mirror of https://gitee.com/bigwinds/arangodb
1685 lines
56 KiB
C++
1685 lines
56 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
/// DISCLAIMER
|
|
///
|
|
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
|
|
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
|
|
///
|
|
/// Licensed under the Apache License, Version 2.0 (the "License");
|
|
/// you may not use this file except in compliance with the License.
|
|
/// You may obtain a copy of the License at
|
|
///
|
|
/// http://www.apache.org/licenses/LICENSE-2.0
|
|
///
|
|
/// Unless required by applicable law or agreed to in writing, software
|
|
/// distributed under the License is distributed on an "AS IS" BASIS,
|
|
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
/// See the License for the specific language governing permissions and
|
|
/// limitations under the License.
|
|
///
|
|
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
|
|
///
|
|
/// @author Dr. Frank Celler
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "SkiplistIndex.h"
|
|
#include "Aql/AstNode.h"
|
|
#include "Aql/SortCondition.h"
|
|
#include "Basics/AttributeNameParser.h"
|
|
#include "Basics/debugging.h"
|
|
#include "VocBase/document-collection.h"
|
|
#include "VocBase/VocShaper.h"
|
|
|
|
#include <velocypack/Iterator.h>
|
|
#include <velocypack/velocypack-aliases.h>
|
|
|
|
using namespace arangodb;
|
|
|
|
static size_t sortWeight(arangodb::aql::AstNode const* node) {
|
|
switch (node->type) {
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ:
|
|
return 1;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN:
|
|
return 2;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
|
|
return 3;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
|
|
return 4;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
|
|
return 5;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
|
|
return 6;
|
|
default:
|
|
return 42;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Create an index operator for the given bound.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static TRI_index_operator_t* buildBoundOperator(VPackSlice const& bound,
|
|
bool includeEqual, bool upper,
|
|
VPackSlice const& parameters,
|
|
VocShaper* shaper) {
|
|
if (bound.isNone()) {
|
|
return nullptr;
|
|
}
|
|
TRI_index_operator_type_e type;
|
|
if (includeEqual) {
|
|
if (upper) {
|
|
type = TRI_LE_INDEX_OPERATOR;
|
|
} else {
|
|
type = TRI_GE_INDEX_OPERATOR;
|
|
}
|
|
} else {
|
|
if (upper) {
|
|
type = TRI_LT_INDEX_OPERATOR;
|
|
} else {
|
|
type = TRI_GT_INDEX_OPERATOR;
|
|
}
|
|
}
|
|
|
|
auto builder = std::make_shared<VPackBuilder>();
|
|
try {
|
|
VPackArrayBuilder b(builder.get());
|
|
if (parameters.isArray()) {
|
|
// Everything else is to be ignored.
|
|
// Copy content of array
|
|
for (auto const& e : VPackArrayIterator(parameters)) {
|
|
builder->add(e);
|
|
}
|
|
}
|
|
builder->add(bound);
|
|
} catch (...) {
|
|
// Out of memory. Cannot build operator.
|
|
return nullptr;
|
|
}
|
|
|
|
return TRI_CreateIndexOperator(type, nullptr, nullptr, builder, shaper, 1);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Create an index operator for the range information.
|
|
/// Will either be a nullptr if no range is used.
|
|
/// Or a LE, LT, GE, GT operator if only one bound is given
|
|
/// Or an AND operator if both bounds are given.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static TRI_index_operator_t* buildRangeOperator(VPackSlice const& lowerBound,
|
|
bool lowerBoundInclusive,
|
|
VPackSlice const& upperBound,
|
|
bool upperBoundInclusive,
|
|
VPackSlice const& parameters,
|
|
VocShaper* shaper) {
|
|
std::unique_ptr<TRI_index_operator_t> lowerOperator(buildBoundOperator(
|
|
lowerBound, lowerBoundInclusive, false, parameters, shaper));
|
|
|
|
if (lowerOperator == nullptr && !lowerBound.isNone()) {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_OUT_OF_MEMORY);
|
|
}
|
|
|
|
std::unique_ptr<TRI_index_operator_t> upperOperator(buildBoundOperator(
|
|
upperBound, upperBoundInclusive, true, parameters, shaper));
|
|
|
|
if (upperOperator == nullptr && !upperBound.isNone()) {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_OUT_OF_MEMORY);
|
|
}
|
|
|
|
if (lowerOperator == nullptr) {
|
|
return upperOperator.release();
|
|
}
|
|
if (upperOperator == nullptr) {
|
|
return lowerOperator.release();
|
|
}
|
|
|
|
// And combine both
|
|
std::unique_ptr<TRI_index_operator_t> rangeOperator(TRI_CreateIndexOperator(
|
|
TRI_AND_INDEX_OPERATOR, lowerOperator.get(), upperOperator.get(),
|
|
std::make_shared<VPackBuilder>(), nullptr, 2));
|
|
lowerOperator.release();
|
|
upperOperator.release();
|
|
return rangeOperator.release();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief frees an element in the skiplist
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static void FreeElm(void* e) {
|
|
auto element = static_cast<TRI_index_element_t*>(e);
|
|
TRI_index_element_t::freeElement(element);
|
|
}
|
|
|
|
// .............................................................................
|
|
// recall for all of the following comparison functions:
|
|
//
|
|
// left < right return -1
|
|
// left > right return 1
|
|
// left == right return 0
|
|
//
|
|
// furthermore:
|
|
//
|
|
// the following order is currently defined for placing an order on documents
|
|
// undef < null < boolean < number < strings < lists < hash arrays
|
|
// note: undefined will be treated as NULL pointer not NULL JSON OBJECT
|
|
// within each type class we have the following order
|
|
// boolean: false < true
|
|
// number: natural order
|
|
// strings: lexicographical
|
|
// lists: lexicographically and within each slot according to these rules.
|
|
// ...........................................................................
