1
0
Fork 0
arangodb/arangod/Indexes/SkiplistIndex.cpp

1685 lines
56 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Dr. Frank Celler
////////////////////////////////////////////////////////////////////////////////
#include "SkiplistIndex.h"
#include "Aql/AstNode.h"
#include "Aql/SortCondition.h"
#include "Basics/AttributeNameParser.h"
#include "Basics/debugging.h"
#include "VocBase/document-collection.h"
#include "VocBase/VocShaper.h"
#include <velocypack/Iterator.h>
#include <velocypack/velocypack-aliases.h>
using namespace arangodb;
static size_t sortWeight(arangodb::aql::AstNode const* node) {
switch (node->type) {
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ:
return 1;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN:
return 2;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
return 3;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
return 4;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
return 5;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
return 6;
default:
return 42;
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Create an index operator for the given bound.
////////////////////////////////////////////////////////////////////////////////
static TRI_index_operator_t* buildBoundOperator(VPackSlice const& bound,
bool includeEqual, bool upper,
VPackSlice const& parameters,
VocShaper* shaper) {
if (bound.isNone()) {
return nullptr;
}
TRI_index_operator_type_e type;
if (includeEqual) {
if (upper) {
type = TRI_LE_INDEX_OPERATOR;
} else {
type = TRI_GE_INDEX_OPERATOR;
}
} else {
if (upper) {
type = TRI_LT_INDEX_OPERATOR;
} else {
type = TRI_GT_INDEX_OPERATOR;
}
}
auto builder = std::make_shared<VPackBuilder>();
try {
VPackArrayBuilder b(builder.get());
if (parameters.isArray()) {
// Everything else is to be ignored.
// Copy content of array
for (auto const& e : VPackArrayIterator(parameters)) {
builder->add(e);
}
}
builder->add(bound);
} catch (...) {
// Out of memory. Cannot build operator.
return nullptr;
}
return TRI_CreateIndexOperator(type, nullptr, nullptr, builder, shaper, 1);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Create an index operator for the range information.
/// Will either be a nullptr if no range is used.
/// Or a LE, LT, GE, GT operator if only one bound is given
/// Or an AND operator if both bounds are given.
////////////////////////////////////////////////////////////////////////////////
static TRI_index_operator_t* buildRangeOperator(VPackSlice const& lowerBound,
bool lowerBoundInclusive,
VPackSlice const& upperBound,
bool upperBoundInclusive,
VPackSlice const& parameters,
VocShaper* shaper) {
std::unique_ptr<TRI_index_operator_t> lowerOperator(buildBoundOperator(
lowerBound, lowerBoundInclusive, false, parameters, shaper));
if (lowerOperator == nullptr && !lowerBound.isNone()) {
THROW_ARANGO_EXCEPTION(TRI_ERROR_OUT_OF_MEMORY);
}
std::unique_ptr<TRI_index_operator_t> upperOperator(buildBoundOperator(
upperBound, upperBoundInclusive, true, parameters, shaper));
if (upperOperator == nullptr && !upperBound.isNone()) {
THROW_ARANGO_EXCEPTION(TRI_ERROR_OUT_OF_MEMORY);
}
if (lowerOperator == nullptr) {
return upperOperator.release();
}
if (upperOperator == nullptr) {
return lowerOperator.release();
}
// And combine both
std::unique_ptr<TRI_index_operator_t> rangeOperator(TRI_CreateIndexOperator(
TRI_AND_INDEX_OPERATOR, lowerOperator.get(), upperOperator.get(),
std::make_shared<VPackBuilder>(), nullptr, 2));
lowerOperator.release();
upperOperator.release();
return rangeOperator.release();
}
////////////////////////////////////////////////////////////////////////////////
/// @brief frees an element in the skiplist
////////////////////////////////////////////////////////////////////////////////
static void FreeElm(void* e) {
auto element = static_cast<TRI_index_element_t*>(e);
TRI_index_element_t::freeElement(element);
}
// .............................................................................
// recall for all of the following comparison functions:
//
// left < right return -1
// left > right return 1
// left == right return 0
//
// furthermore:
//
// the following order is currently defined for placing an order on documents
// undef < null < boolean < number < strings < lists < hash arrays
// note: undefined will be treated as NULL pointer not NULL JSON OBJECT
// within each type class we have the following order
// boolean: false < true
// number: natural order
// strings: lexicographical
// lists: lexicographically and within each slot according to these rules.
// ...........................................................................
