties) const;
/// @brief invalidate the cost estimate for the node and its dependencies
virtual void invalidateCost();
/// @brief estimate the cost of the node . . .
/// does not recalculate the estimate if already calculated
CostEstimate getCost() const;
/// @brief walk a complete execution plan recursively
bool walk(WalkerWorker<ExecutionNode>& worker);
/// serialize parents of each node (used in the explainer)
static constexpr unsigned SERIALIZE_PARENTS = 1;
/// include estimate cost (used in the explainer)
static constexpr unsigned SERIALIZE_ESTIMATES = 1 << 1;
/// Print all ExecutionNode information required in cluster snippets
static constexpr unsigned SERIALIZE_DETAILS = 1 << 2;
/// include additional function info for explain
static constexpr unsigned SERIALIZE_FUNCTIONS = 1 << 3;
/// @brief toVelocyPack, export an ExecutionNode to VelocyPack
void toVelocyPack(arangodb::velocypack::Builder&, unsigned flags, bool keepTopLevelOpen) const;
/// @brief toVelocyPack
virtual void toVelocyPackHelper(arangodb::velocypack::Builder&, unsigned flags) const = 0;
/** Variables used and set are disjunct!
* Variables that are read from must be returned by the
* UsedHere functions and variables that are filled by
* the corresponding ExecutionBlock must be added in
* the SetHere functions.
*/
/// @brief getVariablesUsedHere, modifying the set in-place
virtual void getVariablesUsedHere(arangodb::HashSet<Variable const*>&) const {
// do nothing!
}
/// @brief getVariablesSetHere
virtual std::vector<Variable const*> getVariablesSetHere() const {
return std::vector<Variable const*>();
}
/// @brief getVariableIdsUsedHere
arangodb::HashSet<VariableId> getVariableIdsUsedHere() const {
arangodb::HashSet<Variable const*> vars;
getVariablesUsedHere(vars);
arangodb::HashSet<VariableId> ids;
for (auto& it : vars) {
ids.emplace(it->id);
}
return ids;
}
/// @brief tests whether the node sets one of the passed variables
bool setsVariable(arangodb::HashSet<Variable const*> const& which) const {
for (auto const& v : getVariablesSetHere()) {
if (which.find(v) != which.end()) {
return true;
}
}
return false;
}
/// @brief setVarsUsedLater
void setVarsUsedLater(arangodb::HashSet<Variable const*>& v) {
_varsUsedLater = v;
}
/// @brief getVarsUsedLater, this returns the set of variables that will be
/// used later than this node, i.e. in the repeated parents.
arangodb::HashSet<Variable const*> const& getVarsUsedLater() const {
TRI_ASSERT(_varUsageValid);
return _varsUsedLater;
}
/// @brief setVarsValid
void setVarsValid(arangodb::HashSet<Variable const*>& v) { _varsValid = v; }
/// @brief getVarsValid, this returns the set of variables that is valid
/// for items leaving this node, this includes those that will be set here
/// (see getVariablesSetHere).