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief compares a key with an element, version with proper types
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static int CompareKeyElement(TRI_shaped_json_t const* left,
|
|
TRI_index_element_t const* right,
|
|
size_t rightPosition, VocShaper* shaper) {
|
|
TRI_ASSERT(nullptr != left);
|
|
TRI_ASSERT(nullptr != right);
|
|
|
|
auto rightSubobjects = right->subObjects();
|
|
|
|
return TRI_CompareShapeTypes(
|
|
nullptr, nullptr, left, shaper, right->document()->getShapedJsonPtr(),
|
|
&rightSubobjects[rightPosition], nullptr, shaper);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief compares elements, version with proper types
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static int CompareElementElement(TRI_index_element_t const* left,
|
|
size_t leftPosition,
|
|
TRI_index_element_t const* right,
|
|
size_t rightPosition, VocShaper* shaper) {
|
|
TRI_ASSERT(nullptr != left);
|
|
TRI_ASSERT(nullptr != right);
|
|
|
|
auto leftSubobjects = left->subObjects();
|
|
auto rightSubobjects = right->subObjects();
|
|
|
|
return TRI_CompareShapeTypes(
|
|
left->document()->getShapedJsonPtr(), &leftSubobjects[leftPosition],
|
|
nullptr, shaper, right->document()->getShapedJsonPtr(),
|
|
&rightSubobjects[rightPosition], nullptr, shaper);
|
|
}
|
|
|
|
static int FillLookupOperator(TRI_index_operator_t* slOperator,
|
|
TRI_document_collection_t* document) {
|
|
if (slOperator == nullptr) {
|
|
return TRI_ERROR_INTERNAL;
|
|
}
|
|
|
|
switch (slOperator->_type) {
|
|
case TRI_AND_INDEX_OPERATOR: {
|
|
TRI_logical_index_operator_t* logicalOperator =
|
|
(TRI_logical_index_operator_t*)slOperator;
|
|
int res = FillLookupOperator(logicalOperator->_left, document);
|
|
|
|
if (res == TRI_ERROR_NO_ERROR) {
|
|
res = FillLookupOperator(logicalOperator->_right, document);
|
|
}
|
|
if (res != TRI_ERROR_NO_ERROR) {
|
|
return res;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TRI_EQ_INDEX_OPERATOR:
|
|
case TRI_GE_INDEX_OPERATOR:
|
|
case TRI_GT_INDEX_OPERATOR:
|
|
case TRI_NE_INDEX_OPERATOR:
|
|
case TRI_LE_INDEX_OPERATOR:
|
|
case TRI_LT_INDEX_OPERATOR: {
|
|
TRI_relation_index_operator_t* relationOperator =
|
|
(TRI_relation_index_operator_t*)slOperator;
|
|
VPackSlice const params = relationOperator->_parameters->slice();
|
|
relationOperator->_numFields = static_cast<size_t>(params.length());
|
|
relationOperator->_fields = static_cast<TRI_shaped_json_t*>(TRI_Allocate(
|
|
TRI_UNKNOWN_MEM_ZONE,
|
|
sizeof(TRI_shaped_json_t) * relationOperator->_numFields, false));
|
|
|
|
if (relationOperator->_fields != nullptr) {
|
|
for (size_t j = 0; j < relationOperator->_numFields; ++j) {
|
|
VPackSlice const element = params.at(j);
|
|
|
|
// find out if the search value is a list or an array
|
|
if ((element.isArray() || element.isObject()) &&
|
|
slOperator->_type != TRI_EQ_INDEX_OPERATOR) {
|
|
// non-equality operator used on list or array data type, this is
|
|
// disallowed
|
|
// because we need to shape these objects first. however, at this
|
|
// place (index lookup)
|
|
// we never want to create new shapes so we will have a problem if
|
|
// we cannot find an
|
|
// existing shape for the search value. in this case we would need
|
|
// to raise an error
|
|
// but then the query results would depend on the state of the
|
|
// shaper and if it had
|
|
// seen previous such objects
|
|
|
|
// we still allow looking for list or array values using equality.
|
|
// this is safe.
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, relationOperator->_fields);
|
|
relationOperator->_fields = nullptr;
|
|
return TRI_ERROR_BAD_PARAMETER;
|
|
}
|
|
|
|
// now shape the search object (but never create any new shapes)
|
|
TRI_shaped_json_t* shapedObject = TRI_ShapedJsonVelocyPack(
|
|
document->getShaper(), element,
|
|
false); // ONLY IN INDEX, PROTECTED by RUNTIME
|
|
|
|
if (shapedObject != nullptr) {
|
|
// found existing shape
|
|
relationOperator->_fields[j] =
|
|
*shapedObject; // shallow copy here is ok
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE,
|
|
shapedObject); // don't require storage anymore
|
|
} else {
|
|
// shape not found
|
|
TRI_Free(TRI_UNKNOWN_MEM_ZONE, relationOperator->_fields);
|
|
relationOperator->_fields = nullptr;
|
|
return TRI_RESULT_ELEMENT_NOT_FOUND;
|
|
}
|
|
}
|
|
} else {
|
|
relationOperator->_numFields = 0; // out of memory?
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
size_t SkiplistIterator::size() const { return _intervals.size(); }
|
|
|
|
void SkiplistIterator::initCursor() {
|
|
size_t const n = size();
|
|
if (0 < n) {
|
|
if (_reverse) {
|
|
// start at last interval, right endpoint
|
|
_currentInterval = n - 1;
|
|
_cursor = _intervals.at(_currentInterval)._rightEndPoint;
|
|
} else {
|
|
// start at first interval, left endpoint
|
|
_currentInterval = 0;
|
|
_cursor = _intervals.at(_currentInterval)._leftEndPoint;
|
|
}
|
|
} else {
|
|
_cursor = nullptr;
|
|
}
|
|
}
|
|
|
|
bool SkiplistIterator::hasNext() const {
|
|
if (_reverse) {
|
|
return hasPrevIteration();
|
|
}
|
|
return hasNextIteration();
|
|
}
|
|
|
|
TRI_index_element_t* SkiplistIterator::next() {
|
|
if (_reverse) {
|
|
return prevIteration();
|
|
}
|
|
return nextIteration();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Locates one or more ranges within the skiplist and returns iterator
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// .............................................................................
|
|
// Tests whether the LeftEndPoint is < than RightEndPoint (-1)
|
|
// Tests whether the LeftEndPoint is == to RightEndPoint (0) [empty]
|
|
// Tests whether the LeftEndPoint is > than RightEndPoint (1) [undefined]
|
|
// .............................................................................
|
|
|
|
bool SkiplistIterator::findHelperIntervalValid(
|
|
SkiplistIteratorInterval const& interval) {
|
|
Node* lNode = interval._leftEndPoint;
|
|
|
|
if (lNode == nullptr) {
|
|
return false;
|
|
}
|
|
// Note that the right end point can be nullptr to indicate the end of
|
|
// the index.
|
|
|
|
Node* rNode = interval._rightEndPoint;
|
|
|
|
if (lNode == rNode) {
|
|
return false;
|
|
}
|
|
|
|
if (lNode->nextNode() == rNode) {
|
|
// Interval empty, nothing to do with it.
|
|
return false;
|
|
}
|
|
|
|
if (nullptr != rNode && rNode->nextNode() == lNode) {
|
|
// Interval empty, nothing to do with it.
|
|
return false;
|
|
}
|
|
|
|
if (_index->_skiplistIndex->getNrUsed() == 0) {
|
|
return false;
|
|
}
|
|
|
|
if (lNode == _index->_skiplistIndex->startNode() || nullptr == rNode) {
|
|
// The index is not empty, the nodes are not neighbours, one of them
|
|
// is at the boundary, so the interval is valid and not empty.
|
|
return true;
|
|
}
|
|
|
|
int compareResult =
|
|
_index->CmpElmElm(lNode->document(), rNode->document(),
|
|
arangodb::basics::SKIPLIST_CMP_TOTORDER);
|
|
return (compareResult == -1);
|
|
// Since we know that the nodes are not neighbours, we can guarantee
|
|
// at least one document in the interval.
|
|
}
|
|
|
|
bool SkiplistIterator::findHelperIntervalIntersectionValid(
|
|
SkiplistIteratorInterval const& lInterval,
|
|
SkiplistIteratorInterval const& rInterval,
|
|
SkiplistIteratorInterval& interval) {
|
|
Node* lNode = lInterval._leftEndPoint;
|
|
Node* rNode = rInterval._leftEndPoint;
|
|
|
|
if (nullptr == lNode || nullptr == rNode) {
|
|
// At least one left boundary is the end, intersection is empty.
|
|
return false;
|
|
}
|
|
|
|
int compareResult;
|
|
// Now find the larger of the two start nodes:
|
|
if (lNode == _index->_skiplistIndex->startNode()) {
|
|
// We take rNode, even if it is the start node as well.
