mirror of https://gitee.com/bigwinds/arangodb
539 lines
21 KiB
C++
539 lines
21 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
/// DISCLAIMER
|
|
///
|
|
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
|
|
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
|
|
///
|
|
/// Licensed under the Apache License, Version 2.0 (the "License");
|
|
/// you may not use this file except in compliance with the License.
|
|
/// You may obtain a copy of the License at
|
|
///
|
|
/// http://www.apache.org/licenses/LICENSE-2.0
|
|
///
|
|
/// Unless required by applicable law or agreed to in writing, software
|
|
/// distributed under the License is distributed on an "AS IS" BASIS,
|
|
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
/// See the License for the specific language governing permissions and
|
|
/// limitations under the License.
|
|
///
|
|
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
|
|
///
|
|
/// @author Jan Steemann
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "CollectNode.h"
|
|
#include "Aql/Ast.h"
|
|
#include "Aql/CountCollectExecutor.h"
|
|
#include "Aql/DistinctCollectExecutor.h"
|
|
#include "Aql/ExecutionBlockImpl.h"
|
|
#include "Aql/ExecutionPlan.h"
|
|
#include "Aql/HashedCollectExecutor.h"
|
|
#include "Aql/SortedCollectExecutor.h"
|
|
#include "Aql/VariableGenerator.h"
|
|
#include "Aql/WalkerWorker.h"
|
|
|
|
using namespace arangodb::aql;
|
|
|
|
CollectNode::CollectNode(
|
|
ExecutionPlan* plan, arangodb::velocypack::Slice const& base,
|
|
Variable const* expressionVariable, Variable const* outVariable,
|
|
std::vector<Variable const*> const& keepVariables,
|
|
std::unordered_map<VariableId, std::string const> const& variableMap,
|
|
std::vector<std::pair<Variable const*, Variable const*>> const& groupVariables,
|
|
std::vector<std::pair<Variable const*, std::pair<Variable const*, std::string>>> const& aggregateVariables,
|
|
bool count, bool isDistinctCommand)
|
|
: ExecutionNode(plan, base),
|
|
_options(base),
|
|
_groupVariables(groupVariables),
|
|
_aggregateVariables(aggregateVariables),
|
|
_expressionVariable(expressionVariable),
|
|
_outVariable(outVariable),
|
|
_keepVariables(keepVariables),
|
|
_variableMap(variableMap),
|
|
_count(count),
|
|
_isDistinctCommand(isDistinctCommand),
|
|
_specialized(false) {}
|
|
|
|
CollectNode::~CollectNode() {}
|
|
|
|
/// @brief toVelocyPack, for CollectNode
|
|
void CollectNode::toVelocyPackHelper(VPackBuilder& nodes, unsigned flags) const {
|
|
// call base class method
|
|
ExecutionNode::toVelocyPackHelperGeneric(nodes, flags);
|
|
|
|
// group variables
|
|
nodes.add(VPackValue("groups"));
|
|
{
|
|
VPackArrayBuilder guard(&nodes);
|
|
for (auto const& groupVariable : _groupVariables) {
|
|
VPackObjectBuilder obj(&nodes);
|
|
nodes.add(VPackValue("outVariable"));
|
|
groupVariable.first->toVelocyPack(nodes);
|
|
nodes.add(VPackValue("inVariable"));
|
|
groupVariable.second->toVelocyPack(nodes);
|
|
}
|
|
}
|
|
|
|
// aggregate variables
|
|
nodes.add(VPackValue("aggregates"));
|
|
{
|
|
VPackArrayBuilder guard(&nodes);
|
|
for (auto const& aggregateVariable : _aggregateVariables) {
|
|
VPackObjectBuilder obj(&nodes);
|
|
nodes.add(VPackValue("outVariable"));
|
|
aggregateVariable.first->toVelocyPack(nodes);
|
|
nodes.add(VPackValue("inVariable"));
|
|
aggregateVariable.second.first->toVelocyPack(nodes);
|
|
nodes.add("type", VPackValue(aggregateVariable.second.second));
|
|
}
|
|
}
|
|
|
|
// expression variable might be empty
|
|
if (_expressionVariable != nullptr) {
|
|
nodes.add(VPackValue("expressionVariable"));
|
|
_expressionVariable->toVelocyPack(nodes);
|
|
}
|