arangodb::HashSet<Variable const*> const& getVarsValid() const {
TRI_ASSERT(_varUsageValid);
return _varsValid;
}
/// @brief setVarUsageValid
void setVarUsageValid() { _varUsageValid = true; }
/// @brief invalidateVarUsage
void invalidateVarUsage() {
_varsUsedLater.clear();
_varsValid.clear();
_varUsageValid = false;
}
/// @brief whether or not the subquery is deterministic
virtual bool isDeterministic() { return true; }
/// @brief whether or not the node is a data modification node
virtual bool isModificationNode() const {
// derived classes can change this
return false;
}
ExecutionPlan const* plan() const { return _plan; }
ExecutionPlan* plan() { return _plan; }
/// @brief static analysis, walker class and information collector
struct VarInfo {
unsigned int depth;
RegisterId registerId;
VarInfo() = delete;
VarInfo(int depth, RegisterId registerId)
: depth(depth), registerId(registerId) {
TRI_ASSERT(registerId < MaxRegisterId);
}
};
struct RegisterPlan final : public WalkerWorker<ExecutionNode> {
// The following are collected for global usage in the ExecutionBlock,
// although they are stored here in the node:
// map VariableIds to their depth and registerId:
std::unordered_map<VariableId, VarInfo> varInfo;
// number of variables in the frame of the current depth:
std::vector<RegisterId> nrRegsHere;
// number of variables in this and all outer frames together,
// the entry with index i here is always the sum of all values
// in nrRegsHere from index 0 to i (inclusively) and the two
// have the same length:
std::vector<RegisterId> nrRegs;
// We collect the subquery nodes to deal with them at the end:
std::vector<ExecutionNode*> subQueryNodes;
// Local for the walk:
unsigned int depth;
unsigned int totalNrRegs;
private:
// This is used to tell all nodes and share a pointer to ourselves
std::shared_ptr<RegisterPlan>* me;
public:
RegisterPlan() : depth(0), totalNrRegs(0), me(nullptr) {
nrRegsHere.reserve(8);
nrRegsHere.emplace_back(0);
nrRegs.reserve(8);
nrRegs.emplace_back(0);
}
void clear();
void setSharedPtr(std::shared_ptr<RegisterPlan>* shared) { me = shared; }
// Copy constructor used for a subquery:
RegisterPlan(RegisterPlan const& v, unsigned int newdepth);
~RegisterPlan() {}
virtual bool enterSubquery(ExecutionNode*, ExecutionNode*) override final {
return false; // do not walk into subquery
}
virtual void after(ExecutionNode* eb) override final;
RegisterPlan* clone(ExecutionPlan* otherPlan, ExecutionPlan* plan);
};
/// @brief static analysis
void planRegisters(ExecutionNode* super = nullptr);
/// @brief get RegisterPlan
RegisterPlan const* getRegisterPlan() const {
TRI_ASSERT(_registerPlan.get() != nullptr);
return _registerPlan.get();
}
/// @brief get depth
int getDepth() const { return _depth; }
/// @brief get registers to clear
std::unordered_set<RegisterId> const& getRegsToClear() const {
return _regsToClear;
}
/// @brief check if a variable will be used later
inline bool isVarUsedLater(Variable const* variable) const {
return (_varsUsedLater.find(variable) != _varsUsedLater.end());
}
/// @brief whether or not the node is in an inner loop
bool isInInnerLoop() const { return getLoop() != nullptr; }
/// @brief get the surrounding loop
ExecutionNode const* getLoop() const;
protected:
/// @brief set the id, use with care! The purpose is to use a cloned node
/// together with the original in the same plan.
void setId(size_t id) { _id = id; }
/// @brief this actually estimates the costs as well as the number of items
/// coming out of the node
virtual CostEstimate estimateCost() const = 0;
/// @brief factory for sort elements
static void getSortElements(SortElementVector& elements, ExecutionPlan* plan,
arangodb::velocypack::Slice const& slice, char const* which);
/// @brief toVelocyPackHelper, for a generic node
void toVelocyPackHelperGeneric(arangodb::velocypack::Builder&, unsigned flags) const;
/// @brief set regs to be deleted
void setRegsToClear(std::unordered_set<RegisterId>&& toClear) {
_regsToClear = std::move(toClear);
}
std::unordered_set<RegisterId> calcRegsToKeep() const;
protected:
/// @brief node id
size_t _id;
/// @brief our dependent nodes
std::vector<ExecutionNode*> _dependencies;
/// @brief our parent nodes
std::vector<ExecutionNode*> _parents;
/// @brief cost estimate for the node
CostEstimate mutable _costEstimate;
/// @brief _varsUsedLater and _varsValid, the former contains those
/// variables that are still needed further down in the chain. The
/// latter contains the variables that are set from the dependent nodes
/// when an item comes into the current node. Both are only valid if
/// _varUsageValid is true. Use ExecutionPlan::findVarUsage to set
/// this.