|
|
compareResult = -1;
|
|
} else if (rNode == _index->_skiplistIndex->startNode()) {
|
|
// We take lNode
|
|
compareResult = 1;
|
|
} else {
|
|
compareResult = _index->CmpElmElm(lNode->document(), rNode->document(),
|
|
arangodb::basics::SKIPLIST_CMP_TOTORDER);
|
|
}
|
|
|
|
if (compareResult < 1) {
|
|
interval._leftEndPoint = rNode;
|
|
} else {
|
|
interval._leftEndPoint = lNode;
|
|
}
|
|
|
|
lNode = lInterval._rightEndPoint;
|
|
rNode = rInterval._rightEndPoint;
|
|
|
|
// Now find the smaller of the two end nodes:
|
|
if (nullptr == lNode) {
|
|
// We take rNode, even is this also the end node.
|
|
compareResult = 1;
|
|
} else if (nullptr == rNode) {
|
|
// We take lNode.
|
|
compareResult = -1;
|
|
} else {
|
|
compareResult = _index->CmpElmElm(lNode->document(), rNode->document(),
|
|
arangodb::basics::SKIPLIST_CMP_TOTORDER);
|
|
}
|
|
|
|
if (compareResult < 1) {
|
|
interval._rightEndPoint = lNode;
|
|
} else {
|
|
interval._rightEndPoint = rNode;
|
|
}
|
|
|
|
return findHelperIntervalValid(interval);
|
|
}
|
|
|
|
void SkiplistIterator::findHelper(
|
|
TRI_index_operator_t const* indexOperator,
|
|
std::vector<SkiplistIteratorInterval>& intervals) {
|
|
TRI_skiplist_index_key_t values;
|
|
std::vector<SkiplistIteratorInterval> leftResult;
|
|
std::vector<SkiplistIteratorInterval> rightResult;
|
|
SkiplistIteratorInterval interval;
|
|
Node* temp;
|
|
|
|
switch (indexOperator->_type) {
|
|
case TRI_EQ_INDEX_OPERATOR:
|
|
case TRI_LE_INDEX_OPERATOR:
|
|
case TRI_LT_INDEX_OPERATOR:
|
|
case TRI_GE_INDEX_OPERATOR:
|
|
case TRI_GT_INDEX_OPERATOR: {
|
|
TRI_relation_index_operator_t* relationOperator =
|
|
(TRI_relation_index_operator_t*)indexOperator;
|
|
|
|
values._fields = relationOperator->_fields;
|
|
values._numFields = relationOperator->_numFields;
|
|
break; // this is to silence a compiler warning
|
|
}
|
|
|
|
default: {
|
|
// must not access relationOperator->xxx if the operator is not a
|
|
// relational one otherwise we'll get invalid reads and the prog
|
|
// might crash
|
|
}
|
|
}
|
|
|
|
switch (indexOperator->_type) {
|
|
case TRI_AND_INDEX_OPERATOR: {
|
|
TRI_logical_index_operator_t* logicalOperator =
|
|
(TRI_logical_index_operator_t*)indexOperator;
|
|
findHelper(logicalOperator->_left, leftResult);
|
|
findHelper(logicalOperator->_right, rightResult);
|
|
|
|
size_t nl = leftResult.size();
|
|
size_t nr = rightResult.size();
|
|
for (size_t i = 0; i < nl; ++i) {
|
|
for (size_t j = 0; j < nr; ++j) {
|
|
auto tempLeftInterval = leftResult[i];
|
|
auto tempRightInterval = rightResult[j];
|
|
|
|
if (findHelperIntervalIntersectionValid(
|
|
tempLeftInterval, tempRightInterval, interval)) {
|
|
intervals.emplace_back(interval);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
case TRI_EQ_INDEX_OPERATOR: {
|
|
temp = _index->_skiplistIndex->leftKeyLookup(&values);
|
|
TRI_ASSERT(nullptr != temp);
|
|
interval._leftEndPoint = temp;
|
|
|
|
bool const allAttributesCoveredByCondition =
|
|
(values._numFields == _index->numPaths());
|
|
|
|
if (_index->unique() && allAttributesCoveredByCondition) {
|
|
// At most one hit:
|
|
temp = temp->nextNode();
|
|
if (nullptr != temp) {
|
|
if (0 == _index->CmpKeyElm(&values, temp->document())) {
|
|
interval._rightEndPoint = temp->nextNode();
|
|
if (findHelperIntervalValid(interval)) {
|
|
intervals.emplace_back(interval);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
temp = _index->_skiplistIndex->rightKeyLookup(&values);
|
|
interval._rightEndPoint = temp->nextNode();
|
|
if (findHelperIntervalValid(interval)) {
|
|
intervals.emplace_back(interval);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
case TRI_LE_INDEX_OPERATOR: {
|
|
interval._leftEndPoint = _index->_skiplistIndex->startNode();
|
|
temp = _index->_skiplistIndex->rightKeyLookup(&values);
|
|
interval._rightEndPoint = temp->nextNode();
|
|
|
|
if (findHelperIntervalValid(interval)) {
|
|
intervals.emplace_back(interval);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case TRI_LT_INDEX_OPERATOR: {
|
|
interval._leftEndPoint = _index->_skiplistIndex->startNode();
|
|
temp = _index->_skiplistIndex->leftKeyLookup(&values);
|
|
interval._rightEndPoint = temp->nextNode();
|
|
|
|
if (findHelperIntervalValid(interval)) {
|
|
intervals.emplace_back(interval);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case TRI_GE_INDEX_OPERATOR: {
|
|
temp = _index->_skiplistIndex->leftKeyLookup(&values);
|
|
interval._leftEndPoint = temp;
|
|
interval._rightEndPoint = _index->_skiplistIndex->endNode();
|
|
|
|
if (findHelperIntervalValid(interval)) {
|
|
intervals.emplace_back(interval);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case TRI_GT_INDEX_OPERATOR: {
|
|
temp = _index->_skiplistIndex->rightKeyLookup(&values);
|
|
interval._leftEndPoint = temp;
|
|
interval._rightEndPoint = _index->_skiplistIndex->endNode();
|
|
|
|
if (findHelperIntervalValid(interval)) {
|
|
intervals.emplace_back(interval);
|
|
}
|
|
return;
|
|
}
|
|
|
|
default: { TRI_ASSERT(false); }
|
|
|
|
} // end of switch statement
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Attempts to determine if there is a previous document within an
|
|
/// interval or before it - without advancing the iterator.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool SkiplistIterator::hasPrevIteration() const {
|
|
// ...........................................................................
|
|
// if we have more intervals than the one we are currently working
|
|
// on then of course we have a previous doc, because intervals are nonempty.
|
|
// ...........................................................................
|
|
if (_currentInterval > 0) {
|
|
return true;
|
|
}
|
|
|
|
Node const* leftNode = _index->_skiplistIndex->prevNode(_cursor);
|
|
|
|
// Note that leftNode can be nullptr here!
|
|
// ...........................................................................
|
|
// If the leftNode == left end point AND there are no more intervals
|
|
// then we have no next.
|
|
// ...........................................................................
|
|
return leftNode != _intervals.at(_currentInterval)._leftEndPoint;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Attempts to determine if there is a next document within an
|
|
/// interval - without advancing the iterator.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool SkiplistIterator::hasNextIteration() const {
|
|
if (_cursor == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
// ...........................................................................