|
|
|
// output variable might be empty
|
|
if (_outVariable != nullptr) {
|
|
nodes.add(VPackValue("outVariable"));
|
|
_outVariable->toVelocyPack(nodes);
|
|
}
|
|
|
|
if (!_keepVariables.empty()) {
|
|
nodes.add(VPackValue("keepVariables"));
|
|
{
|
|
VPackArrayBuilder guard(&nodes);
|
|
for (auto const& it : _keepVariables) {
|
|
VPackObjectBuilder obj(&nodes);
|
|
nodes.add(VPackValue("variable"));
|
|
it->toVelocyPack(nodes);
|
|
}
|
|
}
|
|
}
|
|
|
|
nodes.add("count", VPackValue(_count));
|
|
nodes.add("isDistinctCommand", VPackValue(_isDistinctCommand));
|
|
nodes.add("specialized", VPackValue(_specialized));
|
|
nodes.add(VPackValue("collectOptions"));
|
|
_options.toVelocyPack(nodes);
|
|
|
|
// And close it:
|
|
nodes.close();
|
|
}
|
|
|
|
void CollectNode::calcExpressionRegister(
|
|
arangodb::aql::RegisterId& expressionRegister,
|
|
std::unordered_set<arangodb::aql::RegisterId>& readableInputRegisters) const {
|
|
if (_expressionVariable != nullptr) {
|
|
auto it = getRegisterPlan()->varInfo.find(_expressionVariable->id);
|
|
TRI_ASSERT(it != getRegisterPlan()->varInfo.end());
|
|
expressionRegister = (*it).second.registerId;
|
|
readableInputRegisters.insert((*it).second.registerId);
|
|
}
|
|
}
|
|
|
|
void CollectNode::calcCollectRegister(arangodb::aql::RegisterId& collectRegister,
|
|
std::unordered_set<arangodb::aql::RegisterId>& writeableOutputRegisters) const {
|
|
if (_outVariable != nullptr) {
|
|
auto it = getRegisterPlan()->varInfo.find(_outVariable->id);
|
|
TRI_ASSERT(it != getRegisterPlan()->varInfo.end());
|
|
collectRegister = (*it).second.registerId;
|
|
TRI_ASSERT(collectRegister > 0 && collectRegister < ExecutionNode::MaxRegisterId);
|
|
writeableOutputRegisters.insert((*it).second.registerId);
|
|
}
|
|
}
|
|
|
|
void CollectNode::calcGroupRegisters(
|
|
std::vector<std::pair<arangodb::aql::RegisterId, arangodb::aql::RegisterId>>& groupRegisters,
|
|
std::unordered_set<arangodb::aql::RegisterId>& readableInputRegisters,
|
|
std::unordered_set<arangodb::aql::RegisterId>& writeableOutputRegisters) const {
|
|
for (auto const& p : _groupVariables) {
|
|
// We know that planRegisters() has been run, so
|
|
// getPlanNode()->_registerPlan is set up
|
|
auto itOut = getRegisterPlan()->varInfo.find(p.first->id);
|
|
TRI_ASSERT(itOut != getRegisterPlan()->varInfo.end());
|
|
|
|
auto itIn = getRegisterPlan()->varInfo.find(p.second->id);
|
|
TRI_ASSERT(itIn != getRegisterPlan()->varInfo.end());
|
|
|
|
RegisterId inReg = itIn->second.registerId;
|
|
RegisterId outReg = itOut->second.registerId;
|
|
TRI_ASSERT(inReg < ExecutionNode::MaxRegisterId);
|
|
TRI_ASSERT(outReg < ExecutionNode::MaxRegisterId);
|
|
groupRegisters.emplace_back(outReg, inReg);
|
|
writeableOutputRegisters.insert(outReg);
|
|
readableInputRegisters.insert(inReg);
|
|
}
|
|
}
|
|
|
|
void CollectNode::calcAggregateRegisters(
|
|
std::vector<std::pair<RegisterId, RegisterId>>& aggregateRegisters,
|
|
std::unordered_set<arangodb::aql::RegisterId>& readableInputRegisters,
|
|
std::unordered_set<arangodb::aql::RegisterId>& writeableOutputRegisters) const {
|
|
for (auto const& p : _aggregateVariables) {
|
|
// We know that planRegisters() has been run, so
|
|
// getPlanNode()->_registerPlan is set up
|
|
auto itOut = getRegisterPlan()->varInfo.find(p.first->id);
|
|
TRI_ASSERT(itOut != getRegisterPlan()->varInfo.end());
|
|
RegisterId outReg = itOut->second.registerId;
|
|
TRI_ASSERT(outReg < ExecutionNode::MaxRegisterId);
|
|
|
|
RegisterId inReg = ExecutionNode::MaxRegisterId;
|
|
if (Aggregator::requiresInput(p.second.second)) {
|
|
auto itIn = getRegisterPlan()->varInfo.find(p.second.first->id);