arangodb::HashSet<Variable const*> _varsUsedLater;
arangodb::HashSet<Variable const*> _varsValid;
/// @brief depth of the current frame, will be filled in by planRegisters
int _depth;
/// @brief whether or not _varsUsedLater and _varsValid are actually valid
bool _varUsageValid;
/// @brief _plan, the ExecutionPlan object
ExecutionPlan* _plan;
/// @brief info about variables, filled in by planRegisters
std::shared_ptr<RegisterPlan> _registerPlan;
/// @brief the following contains the registers which should be cleared
/// just before this node hands on results. This is computed during
/// the static analysis for each node using the variable usage in the plan.
std::unordered_set<RegisterId> _regsToClear;
public:
/// @brief maximum register id that can be assigned, plus one.
/// this is used for assertions
static constexpr RegisterId MaxRegisterId = 1000;
/// @brief used as "type traits" for ExecutionNodes and derived classes
static constexpr bool IsExecutionNode = true;
};
/// @brief class SingletonNode
class SingletonNode : public ExecutionNode {
friend class ExecutionBlock;
friend class SingletonBlock;
/// @brief constructor with an id
public:
SingletonNode(ExecutionPlan* plan, size_t id) : ExecutionNode(plan, id) {}
SingletonNode(ExecutionPlan* plan, arangodb::velocypack::Slice const& base)
: ExecutionNode(plan, base) {}
/// @brief return the type of the node
NodeType getType() const override final { return SINGLETON; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&, unsigned flags) const override final;
/// @brief creates corresponding ExecutionBlock
std::unique_ptr<ExecutionBlock> createBlock(
ExecutionEngine& engine,
std::unordered_map<ExecutionNode*, ExecutionBlock*> const&) const override;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final {
return cloneHelper(std::make_unique<SingletonNode>(plan, _id),
withDependencies, withProperties);
}
/// @brief the cost of a singleton is 1
CostEstimate estimateCost() const override final;
};
/// @brief class EnumerateCollectionNode
class EnumerateCollectionNode : public ExecutionNode,
public DocumentProducingNode,
public CollectionAccessingNode {
friend class ExecutionNode;
friend class ExecutionBlock;
friend class EnumerateCollectionBlock;
/// @brief constructor with a vocbase and a collection name
public:
EnumerateCollectionNode(ExecutionPlan* plan, size_t id, aql::Collection const* collection,
Variable const* outVariable, bool random, IndexHint const& hint)
: ExecutionNode(plan, id),
DocumentProducingNode(outVariable),
CollectionAccessingNode(collection),
_random(random),
_hint(hint) {}
EnumerateCollectionNode(ExecutionPlan* plan, arangodb::velocypack::Slice const& base);
/// @brief return the type of the node
NodeType getType() const override final { return ENUMERATE_COLLECTION; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&, unsigned flags) const override final;
/// @brief creates corresponding ExecutionBlock
std::unique_ptr<ExecutionBlock> createBlock(
ExecutionEngine& engine,
std::unordered_map<ExecutionNode*, ExecutionBlock*> const&) const override;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief the cost of an enumerate collection node is a multiple of the cost
/// of its unique dependency
CostEstimate estimateCost() const override final;
/// @brief getVariablesSetHere
std::vector<Variable const*> getVariablesSetHere() const override final {
return std::vector<Variable const*>{_outVariable};
}
/// @brief the node is only non-deterministic if it uses a random sort order
bool isDeterministic() override final { return !_random; }
/// @brief enable random iteration of documents in collection
void setRandom() { _random = true; }
/// @brief user hint regarding which index ot use
IndexHint const& hint() const { return _hint; }
private:
/// @brief whether or not we want random iteration
bool _random;
/// @brief a possible hint from the user regarding which index to use
IndexHint _hint;
};
/// @brief class EnumerateListNode
class EnumerateListNode : public ExecutionNode {
friend class ExecutionNode;
friend class ExecutionBlock;
friend class RedundantCalculationsReplacer;
public:
EnumerateListNode(ExecutionPlan* plan, size_t id, Variable const* inVariable,