|
|
// if we have more intervals than the one we are currently working
|
|
// on then of course we have a next doc, since intervals are nonempty.
|
|
// ...........................................................................
|
|
if (_intervals.size() - 1 > _currentInterval) {
|
|
return true;
|
|
}
|
|
|
|
Node const* leftNode = _cursor->nextNode();
|
|
|
|
// Note that leftNode can be nullptr here!
|
|
// ...........................................................................
|
|
// If the left == right end point AND there are no more intervals then we have
|
|
// no next.
|
|
// ...........................................................................
|
|
return leftNode != _intervals.at(_currentInterval)._rightEndPoint;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Jumps backwards by 1 and returns the document
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TRI_index_element_t* SkiplistIterator::prevIteration() {
|
|
if (_currentInterval >= _intervals.size()) {
|
|
return nullptr;
|
|
}
|
|
SkiplistIteratorInterval& interval = _intervals.at(_currentInterval);
|
|
|
|
// ...........................................................................
|
|
// use the current cursor and move 1 backward
|
|
// ...........................................................................
|
|
|
|
Node* result = nullptr;
|
|
|
|
result = _index->_skiplistIndex->prevNode(_cursor);
|
|
|
|
if (result == interval._leftEndPoint) {
|
|
if (_currentInterval == 0) {
|
|
_cursor = nullptr; // exhausted
|
|
return nullptr;
|
|
}
|
|
--_currentInterval;
|
|
interval = _intervals.at(_currentInterval);
|
|
_cursor = interval._rightEndPoint;
|
|
result = _index->_skiplistIndex->prevNode(_cursor);
|
|
}
|
|
_cursor = result;
|
|
|
|
TRI_ASSERT(result != nullptr);
|
|
return result->document();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief Jumps forwards by jumpSize and returns the document
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TRI_index_element_t* SkiplistIterator::nextIteration() {
|
|
if (_cursor == nullptr) {
|
|
// In this case the iterator is exhausted or does not even have intervals.
|
|
return nullptr;
|
|
}
|
|
|
|
if (_currentInterval >= _intervals.size()) {
|
|
return nullptr;
|
|
}
|
|
SkiplistIteratorInterval& interval = _intervals.at(_currentInterval);
|
|
|
|
while (true) { // will be left by break
|
|
_cursor = _cursor->nextNode();
|
|
if (_cursor != interval._rightEndPoint) {
|
|
if (_cursor == nullptr) {
|
|
return nullptr;
|
|
}
|
|
break; // we found a next one
|
|
}
|
|
if (_currentInterval == _intervals.size() - 1) {
|
|
_cursor = nullptr; // exhausted
|
|
return nullptr;
|
|
}
|
|
++_currentInterval;
|
|
interval = _intervals.at(_currentInterval);
|
|
_cursor = interval._leftEndPoint;
|
|
}
|
|
|
|
return _cursor->document();
|
|
}
|
|
|
|
TRI_doc_mptr_t* SkiplistIndexIterator::next() {
|
|
while (_iterator == nullptr) {
|
|
if (_currentOperator == _operators.size()) {
|
|
// Sorry nothing found at all
|
|
return nullptr;
|
|
}
|
|
// We restart the lookup
|
|
_iterator = _index->lookup(_trx, _operators[_currentOperator], _reverse);
|
|
if (_iterator == nullptr) {
|
|
// This iterator was not created.
|
|
_currentOperator++;
|
|
}
|
|
}
|
|
TRI_ASSERT(_iterator != nullptr);
|
|
TRI_index_element_t* res = _iterator->next();
|
|
while (res == nullptr) {
|
|
// Try the next iterator
|
|
_currentOperator++;
|
|
if (_currentOperator == _operators.size()) {
|
|
// We are done
|
|
return nullptr;
|
|
}
|
|
// Free the former iterator and get the next one
|
|
delete _iterator;
|
|
_iterator = _index->lookup(_trx, _operators[_currentOperator], _reverse);
|
|
res = _iterator->next();
|
|
}
|
|
return res->document();
|
|
}
|
|
|
|
void SkiplistIndexIterator::reset() {
|
|
delete _iterator;
|
|
_iterator = nullptr;
|
|
_currentOperator = 0;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief create the skiplist index
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
SkiplistIndex::SkiplistIndex(
|
|
TRI_idx_iid_t iid, TRI_document_collection_t* collection,
|
|
std::vector<std::vector<arangodb::basics::AttributeName>> const& fields,
|
|
bool unique, bool sparse)
|
|
: PathBasedIndex(iid, collection, fields, unique, sparse, true),
|
|
CmpElmElm(this),
|
|
CmpKeyElm(this),
|
|
_skiplistIndex(nullptr) {
|
|
_skiplistIndex =
|
|
new TRI_Skiplist(CmpElmElm, CmpKeyElm, FreeElm, unique, _useExpansion);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief create an index stub with a hard-coded selectivity estimate
|
|
/// this is used in the cluster coordinator case
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
SkiplistIndex::SkiplistIndex(VPackSlice const& slice)
|
|
: PathBasedIndex(slice, true),
|
|
CmpElmElm(this),
|
|
CmpKeyElm(this),
|
|
_skiplistIndex(nullptr) {}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief destroy the skiplist index
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
SkiplistIndex::~SkiplistIndex() { delete _skiplistIndex; }
|
|
|
|
size_t SkiplistIndex::memory() const {
|
|
return _skiplistIndex->memoryUsage() +
|
|
static_cast<size_t>(_skiplistIndex->getNrUsed()) * elementSize();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief return a VelocyPack representation of the index
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void SkiplistIndex::toVelocyPack(VPackBuilder& builder,
|
|
bool withFigures) const {
|
|
Index::toVelocyPack(builder, withFigures);
|
|
builder.add("unique", VPackValue(_unique));
|
|
builder.add("sparse", VPackValue(_sparse));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief return a VelocyPack representation of the index figures
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void SkiplistIndex::toVelocyPackFigures(VPackBuilder& builder) const {
|
|
TRI_ASSERT(builder.isOpenObject());
|
|
builder.add("memory", VPackValue(memory()));
|
|
_skiplistIndex->appendToVelocyPack(builder);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief inserts a document into a skiplist index
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int SkiplistIndex::insert(arangodb::Transaction*, TRI_doc_mptr_t const* doc,
|
|
bool) {
|
|
std::vector<TRI_index_element_t*> elements;
|
|
|
|
int res = fillElement(elements, doc);
|
|
|
|
if (res != TRI_ERROR_NO_ERROR) {
|
|
for (auto& it : elements) {
|
|
// free all elements to prevent leak
|
|
TRI_index_element_t::freeElement(it);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
// insert into the index. the memory for the element will be owned or freed
|
|
// by the index
|
|
|
|
size_t const count = elements.size();
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
res = _skiplistIndex->insert(elements[i]);
|
|
|
|
if (res == TRI_ERROR_ARANGO_UNIQUE_CONSTRAINT_VIOLATED && !_unique) {
|
|
// We ignore unique_constraint violated if we are not unique
|
|
res = TRI_ERROR_NO_ERROR;
|
|
}
|
|
|
|
if (res != TRI_ERROR_NO_ERROR) {
|
|
TRI_index_element_t::freeElement(elements[i]);
|
|
// Note: this element is freed already
|
|
for (size_t j = i + 1; j < count; ++j) {
|
|
TRI_index_element_t::freeElement(elements[j]);
|
|
}
|
|
for (size_t j = 0; j < i; ++j) {
|
|
_skiplistIndex->remove(elements[j]);
|
|
// No need to free elements[j] skiplist has taken over already
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief removes a document from a skiplist index
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int SkiplistIndex::remove(arangodb::Transaction*, TRI_doc_mptr_t const* doc,
|
|
bool) {
|
|
std::vector<TRI_index_element_t*> elements;
|
|
|
|
int res = fillElement(elements, doc);
|
|
|
|
if (res != TRI_ERROR_NO_ERROR) {
|
|
for (auto& it : elements) {
|
|
// free all elements to prevent leak
|
|
TRI_index_element_t::freeElement(it);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
// attempt the removal for skiplist indexes
|
|
// ownership for the index element is transferred to the index
|
|
|
|
size_t const count = elements.size();
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
int result = _skiplistIndex->remove(elements[i]);
|
|
|
|
// we may be looping through this multiple times, and if an error
|
|
// occurs, we want to keep it
|
|
if (result != TRI_ERROR_NO_ERROR) {
|
|
res = result;
|
|
}
|
|
|
|
TRI_index_element_t::freeElement(elements[i]);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief attempts to locate an entry in the skip list index
|
|
///
|
|
/// Note: this function will not destroy the passed slOperator before it returns
|
|
/// Warning: who ever calls this function is responsible for destroying
|
|
/// the TRI_index_operator_t* and the SkiplistIterator* results
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
SkiplistIterator* SkiplistIndex::lookup(arangodb::Transaction* trx,
|
|
TRI_index_operator_t* slOperator,
|
|
bool reverse) const {
|
|
TRI_ASSERT(slOperator != nullptr);
|
|
|
|
// .........................................................................
