1
0
Fork 0
arangodb/arangod/Aql/TraversalConditionFinder.cpp

308 lines
10 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// @brief Condition finder, used to build up the Condition object
///
/// @file
///
/// DISCLAIMER
///
/// Copyright 2010-2014 triagens GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Michael Hackstein
/// @author Copyright 2015, ArangoDB GmbH, Cologne, Germany
////////////////////////////////////////////////////////////////////////////////
#include "Basics/JsonHelper.h"
#include "Aql/Ast.h"
#include "Aql/TraversalConditionFinder.h"
#include "Aql/ExecutionPlan.h"
#include "Aql/TraversalNode.h"
using namespace triagens::aql;
using EN = triagens::aql::ExecutionNode;
bool checkPathVariableAccessFeasible (CalculationNode const* cn,
TraversalNode* tn,
Variable const* var,
bool &conditionIsImpossible,
Ast* ast) {
auto node = cn->expression()->node();
std::vector<AstNode const*> currentPath;
std::vector<std::vector<AstNode const*>> paths;
std::vector<std::vector<AstNode const*>> clonePath;
node->findVariableAccess(currentPath, paths, var);
for (auto onePath : paths) {
size_t len = onePath.size();
bool isEdgeAccess = false;
bool isVertexAccess = false;
size_t attrAccessTo = 0;
if (onePath[len - 2]->type == NODE_TYPE_ATTRIBUTE_ACCESS) {
isEdgeAccess = strcmp(onePath[len - 2]->getStringValue(), "edges") == 0;
isVertexAccess = strcmp(onePath[len - 2]->getStringValue(), "vertices") == 0;
if (!isEdgeAccess && ! isVertexAccess) {
/* We can't catch all cases in which this error would occur, so we don't throw here.
std::string message("TRAVERSAL: path only knows 'edges' and 'vertices', not ");
message += onePath[len - 2]->getStringValue();
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_QUERY_PARSE, message);
*/
return false;
}
}
// we now need to check for p.edges[n] whether n is >= 0
if (onePath[len - 3]->type == NODE_TYPE_INDEXED_ACCESS) {
auto indexAccessNode = onePath[len - 3]->getMember(1);
if ((indexAccessNode->type != NODE_TYPE_VALUE) ||
(indexAccessNode->value.type != VALUE_TYPE_INT) ||
(indexAccessNode->value.value._int < 0)) {
return false;
}
conditionIsImpossible = !tn->isInRange(indexAccessNode->value.value._int);
attrAccessTo = indexAccessNode->value.value._int;
}
else if ((onePath[len - 3]->type == NODE_TYPE_ITERATOR) &&
(onePath[len - 4]->type == NODE_TYPE_EXPANSION)){
// we now need to check for p.edges[*] which becomes a fancy structure
return false;
}
else {
return false;
}
// OR? don't know howto continue.
AstNode const* compareNode = nullptr;
AstNode const* accessNodeBranch = nullptr;
for (auto oneNode : onePath) {
if (oneNode->type == NODE_TYPE_OPERATOR_BINARY_OR) {
return false;
}
if (compareNode != nullptr && accessNodeBranch == nullptr) {
accessNodeBranch = oneNode;
}
if (oneNode->type == NODE_TYPE_OPERATOR_BINARY_EQ) {
compareNode = oneNode;
}
}
if (compareNode != NULL) {
AstNode const * pathAccessNode;
AstNode const * filterByNode;
if (compareNode->getMember(0) == accessNodeBranch) {
pathAccessNode = accessNodeBranch;
filterByNode = compareNode->getMember(1);
}
else {
pathAccessNode = accessNodeBranch;
filterByNode = compareNode->getMember(0);
}
if (accessNodeBranch->isSimple() && filterByNode->type == NODE_TYPE_VALUE) {
AstNode *newNode = pathAccessNode->clone(ast);
// since we just copied one path, we should only find one.
newNode->findVariableAccess(currentPath, clonePath, var);
auto len = clonePath[0].size();
if (len < 4) {
// well, if we've gotten here, we can't cluster filter, but
// usual early filtering should be fine.