Variable const* outVariable)
: ExecutionNode(plan, id), _inVariable(inVariable), _outVariable(outVariable) {
TRI_ASSERT(_inVariable != nullptr);
TRI_ASSERT(_outVariable != nullptr);
}
EnumerateListNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
/// @brief return the type of the node
NodeType getType() const override final { return ENUMERATE_LIST; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&, unsigned flags) const override final;
/// @brief creates corresponding ExecutionBlock
std::unique_ptr<ExecutionBlock> createBlock(
ExecutionEngine& engine,
std::unordered_map<ExecutionNode*, ExecutionBlock*> const&) const override;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief the cost of an enumerate list node
CostEstimate estimateCost() const override final;
/// @brief getVariablesUsedHere, modifying the set in-place
void getVariablesUsedHere(arangodb::HashSet<Variable const*>& vars) const override final {
vars.emplace(_inVariable);
}
/// @brief getVariablesSetHere
std::vector<Variable const*> getVariablesSetHere() const override final {
return std::vector<Variable const*>{_outVariable};
}
/// @brief return in variable
Variable const* inVariable() const { return _inVariable; }
/// @brief return out variable
Variable const* outVariable() const { return _outVariable; }
private:
/// @brief input variable to read from
Variable const* _inVariable;
/// @brief output variable to write to
Variable const* _outVariable;
};
/// @brief class LimitNode
class LimitNode : public ExecutionNode {
friend class ExecutionBlock;
friend class LimitBlock;
public:
LimitNode(ExecutionPlan* plan, size_t id, size_t offset, size_t limit)
: ExecutionNode(plan, id), _offset(offset), _limit(limit), _fullCount(false) {}
LimitNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
/// @brief return the type of the node
NodeType getType() const override final { return LIMIT; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&, unsigned flags) const override final;
/// @brief creates corresponding ExecutionBlock
std::unique_ptr<ExecutionBlock> createBlock(
ExecutionEngine& engine,
std::unordered_map<ExecutionNode*, ExecutionBlock*> const&) const override;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final {
auto c = std::make_unique<LimitNode>(plan, _id, _offset, _limit);
if (_fullCount) {
c->setFullCount();
}
return cloneHelper(std::move(c), withDependencies, withProperties);
}
/// @brief estimateCost
CostEstimate estimateCost() const override final;
/// @brief tell the node to fully count what it will limit
void setFullCount() { _fullCount = true; }
/// @brief return the offset value
size_t offset() const { return _offset; }
/// @brief return the limit value
size_t limit() const { return _limit; }
private:
/// @brief the offset
size_t _offset;
/// @brief the limit
size_t _limit;
/// @brief whether or not the node should fully count what it limits
bool _fullCount;
};
/// @brief class CalculationNode
class CalculationNode : public ExecutionNode {
friend class ExecutionNode;
friend class ExecutionBlock;
friend class CalculationBlock;
friend class RedundantCalculationsReplacer;
public:
CalculationNode(ExecutionPlan* plan, size_t id, Expression* expr,
Variable const* conditionVariable, Variable const* outVariable)
: ExecutionNode(plan, id),
_conditionVariable(conditionVariable),
_outVariable(outVariable),
_expression(expr) {
TRI_ASSERT(_expression != nullptr);
TRI_ASSERT(_outVariable != nullptr);
}
CalculationNode(ExecutionPlan* plan, size_t id, Expression* expr, Variable const* outVariable)
: CalculationNode(plan, id, expr, nullptr, outVariable) {}
CalculationNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
~CalculationNode() { delete _expression; }
/// @brief return the type of the node
NodeType getType() const override final { return CALCULATION; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&, unsigned flags) const override final;
/// @brief creates corresponding ExecutionBlock
std::unique_ptr<ExecutionBlock> createBlock(
ExecutionEngine& engine,
std::unordered_map<ExecutionNode*, ExecutionBlock*> const&) const override;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief return out variable