|
|
// fill the relation operators which may be embedded in the slOperator with
|
|
// additional information. Recall the slOperator is what information was
|
|
// received from a user for query the skiplist.
|
|
// .........................................................................
|
|
|
|
int res = FillLookupOperator(slOperator, _collection);
|
|
|
|
if (res != TRI_ERROR_NO_ERROR) {
|
|
TRI_set_errno(res);
|
|
return nullptr;
|
|
}
|
|
|
|
auto results = std::make_unique<SkiplistIterator>(this, reverse);
|
|
|
|
results->findHelper(slOperator, results->_intervals);
|
|
|
|
results->initCursor();
|
|
|
|
// Finally initialize _cursor if the result is not empty:
|
|
return results.release();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief compares a key with an element in a skip list, generic callback
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int SkiplistIndex::KeyElementComparator::operator()(
|
|
TRI_skiplist_index_key_t const* leftKey,
|
|
TRI_index_element_t const* rightElement) const {
|
|
TRI_ASSERT(nullptr != leftKey);
|
|
TRI_ASSERT(nullptr != rightElement);
|
|
|
|
auto shaper =
|
|
_idx->collection()->getShaper(); // ONLY IN INDEX, PROTECTED by RUNTIME
|
|
|
|
// Note that the key might contain fewer fields than there are indexed
|
|
// attributes, therefore we only run the following loop to
|
|
// leftKey->_numFields.
|
|
for (size_t j = 0; j < leftKey->_numFields; j++) {
|
|
int compareResult =
|
|
CompareKeyElement(&leftKey->_fields[j], rightElement, j, shaper);
|
|
if (compareResult != 0) {
|
|
return compareResult;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief compares two elements in a skip list, this is the generic callback
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int SkiplistIndex::ElementElementComparator::operator()(
|
|
TRI_index_element_t const* leftElement,
|
|
TRI_index_element_t const* rightElement,
|
|
arangodb::basics::SkipListCmpType cmptype) const {
|
|
TRI_ASSERT(nullptr != leftElement);
|
|
TRI_ASSERT(nullptr != rightElement);
|
|
|
|
// ..........................................................................
|
|
// The document could be the same -- so no further comparison is required.
|
|
// ..........................................................................
|
|
|
|
if (leftElement == rightElement ||
|
|
(!_idx->_skiplistIndex->isArray() &&
|
|
leftElement->document() == rightElement->document())) {
|
|
return 0;
|
|
}
|
|
|
|
auto shaper =
|
|
_idx->_collection->getShaper(); // ONLY IN INDEX, PROTECTED by RUNTIME
|
|
for (size_t j = 0; j < _idx->numPaths(); j++) {
|
|
int compareResult =
|
|
CompareElementElement(leftElement, j, rightElement, j, shaper);
|
|
|
|
if (compareResult != 0) {
|
|
return compareResult;
|
|
}
|
|
}
|
|
|
|
// ...........................................................................
|
|
// This is where the difference between the preorder and the proper total
|
|
// order comes into play. Here if the 'keys' are the same,
|
|
// but the doc ptr is different (which it is since we are here), then
|
|
// we return 0 if we use the preorder and look at the _key attribute
|
|
// otherwise.
|
|
// ...........................................................................
|
|
|
|
if (arangodb::basics::SKIPLIST_CMP_PREORDER == cmptype) {
|
|
return 0;
|
|
}
|
|
|
|
// We break this tie in the key comparison by looking at the key:
|
|
int compareResult = strcmp(
|
|
TRI_EXTRACT_MARKER_KEY(
|
|
leftElement->document()), // ONLY IN INDEX, PROTECTED by RUNTIME
|
|
TRI_EXTRACT_MARKER_KEY(
|
|
rightElement->document())); // ONLY IN INDEX, PROTECTED by RUNTIME
|
|
|
|
if (compareResult < 0) {
|
|
return -1;
|
|
} else if (compareResult > 0) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool SkiplistIndex::accessFitsIndex(
|
|
arangodb::aql::AstNode const* access, arangodb::aql::AstNode const* other,
|
|
arangodb::aql::AstNode const* op, arangodb::aql::Variable const* reference,
|
|
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>>&
|
|
found,
|
|
bool isExecution) const {
|
|
if (!this->canUseConditionPart(access, other, op, reference, isExecution)) {
|
|
return false;
|
|
}
|
|
|
|
arangodb::aql::AstNode const* what = access;
|
|
std::pair<arangodb::aql::Variable const*,
|
|
std::vector<arangodb::basics::AttributeName>> attributeData;
|
|
|
|
if (op->type != arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
|
|
if (!what->isAttributeAccessForVariable(attributeData) ||
|
|
attributeData.first != reference) {
|
|
// this access is not referencing this collection
|
|
return false;
|
|
}
|
|
if (arangodb::basics::TRI_AttributeNamesHaveExpansion(
|
|
attributeData.second)) {
|
|
// doc.value[*] == 'value'
|
|
return false;
|
|
}
|
|
if (isAttributeExpanded(attributeData.second)) {
|
|
// doc.value == 'value' (with an array index)
|
|
return false;
|
|
}
|
|
} else {
|
|
// ok, we do have an IN here... check if it's something like 'value' IN
|
|
// doc.value[*]
|
|
TRI_ASSERT(op->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN);
|
|
bool canUse = false;
|
|
|
|
if (what->isAttributeAccessForVariable(attributeData) &&
|
|
attributeData.first == reference &&
|
|
!arangodb::basics::TRI_AttributeNamesHaveExpansion(
|
|
attributeData.second) &&
|
|
attributeMatches(attributeData.second)) {
|
|
// doc.value IN 'value'
|
|
// can use this index
|
|
canUse = true;
|
|
} else {
|
|
// check for 'value' IN doc.value AND 'value' IN doc.value[*]
|
|
what = other;
|
|
if (what->isAttributeAccessForVariable(attributeData) &&
|
|
attributeData.first == reference &&
|
|
isAttributeExpanded(attributeData.second) &&
|
|
attributeMatches(attributeData.second)) {
|
|
canUse = true;
|
|
}
|
|
}
|
|
|
|
if (!canUse) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
std::vector<arangodb::basics::AttributeName> const& fieldNames =
|
|
attributeData.second;
|
|
|
|