|
|
TRI_ASSERT(itIn != getRegisterPlan()->varInfo.end());
|
|
inReg = itIn->second.registerId;
|
|
TRI_ASSERT(inReg < ExecutionNode::MaxRegisterId);
|
|
readableInputRegisters.insert(inReg);
|
|
}
|
|
// else: no input variable required
|
|
|
|
aggregateRegisters.emplace_back(std::make_pair(outReg, inReg));
|
|
writeableOutputRegisters.insert((outReg));
|
|
}
|
|
TRI_ASSERT(aggregateRegisters.size() == _aggregateVariables.size());
|
|
}
|
|
|
|
void CollectNode::calcAggregateTypes(std::vector<std::unique_ptr<Aggregator>>& aggregateTypes) const {
|
|
for (auto const& p : _aggregateVariables) {
|
|
aggregateTypes.emplace_back(
|
|
Aggregator::fromTypeString(_plan->getAst()->query()->trx(), p.second.second));
|
|
}
|
|
}
|
|
|
|
void CollectNode::calcVariableNames(std::vector<std::pair<std::string, RegisterId>>& variableNames) const {
|
|
if (_outVariable != nullptr) {
|
|
auto const& registerPlan = getRegisterPlan()->varInfo;
|
|
auto it = registerPlan.find(_outVariable->id);
|
|
TRI_ASSERT(it != registerPlan.end());
|
|
|
|
// iterate over all our variables
|
|
if (_keepVariables.empty()) {
|
|
auto usedVariableIds(getVariableIdsUsedHere());
|
|
|
|
for (auto const& vi : registerPlan) {
|
|
if (vi.second.depth > 0 || getDepth() == 1) {
|
|
// Do not keep variables from depth 0, unless we are depth 1 ourselves
|
|
// (which means no FOR in which we are contained)
|
|
|
|
if (usedVariableIds.find(vi.first) == usedVariableIds.end()) {
|
|
// variable is not visible to the CollectBlock
|
|
continue;
|
|
}
|
|
|
|
// find variable in the global variable map
|
|
auto itVar = _variableMap.find(vi.first);
|
|
|
|
if (itVar != _variableMap.end()) {
|
|
variableNames.emplace_back(std::make_pair((*itVar).second, vi.second.registerId));
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (auto const& x : _keepVariables) {
|
|
auto it = registerPlan.find(x->id);
|
|
|
|
if (it != registerPlan.end()) {
|
|
variableNames.emplace_back(std::make_pair(x->name, (*it).second.registerId));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// @brief creates corresponding ExecutionBlock
|
|
std::unique_ptr<ExecutionBlock> CollectNode::createBlock(
|
|
ExecutionEngine& engine, std::unordered_map<ExecutionNode*, ExecutionBlock*> const&) const {
|
|
switch (aggregationMethod()) {
|
|
case CollectOptions::CollectMethod::HASH: {
|
|
ExecutionNode const* previousNode = getFirstDependency();
|
|
TRI_ASSERT(previousNode != nullptr);
|
|
|
|
std::unordered_set<RegisterId> readableInputRegisters;
|
|
std::unordered_set<RegisterId> writeableOutputRegisters;
|
|
|
|
RegisterId collectRegister = ExecutionNode::MaxRegisterId;
|
|
calcCollectRegister(collectRegister, writeableOutputRegisters);
|
|
|
|
// calculate the group registers
|
|
std::vector<std::pair<RegisterId, RegisterId>> groupRegisters;
|
|
calcGroupRegisters(groupRegisters, readableInputRegisters, writeableOutputRegisters);
|
|
|
|
// calculate the aggregate registers
|
|
std::vector<std::pair<RegisterId, RegisterId>> aggregateRegisters;
|
|
calcAggregateRegisters(aggregateRegisters, readableInputRegisters, writeableOutputRegisters);
|
|
|
|
TRI_ASSERT(groupRegisters.size() == _groupVariables.size());
|
|
TRI_ASSERT(aggregateRegisters.size() == _aggregateVariables.size());
|
|
|
|
std::vector<std::string> aggregateTypes;
|
|
std::transform(aggregateVariables().begin(), aggregateVariables().end(),
|
|
std::back_inserter(aggregateTypes),
|
|
[](auto& it) { return it.second.second; });
|
|
TRI_ASSERT(aggregateTypes.size() == _aggregateVariables.size());
|
|
|
|
transaction::Methods* trxPtr = _plan->getAst()->query()->trx();
|
|