Variable const* outVariable() const { return _outVariable; }
/// @brief return the expression
Expression* expression() const { return _expression; }
/// @brief estimateCost
CostEstimate estimateCost() const override final;
/// @brief getVariablesUsedHere, modifying the set in-place
void getVariablesUsedHere(arangodb::HashSet<Variable const*>& vars) const override final {
_expression->variables(vars);
if (_conditionVariable != nullptr) {
vars.emplace(_conditionVariable);
}
}
/// @brief getVariablesSetHere
virtual std::vector<Variable const*> getVariablesSetHere() const override final {
return std::vector<Variable const*>{_outVariable};
}
bool isDeterministic() override final {
return _expression->isDeterministic();
}
private:
/// @brief an optional condition variable for the calculation
Variable const* _conditionVariable;
/// @brief output variable to write to
Variable const* _outVariable;
/// @brief we need to have an expression and where to write the result
Expression* _expression;
};
/// @brief class SubqueryNode
class SubqueryNode : public ExecutionNode {
friend class ExecutionNode;
friend class ExecutionBlock;
friend class SubqueryBlock;
public:
SubqueryNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
SubqueryNode(ExecutionPlan* plan, size_t id, ExecutionNode* subquery, Variable const* outVariable)
: ExecutionNode(plan, id), _subquery(subquery), _outVariable(outVariable) {
TRI_ASSERT(_subquery != nullptr);
TRI_ASSERT(_outVariable != nullptr);
}
/// @brief return the type of the node
NodeType getType() const override final { return SUBQUERY; }
/// @brief invalidate the cost estimate for the node and its dependencies
void invalidateCost() override;
/// @brief return the out variable
Variable const* outVariable() const { return _outVariable; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&, unsigned flags) const override final;
/// @brief creates corresponding ExecutionBlock
std::unique_ptr<ExecutionBlock> createBlock(
ExecutionEngine& engine,
std::unordered_map<ExecutionNode*, ExecutionBlock*> const&) const override;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief whether or not the subquery is a data-modification operation
bool isModificationSubquery() const;
/// @brief getter for subquery
ExecutionNode* getSubquery() const { return _subquery; }
/// @brief setter for subquery
void setSubquery(ExecutionNode* subquery, bool forceOverwrite) {
TRI_ASSERT(subquery != nullptr);
TRI_ASSERT((forceOverwrite && _subquery != nullptr) ||
(!forceOverwrite && _subquery == nullptr));
_subquery = subquery;
}
/// @brief estimateCost
CostEstimate estimateCost() const override final;
/// @brief getVariablesUsedHere, modifying the set in-place
void getVariablesUsedHere(arangodb::HashSet<Variable const*>& vars) const override final;
/// @brief getVariablesSetHere
std::vector<Variable const*> getVariablesSetHere() const override final {
return std::vector<Variable const*>{_outVariable};
}
/// @brief replace the out variable, so we can adjust the name.
void replaceOutVariable(Variable const* var);
bool isDeterministic() override final;
bool isConst();
bool mayAccessCollections();
private:
/// @brief we need to have an expression and where to write the result
ExecutionNode* _subquery;
/// @brief variable to write to
Variable const* _outVariable;
};
/// @brief class FilterNode
class FilterNode : public ExecutionNode {
friend class ExecutionBlock;
friend class RedundantCalculationsReplacer;
/// @brief constructors for various arguments, always with offset and limit
public:
FilterNode(ExecutionPlan* plan, size_t id, Variable const* inVariable)
: ExecutionNode(plan, id), _inVariable(inVariable) {
TRI_ASSERT(_inVariable != nullptr);
}
FilterNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
/// @brief return the type of the node
NodeType getType() const override { return FILTER; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&, unsigned flags) const override final;
/// @brief creates corresponding ExecutionBlock
std::unique_ptr<ExecutionBlock> createBlock(
ExecutionEngine& engine,
std::unordered_map<ExecutionNode*, ExecutionBlock*> const&) const override;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief estimateCost