for (size_t i = 0; i < _fields.size(); ++i) {
|
|
if (_fields[i].size() != fieldNames.size()) {
|
|
// attribute path length differs
|
|
continue;
|
|
}
|
|
|
|
if (this->isAttributeExpanded(i) &&
|
|
op->type != arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
|
|
// If this attribute is correct or not, it could only serve for IN
|
|
continue;
|
|
}
|
|
|
|
bool match = arangodb::basics::AttributeName::isIdentical(_fields[i],
|
|
fieldNames, true);
|
|
|
|
if (match) {
|
|
// mark ith attribute as being covered
|
|
auto it = found.find(i);
|
|
|
|
if (it == found.end()) {
|
|
found.emplace(i, std::vector<arangodb::aql::AstNode const*>{op});
|
|
} else {
|
|
(*it).second.emplace_back(op);
|
|
}
|
|
TRI_IF_FAILURE("SkiplistIndex::accessFitsIndex") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void SkiplistIndex::matchAttributes(
|
|
arangodb::aql::AstNode const* node,
|
|
arangodb::aql::Variable const* reference,
|
|
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>>&
|
|
found,
|
|
size_t& values, bool isExecution) const {
|
|
for (size_t i = 0; i < node->numMembers(); ++i) {
|
|
auto op = node->getMember(i);
|
|
|
|
switch (op->type) {
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ:
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
|
|
TRI_ASSERT(op->numMembers() == 2);
|
|
accessFitsIndex(op->getMember(0), op->getMember(1), op, reference,
|
|
found, isExecution);
|
|
accessFitsIndex(op->getMember(1), op->getMember(0), op, reference,
|
|
found, isExecution);
|
|
break;
|
|
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN:
|
|
if (accessFitsIndex(op->getMember(0), op->getMember(1), op, reference,
|
|
found, isExecution)) {
|
|
auto m = op->getMember(1);
|
|
if (m->isArray() && m->numMembers() > 1) {
|
|
// attr IN [ a, b, c ] => this will produce multiple items, so
|
|
// count them!
|
|
values += m->numMembers() - 1;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SkiplistIndex::supportsFilterCondition(
|
|
arangodb::aql::AstNode const* node,
|
|
arangodb::aql::Variable const* reference, size_t itemsInIndex,
|
|
size_t& estimatedItems, double& estimatedCost) const {
|
|
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>> found;
|
|
size_t values = 0;
|
|
matchAttributes(node, reference, found, values, false);
|
|
|
|
bool lastContainsEquality = true;
|
|
size_t attributesCovered = 0;
|
|
size_t attributesCoveredByEquality = 0;
|
|
double equalityReductionFactor = 20.0;
|
|
estimatedCost = static_cast<double>(itemsInIndex);
|
|
|
|
for (size_t i = 0; i < _fields.size(); ++i) {
|
|
auto it = found.find(i);
|
|
|
|
if (it == found.end()) {
|
|
// index attribute not covered by condition
|
|
break;
|
|
}
|
|
|
|
// check if the current condition contains an equality condition
|
|
auto const& nodes = (*it).second;
|
|
bool containsEquality = false;
|
|
for (size_t j = 0; j < nodes.size(); ++j) {
|
|
if (nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ ||
|
|
nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
|
|
containsEquality = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!lastContainsEquality) {
|
|
// unsupported condition. must abort
|
|
break;
|
|
}
|
|
|
|
++attributesCovered;
|
|
if (containsEquality) {
|
|
++attributesCoveredByEquality;
|
|
estimatedCost /= equalityReductionFactor;
|
|
|
|
// decrease the effect of the equality reduction factor
|
|
equalityReductionFactor *= 0.25;
|
|
if (equalityReductionFactor < 2.0) {
|
|
// equalityReductionFactor shouldn't get too low
|
|
equalityReductionFactor = 2.0;
|
|
}
|
|
} else {
|
|
// quick estimate for the potential reductions caused by the conditions
|
|
if (nodes.size() >= 2) {
|
|
// at least two (non-equality) conditions. probably a range with lower
|
|
// and upper bound defined
|
|
estimatedCost /= 7.5;
|
|
} else {
|
|
// one (non-equality). this is either a lower or a higher bound
|
|
estimatedCost /= 2.0;
|
|
}
|
|
}
|
|
|
|
lastContainsEquality = containsEquality;
|
|
}
|
|
|
|
if (values == 0) {
|
|
values = 1;
|
|
}
|
|
|
|
if (attributesCoveredByEquality == _fields.size() && unique()) {
|
|
// index is unique and condition covers all attributes by equality
|
|
if (estimatedItems >= values) {
|
|
// reduce costs due to uniqueness
|
|
estimatedItems = values;
|
|
estimatedCost = static_cast<double>(estimatedItems);
|
|
} else {
|
|
// cost is already low... now slightly prioritize the unique index
|
|
estimatedCost *= 0.995;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (attributesCovered > 0 &&
|
|
(!_sparse || (_sparse && attributesCovered == _fields.size()))) {
|
|
// if the condition contains at least one index attribute and is not sparse,
|
|
// or the index is sparse and all attributes are covered by the condition,
|
|
// then it can be used (note: additional checks for condition parts in
|
|
// sparse indexes are contained in Index::canUseConditionPart)
|
|
estimatedItems = static_cast<size_t>((std::max)(
|
|
static_cast<size_t>(estimatedCost * values), static_cast<size_t>(1)));
|
|
estimatedCost *= static_cast<double>(values);
|
|
return true;
|
|
}
|
|
|
|
// no condition
|
|
estimatedItems = itemsInIndex;
|
|
estimatedCost = static_cast<double>(estimatedItems);
|
|
return false;
|
|
}
|
|
|
|
bool SkiplistIndex::supportsSortCondition(
|
|
arangodb::aql::SortCondition const* sortCondition,
|
|
arangodb::aql::Variable const* reference, size_t itemsInIndex,
|
|
double& estimatedCost) const {
|
|
TRI_ASSERT(sortCondition != nullptr);
|
|
|
|
if (!_sparse) {
|
|
// only non-sparse indexes can be used for sorting
|
|
if (!_useExpansion && sortCondition->isUnidirectional() &&
|
|
sortCondition->isOnlyAttributeAccess()) {
|
|
size_t const coveredAttributes =
|
|
sortCondition->coveredAttributes(reference, _fields);
|
|
|
|
if (coveredAttributes >= sortCondition->numAttributes()) {
|
|
// sort is fully covered by index. no additional sort costs!