HashedCollectExecutorInfos infos(
|
|
getRegisterPlan()->nrRegs[previousNode->getDepth()],
|
|
getRegisterPlan()->nrRegs[getDepth()], getRegsToClear(), calcRegsToKeep(),
|
|
std::move(readableInputRegisters), std::move(writeableOutputRegisters),
|
|
std::move(groupRegisters), collectRegister, std::move(aggregateTypes),
|
|
std::move(aggregateRegisters), trxPtr, _count);
|
|
|
|
return std::make_unique<ExecutionBlockImpl<HashedCollectExecutor>>(&engine, this,
|
|
std::move(infos));
|
|
}
|
|
case CollectOptions::CollectMethod::SORTED: {
|
|
ExecutionNode const* previousNode = getFirstDependency();
|
|
TRI_ASSERT(previousNode != nullptr);
|
|
|
|
std::unordered_set<RegisterId> readableInputRegisters;
|
|
std::unordered_set<RegisterId> writeableOutputRegisters;
|
|
|
|
RegisterId collectRegister = ExecutionNode::MaxRegisterId;
|
|
calcCollectRegister(collectRegister, writeableOutputRegisters);
|
|
|
|
RegisterId expressionRegister = ExecutionNode::MaxRegisterId;
|
|
calcExpressionRegister(expressionRegister, readableInputRegisters);
|
|
|
|
// calculate the group registers
|
|
std::vector<std::pair<RegisterId, RegisterId>> groupRegisters;
|
|
calcGroupRegisters(groupRegisters, readableInputRegisters, writeableOutputRegisters);
|
|
|
|
// calculate the aggregate registers
|
|
std::vector<std::pair<RegisterId, RegisterId>> aggregateRegisters;
|
|
calcAggregateRegisters(aggregateRegisters, readableInputRegisters, writeableOutputRegisters);
|
|
|
|
// calculate the aggregate type // TODO refactor nicely
|
|
std::vector<std::unique_ptr<Aggregator>> aggregateValues;
|
|
calcAggregateTypes(aggregateValues);
|
|
|
|
// calculate the variable names
|
|
std::vector<std::pair<std::string, RegisterId>> variables;
|
|
calcVariableNames(variables);
|
|
|
|
TRI_ASSERT(groupRegisters.size() == _groupVariables.size());
|
|
TRI_ASSERT(aggregateRegisters.size() == _aggregateVariables.size());
|
|
|
|
std::vector<std::string> aggregateTypes;
|
|
std::transform(aggregateVariables().begin(), aggregateVariables().end(),
|
|
std::back_inserter(aggregateTypes),
|
|
[](auto& it) { return it.second.second; });
|
|
TRI_ASSERT(aggregateTypes.size() == _aggregateVariables.size());
|
|
|
|
transaction::Methods* trxPtr = _plan->getAst()->query()->trx();
|
|
SortedCollectExecutorInfos infos(
|
|
getRegisterPlan()->nrRegs[previousNode->getDepth()],
|
|
getRegisterPlan()->nrRegs[getDepth()], getRegsToClear(), calcRegsToKeep(),
|
|
std::move(readableInputRegisters), std::move(writeableOutputRegisters),
|
|
std::move(groupRegisters), collectRegister, expressionRegister,
|
|
_expressionVariable, std::move(aggregateTypes),
|
|
std::move(variables), std::move(aggregateRegisters), trxPtr, _count);
|
|
|
|
return std::make_unique<ExecutionBlockImpl<SortedCollectExecutor>>(&engine, this,
|
|
std::move(infos));
|
|
}
|
|
case CollectOptions::CollectMethod::COUNT: {
|
|
ExecutionNode const* previousNode = getFirstDependency();
|
|
TRI_ASSERT(previousNode != nullptr);
|
|
|
|
auto it = getRegisterPlan()->varInfo.find(_outVariable->id);
|
|
TRI_ASSERT(it != getRegisterPlan()->varInfo.end());
|
|
RegisterId collectRegister = (*it).second.registerId;
|
|
|
|
CountCollectExecutorInfos infos(collectRegister,
|
|
getRegisterPlan()->nrRegs[previousNode->getDepth()],
|
|
getRegisterPlan()->nrRegs[getDepth()],
|
|
getRegsToClear(), calcRegsToKeep());
|
|
|
|
return std::make_unique<ExecutionBlockImpl<CountCollectExecutor>>(&engine, this,
|
|
std::move(infos));
|
|
}
|
|
case CollectOptions::CollectMethod::DISTINCT: {
|
|
ExecutionNode const* previousNode = getFirstDependency();
|
|
TRI_ASSERT(previousNode != nullptr);
|
|
|
|
std::unordered_set<RegisterId> readableInputRegisters;
|
|
std::unordered_set<RegisterId> writeableOutputRegisters;
|
|
|
|
std::vector<std::pair<RegisterId, RegisterId>> groupRegisters;
|
|
// calculate the group registers
|
|
calcGroupRegisters(groupRegisters, readableInputRegisters, writeableOutputRegisters);
|
|
|
|
transaction::Methods* trxPtr = _plan->getAst()->query()->trx();
|
|
DistinctCollectExecutorInfos infos(getRegisterPlan()->nrRegs[previousNode->getDepth()],
|
|
getRegisterPlan()->nrRegs[getDepth()],
|
|
getRegsToClear(), calcRegsToKeep(),
|
|
std::move(readableInputRegisters),
|
|
std::move(writeableOutputRegisters),
|
|
std::move(groupRegisters), trxPtr);
|
|
|
|
return std::make_unique<ExecutionBlockImpl<DistinctCollectExecutor>>(&engine, this,
|
|
std::move(infos));
|
|
}
|
|
default:
|
|
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL,
|
|
"cannot instantiate CollectBlock with "
|
|
"undetermined aggregation method");
|
|
}
|
|
}
|
|
|
|
/// @brief clone ExecutionNode recursively
|
|
ExecutionNode* CollectNode::clone(ExecutionPlan* plan, bool withDependencies,
|
|
bool withProperties) const {
|
|
auto outVariable = _outVariable;
|
|
auto expressionVariable = _expressionVariable;
|
|
auto groupVariables = _groupVariables;
|
|
auto aggregateVariables = _aggregateVariables;
|
|
|
|
if (withProperties) {
|
|
if (expressionVariable != nullptr) {
|
|
expressionVariable = plan->getAst()->variables()->createVariable(expressionVariable);
|
|
}
|
|
|
|
if (outVariable != nullptr) {
|
|
outVariable = plan->getAst()->variables()->createVariable(outVariable);
|
|
}
|
|
|
|
// need to re-create all variables
|
|
groupVariables.clear();
|
|
|
|
for (auto& it : _groupVariables) {
|
|
auto out = plan->getAst()->variables()->createVariable(it.first);
|
|
auto in = plan->getAst()->variables()->createVariable(it.second);
|
|
groupVariables.emplace_back(std::make_pair(out, in));
|
|
}
|
|
|
|
aggregateVariables.clear();
|
|
|
|
for (auto& it : _aggregateVariables) {
|
|
auto out = plan->getAst()->variables()->createVariable(it.first);
|
|
auto in = plan->getAst()->variables()->createVariable(it.second.first);
|
|
aggregateVariables.emplace_back(
|
|
std::make_pair(out, std::make_pair(in, it.second.second)));
|
|
}
|
|
}
|
|
|
|
auto c = std::make_unique<CollectNode>(plan, _id, _options, groupVariables,
|
|
aggregateVariables, expressionVariable,
|
|
outVariable, _keepVariables, _variableMap,
|
|
_count, _isDistinctCommand);
|
|
|
|
// specialize the cloned node
|
|
if (isSpecialized()) {
|
|
c->specialized();
|
|
}
|
|
|
|
return cloneHelper(std::move(c), withDependencies, withProperties);
|
|
}
|
|
|
|
/// @brief helper struct for finding variables
|
|
struct UserVarFinder final : public WalkerWorker<ExecutionNode> {
|
|
explicit UserVarFinder(int mindepth) : mindepth(mindepth), depth(-1) {}
|
|
|
|
~UserVarFinder() {}
|
|
|
|
std::vector<Variable const*> userVars;
|
|
int mindepth; // minimal depth to consider
|
|
int depth;
|
|
|
|
bool enterSubquery(ExecutionNode*, ExecutionNode*) override final {
|
|
return false;
|
|
}
|
|
|
|
void after(ExecutionNode* en) override final {
|
|
if (en->getType() == ExecutionNode::SINGLETON) {
|
|
depth = 0;
|
|
} else if (en->getType() == ExecutionNode::ENUMERATE_COLLECTION ||
|
|
en->getType() == ExecutionNode::INDEX ||
|
|
en->getType() == ExecutionNode::ENUMERATE_LIST ||
|
|
en->getType() == ExecutionNode::TRAVERSAL ||
|
|
en->getType() == ExecutionNode::SHORTEST_PATH ||
|
|
en->getType() == ExecutionNode::ENUMERATE_IRESEARCH_VIEW ||
|
|
en->getType() == ExecutionNode::COLLECT) {
|
|
depth += 1;
|
|
}
|
|
// Now depth is set correct for this node.
|
|
if (depth >= mindepth) {
|
|
for (auto const& v : en->getVariablesSetHere()) {
|
|
if (v->isUserDefined()) {
|
|
userVars.emplace_back(v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/// @brief getVariablesUsedHere, modifying the set in-place
|
|
void CollectNode::getVariablesUsedHere(arangodb::HashSet<Variable const*>& vars) const {
|
|
for (auto const& p : _groupVariables) {
|
|
vars.emplace(p.second);
|
|
}
|
|
for (auto const& p : _aggregateVariables) {
|
|
vars.emplace(p.second.first);
|
|
}
|
|
|
|
if (_expressionVariable != nullptr) {
|
|
vars.emplace(_expressionVariable);
|
|
}
|
|
|
|
if (_outVariable != nullptr && !_count) {
|
|
if (_keepVariables.empty()) {
|
|
// Here we have to find all user defined variables in this query
|
|
// amongst our dependencies:
|
|
UserVarFinder finder(1);
|
|
auto myselfAsNonConst = const_cast<CollectNode*>(this);
|
|
myselfAsNonConst->walk(finder);
|
|
if (finder.depth == 1) {
|
|
// we are top level, let's run again with mindepth = 0
|
|
finder.userVars.clear();
|
|
finder.mindepth = 0;
|
|
finder.depth = -1;
|
|
finder.reset();
|
|
myselfAsNonConst->walk(finder);
|
|
}
|
|
for (auto& x : finder.userVars) {
|
|
vars.emplace(x);
|
|
}
|
|
} else {
|
|
for (auto& x : _keepVariables) {
|
|
vars.emplace(x);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CollectNode::setAggregateVariables(
|
|
std::vector<std::pair<Variable const*, std::pair<Variable const*, std::string>>> const& aggregateVariables) {
|
|
_aggregateVariables = aggregateVariables;
|
|
}
|
|
|
|
/// @brief estimateCost
|
|
CostEstimate CollectNode::estimateCost() const {
|
|
CostEstimate estimate = _dependencies.at(0)->getCost();
|
|
|
|
// As in the FilterNode case, we are pessimistic here by not reducing the
|
|
// nrItems much, since the worst case for COLLECT is to return as many items
|
|
// as there are input items. In any case, we have to look at all incoming
|
|
// items, and in particular in the COLLECT ... INTO ... case, we have
|
|
// to actually hand on all data anyway, albeit not as separate items.
|
|
// Nevertheless, the optimizer does not do much with CollectNodes
|
|
// and thus this potential overestimation does not really matter.
|
|
|
|
if (_groupVariables.empty()) {
|
|
// we are known to only produce a single output row
|
|
estimate.estimatedNrItems = 1;
|
|
} else {
|
|
// we do not know how many rows the COLLECT with produce...
|
|
// the worst case is that there will be as many output rows as input rows
|
|
if (estimate.estimatedNrItems >= 10) {
|
|
// we assume that the collect will reduce the number of results at least
|
|
// somewhat
|
|
estimate.estimatedNrItems = static_cast<size_t>(estimate.estimatedNrItems * 0.8);
|
|
}
|
|
}
|
|
estimate.estimatedCost += estimate.estimatedNrItems;
|
|
return estimate;
|
|
}
|