CostEstimate estimateCost() const override final;
/// @brief getVariablesUsedHere, modifying the set in-place
void getVariablesUsedHere(arangodb::HashSet<Variable const*>& vars) const override final {
vars.emplace(_inVariable);
}
Variable const* inVariable() const { return _inVariable; }
private:
/// @brief input variable to read from
Variable const* _inVariable;
};
/// @brief this is an auxilliary struct for processed sort criteria information
struct SortInformation {
enum Match {
unequal, // criteria are unequal
otherLessAccurate, // leftmost sort criteria are equal, but other sort
// criteria are less accurate than ourselves
ourselvesLessAccurate, // leftmost sort criteria are equal, but our own
// sort criteria is less accurate than the other
allEqual // all criteria are equal
};
std::vector<std::tuple<ExecutionNode const*, std::string, bool>> criteria;
bool isValid = true;
bool isDeterministic = true;
bool isComplex = false;
Match isCoveredBy(SortInformation const& other) {
if (!isValid || !other.isValid) {
return unequal;
}
if (isComplex || other.isComplex) {
return unequal;
}
size_t const n = criteria.size();
for (size_t i = 0; i < n; ++i) {
if (other.criteria.size() <= i) {
return otherLessAccurate;
}
auto ours = criteria[i];
auto theirs = other.criteria[i];
if (std::get<2>(ours) != std::get<2>(theirs)) {
// sort order is different
return unequal;
}
if (std::get<1>(ours) != std::get<1>(theirs)) {
// sort criterion is different
return unequal;
}
}
if (other.criteria.size() > n) {
return ourselvesLessAccurate;
}
return allEqual;
}
};
/// @brief class ReturnNode
class ReturnNode : public ExecutionNode {
friend class ExecutionBlock;
friend class RedundantCalculationsReplacer;
/// @brief constructors for various arguments, always with offset and limit
public:
ReturnNode(ExecutionPlan* plan, size_t id, Variable const* inVariable)
: ExecutionNode(plan, id), _inVariable(inVariable), _count(false) {
TRI_ASSERT(_inVariable != nullptr);
}
ReturnNode(ExecutionPlan*, arangodb::velocypack::Slice const& base);
/// @brief return the type of the node
NodeType getType() const override final { return RETURN; }
/// @brief tell the node to count the returned values
void setCount() { _count = true; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&, unsigned flags) const override final;
/// @brief creates corresponding ExecutionBlock
std::unique_ptr<ExecutionBlock> createBlock(
ExecutionEngine& engine,
std::unordered_map<ExecutionNode*, ExecutionBlock*> const&) const override;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final;
/// @brief estimateCost
CostEstimate estimateCost() const override final;
/// @brief getVariablesUsedHere, modifying the set in-place
void getVariablesUsedHere(arangodb::HashSet<Variable const*>& vars) const override final {
vars.emplace(_inVariable);
}
Variable const* inVariable() const { return _inVariable; }
void inVariable(Variable const* v) { _inVariable = v; }
private:
/// @brief the variable produced by Return
Variable const* _inVariable;
bool _count;
};
/// @brief class NoResultsNode
class NoResultsNode : public ExecutionNode {
friend class ExecutionBlock;
/// @brief constructor with an id
public:
NoResultsNode(ExecutionPlan* plan, size_t id) : ExecutionNode(plan, id) {}
NoResultsNode(ExecutionPlan* plan, arangodb::velocypack::Slice const& base)
: ExecutionNode(plan, base) {}
/// @brief return the type of the node
NodeType getType() const override final { return NORESULTS; }
/// @brief export to VelocyPack
void toVelocyPackHelper(arangodb::velocypack::Builder&, unsigned flags) const override final;
/// @brief creates corresponding ExecutionBlock
std::unique_ptr<ExecutionBlock> createBlock(
ExecutionEngine& engine,
std::unordered_map<ExecutionNode*, ExecutionBlock*> const&) const override;
/// @brief clone ExecutionNode recursively
ExecutionNode* clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const override final {
return cloneHelper(std::make_unique<NoResultsNode>(plan, _id),
withDependencies, withProperties);
}
/// @brief the cost of a NoResults is 0
CostEstimate estimateCost() const override final;
};
} // namespace aql
} // namespace arangodb
#endif