|
|
estimatedCost = 0.0;
|
|
return true;
|
|
} else if (coveredAttributes > 0) {
|
|
estimatedCost = (itemsInIndex / coveredAttributes) *
|
|
std::log2(static_cast<double>(itemsInIndex));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// by default no sort conditions are supported
|
|
if (itemsInIndex > 0) {
|
|
estimatedCost = itemsInIndex * std::log2(static_cast<double>(itemsInIndex));
|
|
} else {
|
|
estimatedCost = 0.0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
IndexIterator* SkiplistIndex::iteratorForCondition(
|
|
arangodb::Transaction* trx, IndexIteratorContext* context,
|
|
arangodb::aql::Ast* ast, arangodb::aql::AstNode const* node,
|
|
arangodb::aql::Variable const* reference, bool reverse) const {
|
|
// Create the skiplistOperator for the IndexLookup
|
|
if (node == nullptr) {
|
|
// We have no condition, we just use sort
|
|
auto builder = std::make_shared<VPackBuilder>();
|
|
{
|
|
VPackArrayBuilder b(builder.get());
|
|
builder->add(VPackValue(VPackValueType::Null));
|
|
}
|
|
std::unique_ptr<TRI_index_operator_t> unboundOperator(
|
|
TRI_CreateIndexOperator(TRI_GE_INDEX_OPERATOR, nullptr, nullptr,
|
|
builder, _shaper, 1));
|
|
std::vector<TRI_index_operator_t*> searchValues({unboundOperator.get()});
|
|
unboundOperator.release();
|
|
|
|
TRI_IF_FAILURE("SkiplistIndex::noSortIterator") {
|
|
// prevent a (false-positive) memleak here
|
|
for (auto& it : searchValues) {
|
|
delete it;
|
|
}
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
|
|
return new SkiplistIndexIterator(trx, this, searchValues, reverse);
|
|
}
|
|
|
|
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>> found;
|
|
size_t unused = 0;
|
|
matchAttributes(node, reference, found, unused, true);
|
|
|
|
// found contains all attributes that are relevant for this node.
|
|
// It might be less than fields().
|
|
//
|
|
// Handle the first attributes. They can only be == or IN and only
|
|
// one node per attribute
|
|
|
|
auto getValueAccess = [&](arangodb::aql::AstNode const* comp,
|
|
arangodb::aql::AstNode const*& access,
|
|
arangodb::aql::AstNode const*& value) -> bool {
|
|
access = comp->getMember(0);
|
|
value = comp->getMember(1);
|
|
std::pair<arangodb::aql::Variable const*,
|
|
std::vector<arangodb::basics::AttributeName>> paramPair;
|
|
if (!(access->isAttributeAccessForVariable(paramPair) &&
|
|
paramPair.first == reference)) {
|
|
access = comp->getMember(1);
|
|
value = comp->getMember(0);
|
|
if (!(access->isAttributeAccessForVariable(paramPair) &&
|
|
paramPair.first == reference)) {
|
|
// Both side do not have a correct AttributeAccess, this should not
|
|
// happen and indicates
|
|
// an error in the optimizer
|
|
TRI_ASSERT(false);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// initialize permutations
|
|
std::vector<PermutationState> permutationStates;
|
|
permutationStates.reserve(_fields.size());
|
|
size_t maxPermutations = 1;
|
|
|
|
size_t usedFields = 0;
|
|
for (; usedFields < _fields.size(); ++usedFields) {
|
|
// We are in the equality range, we only allow one == or IN node per
|
|
// attribute
|
|
auto it = found.find(usedFields);
|
|
if (it == found.end() || it->second.size() != 1) {
|
|
// We are either done,
|
|
// or this is a range.
|
|
// Continue with more complicated loop
|
|
break;
|
|
}
|
|
auto comp = it->second[0];
|
|
TRI_ASSERT(comp->numMembers() == 2);
|
|
arangodb::aql::AstNode const* access = nullptr;
|
|
arangodb::aql::AstNode const* value = nullptr;
|
|
getValueAccess(comp, access, value);
|
|
// We found an access for this field
|
|
if (comp->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ) {
|
|
// This is an equalityCheck, we can continue with the next field
|
|
permutationStates.emplace_back(
|
|
PermutationState(comp->type, value, usedFields, 1));
|
|
TRI_IF_FAILURE("SkiplistIndex::permutationEQ") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
} else if (comp->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
|
|
if (isAttributeExpanded(usedFields)) {
|
|
permutationStates.emplace_back(PermutationState(
|
|
aql::NODE_TYPE_OPERATOR_BINARY_EQ, value, usedFields, 1));
|
|
TRI_IF_FAILURE("SkiplistIndex::permutationArrayIN") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
} else {
|
|
if (value->numMembers() == 0) {
|
|
return nullptr;
|
|
}
|
|
permutationStates.emplace_back(PermutationState(
|
|
comp->type, value, usedFields, value->numMembers()));
|
|
TRI_IF_FAILURE("SkiplistIndex::permutationIN") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
maxPermutations *= value->numMembers();
|
|
}
|
|
} else {
|
|
// This is a one-sided range
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Now handle the next element, which might be a range
|
|
bool includeLower = false;
|
|
bool includeUpper = false;
|
|
auto lower = std::make_shared<VPackBuilder>();
|
|
auto upper = std::make_shared<VPackBuilder>();
|
|
if (usedFields < _fields.size()) {
|
|
auto it = found.find(usedFields);
|
|
if (it != found.end()) {
|
|
auto rangeConditions = it->second;
|
|
TRI_ASSERT(rangeConditions.size() <= 2);
|
|
|
|
for (auto& comp : rangeConditions) {
|
|
TRI_ASSERT(comp->numMembers() == 2);
|
|
arangodb::aql::AstNode const* access = nullptr;
|
|
arangodb::aql::AstNode const* value = nullptr;
|
|
bool isReverseOrder = getValueAccess(comp, access, value);
|
|
|
|
auto setBorder = [&](bool isLower, bool includeBound) -> void {
|
|
if (isLower == isReverseOrder) {
|
|
// We set an upper bound
|
|
TRI_ASSERT(upper->isEmpty());
|
|
upper = value->toVelocyPackValue();
|
|
includeUpper = includeBound;
|
|
} else {
|
|
// We set an lower bound
|
|
TRI_ASSERT(lower->isEmpty());
|
|
lower = value->toVelocyPackValue();
|
|
includeLower = includeBound;
|
|
}
|
|
};
|
|
// This is not an equalityCheck, set lower or upper
|
|
switch (comp->type) {
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
|
|
setBorder(false, false);
|
|
break;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
|
|
setBorder(false, true);
|
|
break;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
|
|
setBorder(true, false);
|
|
break;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
|
|
setBorder(true, true);
|
|
break;
|
|
default:
|
|
// unsupported right now. Should have been rejected by
|
|
// supportsFilterCondition
|
|
TRI_ASSERT(false);
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<TRI_index_operator_t*> searchValues;
|
|
searchValues.reserve(maxPermutations);
|
|
VPackSlice emptySlice;
|
|
|
|
try {
|
|
if (usedFields == 0) {
|
|
// We have a range query based on the first _field
|
|
std::unique_ptr<TRI_index_operator_t> op(
|
|
buildRangeOperator(lower->slice(), includeLower, upper->slice(),
|
|
includeUpper, emptySlice, _shaper));
|
|
|
|
if (op != nullptr) {
|
|
searchValues.emplace_back(op.get());
|
|
op.release();
|
|
|
|
TRI_IF_FAILURE("SkiplistIndex::onlyRangeOperator") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
}
|
|
} else {
|
|
bool done = false;
|
|
// create all permutations
|
|
while (!done) {
|
|
auto parameter = std::make_shared<VPackBuilder>();
|
|
bool valid = true;
|
|
|
|
try {
|
|
VPackArrayBuilder b(parameter.get());
|
|
for (size_t i = 0; i < usedFields; ++i) {
|
|
TRI_ASSERT(i < permutationStates.size());
|
|
auto& state = permutationStates[i];
|
|
|
|
std::shared_ptr<VPackBuilder> valueBuilder =
|
|
state.getValue()->toVelocyPackValue();
|
|
VPackSlice const value = valueBuilder->slice();
|
|
|
|
if (value.isNone()) {
|
|
valid = false;
|
|
break;
|
|
}
|
|
parameter->add(value);
|
|
}
|
|
} catch (...) {
|
|
// Out of Memory
|
|
return nullptr;
|
|
}
|
|
|
|
if (valid) {
|
|
std::unique_ptr<TRI_index_operator_t> tmpOp(
|
|
TRI_CreateIndexOperator(TRI_EQ_INDEX_OPERATOR, nullptr, nullptr,
|
|
parameter, _shaper, usedFields));
|
|
// Note we create a new RangeOperator always.
|
|
std::unique_ptr<TRI_index_operator_t> rangeOperator(
|
|
buildRangeOperator(lower->slice(), includeLower, upper->slice(),
|
|
includeUpper, parameter->slice(), _shaper));
|
|
|
|
if (rangeOperator != nullptr) {
|
|
std::unique_ptr<TRI_index_operator_t> combinedOp(
|
|
TRI_CreateIndexOperator(
|
|
TRI_AND_INDEX_OPERATOR, tmpOp.get(), rangeOperator.get(),
|
|
std::make_shared<VPackBuilder>(), _shaper, 2));
|
|
rangeOperator.release();
|
|
tmpOp.release();
|
|
searchValues.emplace_back(combinedOp.get());
|
|
combinedOp.release();
|
|
TRI_IF_FAILURE("SkiplistIndex::rangeOperatorNoTmp") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
} else {
|
|
if (tmpOp != nullptr) {
|
|
searchValues.emplace_back(tmpOp.get());
|
|
tmpOp.release();
|
|
TRI_IF_FAILURE("SkiplistIndex::rangeOperatorTmp") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t const np = permutationStates.size() - 1;
|
|
size_t current = 0;
|
|
// now permute
|
|
while (true) {
|
|
if (++permutationStates[np - current].current <
|
|
permutationStates[np - current].n) {
|
|
current = 0; // note: resetting the variable has no effect here
|
|
// abort inner iteration
|
|
break;
|
|
}
|
|
|
|
permutationStates[np - current].current = 0;
|
|
|
|
if (++current >= usedFields) {
|
|
done = true;
|
|
break;
|
|
}
|
|
// next inner iteration
|
|
}
|
|
}
|
|
}
|
|
|
|
if (searchValues.empty()) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (reverse) {
|
|
std::reverse(searchValues.begin(), searchValues.end());
|
|
}
|
|
|
|
TRI_IF_FAILURE("SkiplistIndex::noIterator") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
} catch (...) {
|
|
// prevent memleak here
|
|
for (auto& it : searchValues) {
|
|
delete it;
|
|
}
|
|
throw;
|
|
}
|
|
|
|
TRI_IF_FAILURE("SkiplistIndex::noIterator") {
|
|
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
|
|
}
|
|
|
|
return new SkiplistIndexIterator(trx, this, searchValues, reverse);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// @brief specializes the condition for use with the index
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
arangodb::aql::AstNode* SkiplistIndex::specializeCondition(
|
|
arangodb::aql::AstNode* node,
|
|
arangodb::aql::Variable const* reference) const {
|
|
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>> found;
|
|
size_t values = 0;
|
|
matchAttributes(node, reference, found, values, false);
|
|
|
|
std::vector<arangodb::aql::AstNode const*> children;
|
|
bool lastContainsEquality = true;
|
|
|
|
for (size_t i = 0; i < _fields.size(); ++i) {
|
|
auto it = found.find(i);
|
|
|
|
if (it == found.end()) {
|
|
// index attribute not covered by condition
|
|
break;
|
|
}
|
|
|
|
// check if the current condition contains an equality condition
|
|
auto& nodes = (*it).second;
|
|
bool containsEquality = false;
|
|
for (size_t j = 0; j < nodes.size(); ++j) {
|
|
if (nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ ||
|
|
nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
|
|
containsEquality = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!lastContainsEquality) {
|
|
// unsupported condition. must abort
|
|
break;
|
|
}
|
|
|
|
std::sort(
|
|
nodes.begin(), nodes.end(),
|
|
[](arangodb::aql::AstNode const* lhs, arangodb::aql::AstNode const* rhs)
|
|
-> bool { return sortWeight(lhs) < sortWeight(rhs); });
|
|
|
|
lastContainsEquality = containsEquality;
|
|
std::unordered_set<int> operatorsFound;
|
|
for (auto& it : nodes) {
|
|
// do not less duplicate or related operators pass
|
|
if (isDuplicateOperator(it, operatorsFound)) {
|
|
continue;
|
|
}
|
|
operatorsFound.emplace(static_cast<int>(it->type));
|
|
children.emplace_back(it);
|
|
}
|
|
}
|
|
|
|
while (node->numMembers() > 0) {
|
|
node->removeMemberUnchecked(0);
|
|
}
|
|
|
|
for (auto& it : children) {
|
|
node->addMember(it);
|
|
}
|
|
return node;
|
|
}
|
|
|
|
bool SkiplistIndex::isDuplicateOperator(
|
|
arangodb::aql::AstNode const* node,
|
|
std::unordered_set<int> const& operatorsFound) const {
|
|
auto type = node->type;
|
|
if (operatorsFound.find(static_cast<int>(type)) != operatorsFound.end()) {
|
|
// duplicate operator
|
|
return true;
|
|
}
|
|
|
|
if (operatorsFound.find(
|
|
static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ)) !=
|
|
operatorsFound.end() ||
|
|
operatorsFound.find(
|
|
static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN)) !=
|
|
operatorsFound.end()) {
|
|
return true;
|
|
}
|
|
|
|
bool duplicate = false;
|
|
switch (type) {
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
|
|
duplicate = operatorsFound.find(static_cast<int>(
|
|
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE)) !=
|
|
operatorsFound.end();
|
|
break;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
|
|
duplicate = operatorsFound.find(static_cast<int>(
|
|
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT)) !=
|
|
operatorsFound.end();
|
|
break;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
|
|
duplicate = operatorsFound.find(static_cast<int>(
|
|
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE)) !=
|
|
operatorsFound.end();
|
|
break;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
|
|
duplicate = operatorsFound.find(static_cast<int>(
|
|
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT)) !=
|
|
operatorsFound.end();
|
|
break;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ:
|
|
duplicate = operatorsFound.find(static_cast<int>(
|
|
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN)) !=
|
|
operatorsFound.end();
|
|
break;
|
|
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN:
|
|
duplicate = operatorsFound.find(static_cast<int>(
|
|
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ)) !=
|
|
operatorsFound.end();
|
|
break;
|
|
default: {
|
|
// ignore
|
|
}
|
|
}
|
|
|
|
return duplicate;
|
|
}
|