return true;
}
AstNode* firstRefNode = (AstNode*) clonePath[0][len - 4];
TRI_ASSERT(firstRefNode->type == NODE_TYPE_ATTRIBUTE_ACCESS);
auto varRefNode = new AstNode(NODE_TYPE_REFERENCE);
ast->query()->addNode(varRefNode);
varRefNode->setData(isEdgeAccess ? tn->edgeOutVariable(): tn->vertexOutVariable());
firstRefNode->changeMember(0, varRefNode);
tn->storeSimpleExpression(isEdgeAccess,
attrAccessTo,
compareNode->type,
newNode,
filterByNode);
}
}
}
return true;
}
bool TraversalConditionFinder::before (ExecutionNode* en) {
if (! _variableDefinitions.empty() && en->canThrow()) {
// we already found a FILTER and
// something that can throw is not safe to optimize
_filters.clear();
return true;
}
switch (en->getType()) {
case EN::ENUMERATE_LIST:
case EN::AGGREGATE:
case EN::SCATTER:
case EN::DISTRIBUTE:
case EN::GATHER:
case EN::REMOTE:
case EN::SUBQUERY:
case EN::INDEX:
case EN::INSERT:
case EN::REMOVE:
case EN::REPLACE:
case EN::UPDATE:
case EN::UPSERT:
case EN::RETURN:
case EN::SORT:
case EN::ENUMERATE_COLLECTION:
case EN::LIMIT:
// in these cases we simply ignore the intermediate nodes, note
// that we have taken care of nodes that could throw exceptions
// above.
break;
case EN::SINGLETON:
case EN::NORESULTS:
case EN::ILLEGAL:
// in all these cases we better abort
return true;
case EN::FILTER: {
std::vector<Variable const*>&& invars = en->getVariablesUsedHere();
TRI_ASSERT(invars.size() == 1);
// register which variable is used in a FILTER
_filters.emplace(invars[0]->id, en);
break;
}
case EN::CALCULATION: {
auto outvars = en->getVariablesSetHere();
TRI_ASSERT(outvars.size() == 1);
_variableDefinitions.emplace(outvars[0]->id, static_cast<CalculationNode const*>(en));
TRI_IF_FAILURE("ConditionFinder::variableDefinition") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
break;
}
case EN::TRAVERSAL: {
auto node = static_cast<TraversalNode *>(en);
std::unique_ptr<Condition> condition(new Condition(_plan->getAst()));
bool foundCondition = false;
auto const& varsValidInTraversal = node->getVarsValid();
std::unordered_set<Variable const*> varsUsedByCondition;
bool conditionIsImpossible = false;
for (auto& it : _variableDefinitions) {
auto f = _filters.find(it.first);
if (f != _filters.end()) {
// a variable used in a FILTER
auto outVar = node->getVariablesSetHere();
if (outVar.size() != 1 || outVar[0]->id == f->first) {
// now we know, this filter is used for our traversal node.
auto cn = it.second;
// check whether variables that are not in scope of the condition are used:
varsUsedByCondition.clear();
Ast::getReferencedVariables(cn->expression()->node(), varsUsedByCondition);
bool unknownVariableFound = false;
for (auto conditionVar: varsUsedByCondition) {
bool found = false;
for (auto traversalKnownVar : varsValidInTraversal ) {
if (conditionVar->id == traversalKnownVar->id) {
found = true;
break;
}
}
if (!found) {
unknownVariableFound = true;
break;
}
}
if (unknownVariableFound) {
continue;
}
for (auto conditionVar: varsUsedByCondition) {
// check whether conditionVar is one of those we emit
int variableType = node->checkIsOutVariable(conditionVar->id);
if (variableType >= 0) {
if ((variableType == 2) &&
checkPathVariableAccessFeasible(cn, node, conditionVar, conditionIsImpossible, _plan->getAst()))
{
condition->andCombine(it.second->expression()->node());
foundCondition = true;
node->setCalculationNodeId(cn->id());
}
if (conditionIsImpossible)
break;
}
}
}
}
if (conditionIsImpossible)
break;
}
if (!conditionIsImpossible) {
conditionIsImpossible = !node->isRangeValid();
}
// TODO: we can't execute if we condition->normalize(_plan); in generateCodeNode
if (!conditionIsImpossible) {
// right now we're not clever enough to find impossible conditions...
conditionIsImpossible = (foundCondition && condition->isEmpty());
}
if (conditionIsImpossible) {
// condition is always false
for (auto const& x : node->getParents()) {
auto noRes = new NoResultsNode(_plan, _plan->nextId());
_plan->registerNode(noRes);
_plan->insertDependency(x, noRes);
*_planAltered = true;
}
break;
}
if (foundCondition) {
node->setCondition(condition.release());
*_planAltered = true;
}
break;
}
}
return false;
}
bool TraversalConditionFinder::enterSubquery (ExecutionNode*, ExecutionNode*) {
return false;
}
// Local Variables:
// mode: outline-minor
// outline-regexp: "^\\(/// @brief\\|/// {@inheritDoc}\\|/// @addtogroup\\|// --SECTION--\\|/// @\\}\\)"
// End: