1
0
Fork 0
arangodb/arangod/Aql/CollectNode.cpp

539 lines
21 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Jan Steemann
////////////////////////////////////////////////////////////////////////////////
#include "CollectNode.h"
#include "Aql/Ast.h"
#include "Aql/CountCollectExecutor.h"
#include "Aql/DistinctCollectExecutor.h"
#include "Aql/ExecutionBlockImpl.h"
#include "Aql/ExecutionPlan.h"
#include "Aql/HashedCollectExecutor.h"
#include "Aql/SortedCollectExecutor.h"
#include "Aql/VariableGenerator.h"
#include "Aql/WalkerWorker.h"
using namespace arangodb::aql;
CollectNode::CollectNode(
ExecutionPlan* plan, arangodb::velocypack::Slice const& base,
Variable const* expressionVariable, Variable const* outVariable,
std::vector<Variable const*> const& keepVariables,
std::unordered_map<VariableId, std::string const> const& variableMap,
std::vector<std::pair<Variable const*, Variable const*>> const& groupVariables,
std::vector<std::pair<Variable const*, std::pair<Variable const*, std::string>>> const& aggregateVariables,
bool count, bool isDistinctCommand)
: ExecutionNode(plan, base),
_options(base),
_groupVariables(groupVariables),
_aggregateVariables(aggregateVariables),
_expressionVariable(expressionVariable),
_outVariable(outVariable),
_keepVariables(keepVariables),
_variableMap(variableMap),
_count(count),
_isDistinctCommand(isDistinctCommand),
_specialized(false) {}
CollectNode::~CollectNode() {}
/// @brief toVelocyPack, for CollectNode
void CollectNode::toVelocyPackHelper(VPackBuilder& nodes, unsigned flags) const {
// call base class method
ExecutionNode::toVelocyPackHelperGeneric(nodes, flags);
// group variables
nodes.add(VPackValue("groups"));
{
VPackArrayBuilder guard(&nodes);
for (auto const& groupVariable : _groupVariables) {
VPackObjectBuilder obj(&nodes);
nodes.add(VPackValue("outVariable"));
groupVariable.first->toVelocyPack(nodes);
nodes.add(VPackValue("inVariable"));
groupVariable.second->toVelocyPack(nodes);
}
}
// aggregate variables
nodes.add(VPackValue("aggregates"));
{
VPackArrayBuilder guard(&nodes);
for (auto const& aggregateVariable : _aggregateVariables) {
VPackObjectBuilder obj(&nodes);
nodes.add(VPackValue("outVariable"));
aggregateVariable.first->toVelocyPack(nodes);
nodes.add(VPackValue("inVariable"));
aggregateVariable.second.first->toVelocyPack(nodes);
nodes.add("type", VPackValue(aggregateVariable.second.second));
}
}
// expression variable might be empty
if (_expressionVariable != nullptr) {
nodes.add(VPackValue("expressionVariable"));
_expressionVariable->toVelocyPack(nodes);
}
// output variable might be empty
if (_outVariable != nullptr) {
nodes.add(VPackValue("outVariable"));
_outVariable->toVelocyPack(nodes);
}
if (!_keepVariables.empty()) {
nodes.add(VPackValue("keepVariables"));
{
VPackArrayBuilder guard(&nodes);
for (auto const& it : _keepVariables) {
VPackObjectBuilder obj(&nodes);
nodes.add(VPackValue("variable"));
it->toVelocyPack(nodes);
}
}
}
nodes.add("count", VPackValue(_count));
nodes.add("isDistinctCommand", VPackValue(_isDistinctCommand));
nodes.add("specialized", VPackValue(_specialized));
nodes.add(VPackValue("collectOptions"));
_options.toVelocyPack(nodes);
// And close it:
nodes.close();
}
void CollectNode::calcExpressionRegister(
arangodb::aql::RegisterId& expressionRegister,
std::unordered_set<arangodb::aql::RegisterId>& readableInputRegisters) const {
if (_expressionVariable != nullptr) {
auto it = getRegisterPlan()->varInfo.find(_expressionVariable->id);
TRI_ASSERT(it != getRegisterPlan()->varInfo.end());
expressionRegister = (*it).second.registerId;
readableInputRegisters.insert((*it).second.registerId);
}
}
void CollectNode::calcCollectRegister(arangodb::aql::RegisterId& collectRegister,
std::unordered_set<arangodb::aql::RegisterId>& writeableOutputRegisters) const {
if (_outVariable != nullptr) {
auto it = getRegisterPlan()->varInfo.find(_outVariable->id);
TRI_ASSERT(it != getRegisterPlan()->varInfo.end());
collectRegister = (*it).second.registerId;
TRI_ASSERT(collectRegister > 0 && collectRegister < ExecutionNode::MaxRegisterId);
writeableOutputRegisters.insert((*it).second.registerId);
}
}
void CollectNode::calcGroupRegisters(
std::vector<std::pair<arangodb::aql::RegisterId, arangodb::aql::RegisterId>>& groupRegisters,
std::unordered_set<arangodb::aql::RegisterId>& readableInputRegisters,
std::unordered_set<arangodb::aql::RegisterId>& writeableOutputRegisters) const {
for (auto const& p : _groupVariables) {
// We know that planRegisters() has been run, so
// getPlanNode()->_registerPlan is set up
auto itOut = getRegisterPlan()->varInfo.find(p.first->id);
TRI_ASSERT(itOut != getRegisterPlan()->varInfo.end());
auto itIn = getRegisterPlan()->varInfo.find(p.second->id);
TRI_ASSERT(itIn != getRegisterPlan()->varInfo.end());
RegisterId inReg = itIn->second.registerId;
RegisterId outReg = itOut->second.registerId;
TRI_ASSERT(inReg < ExecutionNode::MaxRegisterId);
TRI_ASSERT(outReg < ExecutionNode::MaxRegisterId);
groupRegisters.emplace_back(outReg, inReg);
writeableOutputRegisters.insert(outReg);
readableInputRegisters.insert(inReg);
}
}
void CollectNode::calcAggregateRegisters(
std::vector<std::pair<RegisterId, RegisterId>>& aggregateRegisters,
std::unordered_set<arangodb::aql::RegisterId>& readableInputRegisters,
std::unordered_set<arangodb::aql::RegisterId>& writeableOutputRegisters) const {
for (auto const& p : _aggregateVariables) {
// We know that planRegisters() has been run, so
// getPlanNode()->_registerPlan is set up
auto itOut = getRegisterPlan()->varInfo.find(p.first->id);
TRI_ASSERT(itOut != getRegisterPlan()->varInfo.end());
RegisterId outReg = itOut->second.registerId;
TRI_ASSERT(outReg < ExecutionNode::MaxRegisterId);
RegisterId inReg = ExecutionNode::MaxRegisterId;
if (Aggregator::requiresInput(p.second.second)) {
auto itIn = getRegisterPlan()->varInfo.find(p.second.first->id);
TRI_ASSERT(itIn != getRegisterPlan()->varInfo.end());
inReg = itIn->second.registerId;
TRI_ASSERT(inReg < ExecutionNode::MaxRegisterId);
readableInputRegisters.insert(inReg);
}
// else: no input variable required
aggregateRegisters.emplace_back(std::make_pair(outReg, inReg));
writeableOutputRegisters.insert((outReg));
}
TRI_ASSERT(aggregateRegisters.size() == _aggregateVariables.size());
}
void CollectNode::calcAggregateTypes(std::vector<std::unique_ptr<Aggregator>>& aggregateTypes) const {
for (auto const& p : _aggregateVariables) {
aggregateTypes.emplace_back(
Aggregator::fromTypeString(_plan->getAst()->query()->trx(), p.second.second));
}
}
void CollectNode::calcVariableNames(std::vector<std::pair<std::string, RegisterId>>& variableNames) const {
if (_outVariable != nullptr) {
auto const& registerPlan = getRegisterPlan()->varInfo;
auto it = registerPlan.find(_outVariable->id);
TRI_ASSERT(it != registerPlan.end());
// iterate over all our variables
if (_keepVariables.empty()) {
auto usedVariableIds(getVariableIdsUsedHere());
for (auto const& vi : registerPlan) {
if (vi.second.depth > 0 || getDepth() == 1) {
// Do not keep variables from depth 0, unless we are depth 1 ourselves
// (which means no FOR in which we are contained)
if (usedVariableIds.find(vi.first) == usedVariableIds.end()) {
// variable is not visible to the CollectBlock
continue;
}
// find variable in the global variable map
auto itVar = _variableMap.find(vi.first);
if (itVar != _variableMap.end()) {
variableNames.emplace_back(std::make_pair((*itVar).second, vi.second.registerId));
}
}
}
} else {
for (auto const& x : _keepVariables) {
auto it = registerPlan.find(x->id);
if (it != registerPlan.end()) {
variableNames.emplace_back(std::make_pair(x->name, (*it).second.registerId));
}
}
}
}
}
/// @brief creates corresponding ExecutionBlock
std::unique_ptr<ExecutionBlock> CollectNode::createBlock(
ExecutionEngine& engine, std::unordered_map<ExecutionNode*, ExecutionBlock*> const&) const {
switch (aggregationMethod()) {
case CollectOptions::CollectMethod::HASH: {
ExecutionNode const* previousNode = getFirstDependency();
TRI_ASSERT(previousNode != nullptr);
std::unordered_set<RegisterId> readableInputRegisters;
std::unordered_set<RegisterId> writeableOutputRegisters;
RegisterId collectRegister = ExecutionNode::MaxRegisterId;
calcCollectRegister(collectRegister, writeableOutputRegisters);
// calculate the group registers
std::vector<std::pair<RegisterId, RegisterId>> groupRegisters;
calcGroupRegisters(groupRegisters, readableInputRegisters, writeableOutputRegisters);
// calculate the aggregate registers
std::vector<std::pair<RegisterId, RegisterId>> aggregateRegisters;
calcAggregateRegisters(aggregateRegisters, readableInputRegisters, writeableOutputRegisters);
TRI_ASSERT(groupRegisters.size() == _groupVariables.size());
TRI_ASSERT(aggregateRegisters.size() == _aggregateVariables.size());
std::vector<std::string> aggregateTypes;
std::transform(aggregateVariables().begin(), aggregateVariables().end(),
std::back_inserter(aggregateTypes),
[](auto& it) { return it.second.second; });
TRI_ASSERT(aggregateTypes.size() == _aggregateVariables.size());
transaction::Methods* trxPtr = _plan->getAst()->query()->trx();
HashedCollectExecutorInfos infos(
getRegisterPlan()->nrRegs[previousNode->getDepth()],
getRegisterPlan()->nrRegs[getDepth()], getRegsToClear(), calcRegsToKeep(),
std::move(readableInputRegisters), std::move(writeableOutputRegisters),
std::move(groupRegisters), collectRegister, std::move(aggregateTypes),
std::move(aggregateRegisters), trxPtr, _count);
return std::make_unique<ExecutionBlockImpl<HashedCollectExecutor>>(&engine, this,
std::move(infos));
}
case CollectOptions::CollectMethod::SORTED: {
ExecutionNode const* previousNode = getFirstDependency();
TRI_ASSERT(previousNode != nullptr);
std::unordered_set<RegisterId> readableInputRegisters;
std::unordered_set<RegisterId> writeableOutputRegisters;
RegisterId collectRegister = ExecutionNode::MaxRegisterId;
calcCollectRegister(collectRegister, writeableOutputRegisters);
RegisterId expressionRegister = ExecutionNode::MaxRegisterId;
calcExpressionRegister(expressionRegister, readableInputRegisters);
// calculate the group registers
std::vector<std::pair<RegisterId, RegisterId>> groupRegisters;
calcGroupRegisters(groupRegisters, readableInputRegisters, writeableOutputRegisters);
// calculate the aggregate registers
std::vector<std::pair<RegisterId, RegisterId>> aggregateRegisters;
calcAggregateRegisters(aggregateRegisters, readableInputRegisters, writeableOutputRegisters);
// calculate the aggregate type // TODO refactor nicely
std::vector<std::unique_ptr<Aggregator>> aggregateValues;
calcAggregateTypes(aggregateValues);
// calculate the variable names
std::vector<std::pair<std::string, RegisterId>> variables;
calcVariableNames(variables);
TRI_ASSERT(groupRegisters.size() == _groupVariables.size());
TRI_ASSERT(aggregateRegisters.size() == _aggregateVariables.size());
std::vector<std::string> aggregateTypes;
std::transform(aggregateVariables().begin(), aggregateVariables().end(),
std::back_inserter(aggregateTypes),
[](auto& it) { return it.second.second; });
TRI_ASSERT(aggregateTypes.size() == _aggregateVariables.size());
transaction::Methods* trxPtr = _plan->getAst()->query()->trx();
SortedCollectExecutorInfos infos(
getRegisterPlan()->nrRegs[previousNode->getDepth()],
getRegisterPlan()->nrRegs[getDepth()], getRegsToClear(), calcRegsToKeep(),
std::move(readableInputRegisters), std::move(writeableOutputRegisters),
std::move(groupRegisters), collectRegister, expressionRegister,
_expressionVariable, std::move(aggregateTypes),
std::move(variables), std::move(aggregateRegisters), trxPtr, _count);
return std::make_unique<ExecutionBlockImpl<SortedCollectExecutor>>(&engine, this,
std::move(infos));
}
case CollectOptions::CollectMethod::COUNT: {
ExecutionNode const* previousNode = getFirstDependency();
TRI_ASSERT(previousNode != nullptr);
auto it = getRegisterPlan()->varInfo.find(_outVariable->id);
TRI_ASSERT(it != getRegisterPlan()->varInfo.end());
RegisterId collectRegister = (*it).second.registerId;
CountCollectExecutorInfos infos(collectRegister,
getRegisterPlan()->nrRegs[previousNode->getDepth()],
getRegisterPlan()->nrRegs[getDepth()],
getRegsToClear(), calcRegsToKeep());
return std::make_unique<ExecutionBlockImpl<CountCollectExecutor>>(&engine, this,
std::move(infos));
}
case CollectOptions::CollectMethod::DISTINCT: {
ExecutionNode const* previousNode = getFirstDependency();
TRI_ASSERT(previousNode != nullptr);
std::unordered_set<RegisterId> readableInputRegisters;
std::unordered_set<RegisterId> writeableOutputRegisters;
std::vector<std::pair<RegisterId, RegisterId>> groupRegisters;
// calculate the group registers
calcGroupRegisters(groupRegisters, readableInputRegisters, writeableOutputRegisters);
transaction::Methods* trxPtr = _plan->getAst()->query()->trx();
DistinctCollectExecutorInfos infos(getRegisterPlan()->nrRegs[previousNode->getDepth()],
getRegisterPlan()->nrRegs[getDepth()],
getRegsToClear(), calcRegsToKeep(),
std::move(readableInputRegisters),
std::move(writeableOutputRegisters),
std::move(groupRegisters), trxPtr);
return std::make_unique<ExecutionBlockImpl<DistinctCollectExecutor>>(&engine, this,
std::move(infos));
}
default:
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL,
"cannot instantiate CollectBlock with "
"undetermined aggregation method");
}
}
/// @brief clone ExecutionNode recursively
ExecutionNode* CollectNode::clone(ExecutionPlan* plan, bool withDependencies,
bool withProperties) const {
auto outVariable = _outVariable;
auto expressionVariable = _expressionVariable;
auto groupVariables = _groupVariables;
auto aggregateVariables = _aggregateVariables;
if (withProperties) {
if (expressionVariable != nullptr) {
expressionVariable = plan->getAst()->variables()->createVariable(expressionVariable);
}
if (outVariable != nullptr) {
outVariable = plan->getAst()->variables()->createVariable(outVariable);
}
// need to re-create all variables
groupVariables.clear();
for (auto& it : _groupVariables) {
auto out = plan->getAst()->variables()->createVariable(it.first);
auto in = plan->getAst()->variables()->createVariable(it.second);
groupVariables.emplace_back(std::make_pair(out, in));
}
aggregateVariables.clear();
for (auto& it : _aggregateVariables) {
auto out = plan->getAst()->variables()->createVariable(it.first);
auto in = plan->getAst()->variables()->createVariable(it.second.first);
aggregateVariables.emplace_back(
std::make_pair(out, std::make_pair(in, it.second.second)));
}
}
auto c = std::make_unique<CollectNode>(plan, _id, _options, groupVariables,
aggregateVariables, expressionVariable,
outVariable, _keepVariables, _variableMap,
_count, _isDistinctCommand);
// specialize the cloned node
if (isSpecialized()) {
c->specialized();
}
return cloneHelper(std::move(c), withDependencies, withProperties);
}
/// @brief helper struct for finding variables
struct UserVarFinder final : public WalkerWorker<ExecutionNode> {
explicit UserVarFinder(int mindepth) : mindepth(mindepth), depth(-1) {}
~UserVarFinder() {}
std::vector<Variable const*> userVars;
int mindepth; // minimal depth to consider
int depth;
bool enterSubquery(ExecutionNode*, ExecutionNode*) override final {
return false;
}
void after(ExecutionNode* en) override final {
if (en->getType() == ExecutionNode::SINGLETON) {
depth = 0;
} else if (en->getType() == ExecutionNode::ENUMERATE_COLLECTION ||
en->getType() == ExecutionNode::INDEX ||
en->getType() == ExecutionNode::ENUMERATE_LIST ||
en->getType() == ExecutionNode::TRAVERSAL ||
en->getType() == ExecutionNode::SHORTEST_PATH ||
en->getType() == ExecutionNode::ENUMERATE_IRESEARCH_VIEW ||
en->getType() == ExecutionNode::COLLECT) {
depth += 1;
}
// Now depth is set correct for this node.
if (depth >= mindepth) {
for (auto const& v : en->getVariablesSetHere()) {
if (v->isUserDefined()) {
userVars.emplace_back(v);
}
}
}
}
};
/// @brief getVariablesUsedHere, modifying the set in-place
void CollectNode::getVariablesUsedHere(arangodb::HashSet<Variable const*>& vars) const {
for (auto const& p : _groupVariables) {
vars.emplace(p.second);
}
for (auto const& p : _aggregateVariables) {
vars.emplace(p.second.first);
}
if (_expressionVariable != nullptr) {
vars.emplace(_expressionVariable);
}
if (_outVariable != nullptr && !_count) {
if (_keepVariables.empty()) {
// Here we have to find all user defined variables in this query
// amongst our dependencies:
UserVarFinder finder(1);
auto myselfAsNonConst = const_cast<CollectNode*>(this);
myselfAsNonConst->walk(finder);
if (finder.depth == 1) {
// we are top level, let's run again with mindepth = 0
finder.userVars.clear();
finder.mindepth = 0;
finder.depth = -1;
finder.reset();
myselfAsNonConst->walk(finder);
}
for (auto& x : finder.userVars) {
vars.emplace(x);
}
} else {
for (auto& x : _keepVariables) {
vars.emplace(x);
}
}
}
}
void CollectNode::setAggregateVariables(
std::vector<std::pair<Variable const*, std::pair<Variable const*, std::string>>> const& aggregateVariables) {
_aggregateVariables = aggregateVariables;
}
/// @brief estimateCost
CostEstimate CollectNode::estimateCost() const {
CostEstimate estimate = _dependencies.at(0)->getCost();
// As in the FilterNode case, we are pessimistic here by not reducing the
// nrItems much, since the worst case for COLLECT is to return as many items
// as there are input items. In any case, we have to look at all incoming
// items, and in particular in the COLLECT ... INTO ... case, we have
// to actually hand on all data anyway, albeit not as separate items.
// Nevertheless, the optimizer does not do much with CollectNodes
// and thus this potential overestimation does not really matter.
if (_groupVariables.empty()) {
// we are known to only produce a single output row
estimate.estimatedNrItems = 1;
} else {
// we do not know how many rows the COLLECT with produce...
// the worst case is that there will be as many output rows as input rows
if (estimate.estimatedNrItems >= 10) {
// we assume that the collect will reduce the number of results at least
// somewhat
estimate.estimatedNrItems = static_cast<size_t>(estimate.estimatedNrItems * 0.8);
}
}
estimate.estimatedCost += estimate.estimatedNrItems;
return estimate;
}