////////////////////////////////////////////////////////////////////////////////
/// @brief compares a key with an element, version with proper types
////////////////////////////////////////////////////////////////////////////////
static int CompareKeyElement(TRI_shaped_json_t const* left,
TRI_index_element_t const* right,
size_t rightPosition, VocShaper* shaper) {
TRI_ASSERT(nullptr != left);
TRI_ASSERT(nullptr != right);
auto rightSubobjects = right->subObjects();
return TRI_CompareShapeTypes(
nullptr, nullptr, left, shaper, right->document()->getShapedJsonPtr(),
&rightSubobjects[rightPosition], nullptr, shaper);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief compares elements, version with proper types
////////////////////////////////////////////////////////////////////////////////
static int CompareElementElement(TRI_index_element_t const* left,
size_t leftPosition,
TRI_index_element_t const* right,
size_t rightPosition, VocShaper* shaper) {
TRI_ASSERT(nullptr != left);
TRI_ASSERT(nullptr != right);
auto leftSubobjects = left->subObjects();
auto rightSubobjects = right->subObjects();
return TRI_CompareShapeTypes(
left->document()->getShapedJsonPtr(), &leftSubobjects[leftPosition],
nullptr, shaper, right->document()->getShapedJsonPtr(),
&rightSubobjects[rightPosition], nullptr, shaper);
}
static int FillLookupOperator(TRI_index_operator_t* slOperator,
TRI_document_collection_t* document) {
if (slOperator == nullptr) {
return TRI_ERROR_INTERNAL;
}
switch (slOperator->_type) {
case TRI_AND_INDEX_OPERATOR: {
TRI_logical_index_operator_t* logicalOperator =
(TRI_logical_index_operator_t*)slOperator;
int res = FillLookupOperator(logicalOperator->_left, document);
if (res == TRI_ERROR_NO_ERROR) {
res = FillLookupOperator(logicalOperator->_right, document);
}
if (res != TRI_ERROR_NO_ERROR) {
return res;
}
break;
}
case TRI_EQ_INDEX_OPERATOR:
case TRI_GE_INDEX_OPERATOR:
case TRI_GT_INDEX_OPERATOR:
case TRI_NE_INDEX_OPERATOR:
case TRI_LE_INDEX_OPERATOR:
case TRI_LT_INDEX_OPERATOR: {
TRI_relation_index_operator_t* relationOperator =
(TRI_relation_index_operator_t*)slOperator;
VPackSlice const params = relationOperator->_parameters->slice();
relationOperator->_numFields = static_cast<size_t>(params.length());
relationOperator->_fields = static_cast<TRI_shaped_json_t*>(TRI_Allocate(
TRI_UNKNOWN_MEM_ZONE,
sizeof(TRI_shaped_json_t) * relationOperator->_numFields, false));
if (relationOperator->_fields != nullptr) {
for (size_t j = 0; j < relationOperator->_numFields; ++j) {
VPackSlice const element = params.at(j);
// find out if the search value is a list or an array
if ((element.isArray() || element.isObject()) &&
slOperator->_type != TRI_EQ_INDEX_OPERATOR) {
// non-equality operator used on list or array data type, this is
// disallowed
// because we need to shape these objects first. however, at this
// place (index lookup)
// we never want to create new shapes so we will have a problem if
// we cannot find an
// existing shape for the search value. in this case we would need
// to raise an error
// but then the query results would depend on the state of the
// shaper and if it had
// seen previous such objects
// we still allow looking for list or array values using equality.
// this is safe.
TRI_Free(TRI_UNKNOWN_MEM_ZONE, relationOperator->_fields);
relationOperator->_fields = nullptr;
return TRI_ERROR_BAD_PARAMETER;
}
// now shape the search object (but never create any new shapes)
TRI_shaped_json_t* shapedObject = TRI_ShapedJsonVelocyPack(
document->getShaper(), element,
false); // ONLY IN INDEX, PROTECTED by RUNTIME
if (shapedObject != nullptr) {
// found existing shape
relationOperator->_fields[j] =
*shapedObject; // shallow copy here is ok
TRI_Free(TRI_UNKNOWN_MEM_ZONE,
shapedObject); // don't require storage anymore
} else {
// shape not found
TRI_Free(TRI_UNKNOWN_MEM_ZONE, relationOperator->_fields);
relationOperator->_fields = nullptr;
return TRI_RESULT_ELEMENT_NOT_FOUND;
}
}
} else {
relationOperator->_numFields = 0; // out of memory?
}
break;
}
}
return TRI_ERROR_NO_ERROR;
}
size_t SkiplistIterator::size() const { return _intervals.size(); }
void SkiplistIterator::initCursor() {
size_t const n = size();
if (0 < n) {
if (_reverse) {
// start at last interval, right endpoint
_currentInterval = n - 1;
_cursor = _intervals.at(_currentInterval)._rightEndPoint;
} else {
// start at first interval, left endpoint
_currentInterval = 0;
_cursor = _intervals.at(_currentInterval)._leftEndPoint;
}
} else {
_cursor = nullptr;
}
}
bool SkiplistIterator::hasNext() const {
if (_reverse) {
return hasPrevIteration();
}
return hasNextIteration();
}
TRI_index_element_t* SkiplistIterator::next() {
if (_reverse) {
return prevIteration();
}
return nextIteration();
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Locates one or more ranges within the skiplist and returns iterator
////////////////////////////////////////////////////////////////////////////////
// .............................................................................
// Tests whether the LeftEndPoint is < than RightEndPoint (-1)
// Tests whether the LeftEndPoint is == to RightEndPoint (0) [empty]
// Tests whether the LeftEndPoint is > than RightEndPoint (1) [undefined]
// .............................................................................
bool SkiplistIterator::findHelperIntervalValid(
SkiplistIteratorInterval const& interval) {
Node* lNode = interval._leftEndPoint;
if (lNode == nullptr) {
return false;
}
// Note that the right end point can be nullptr to indicate the end of
// the index.
Node* rNode = interval._rightEndPoint;
if (lNode == rNode) {
return false;
}
if (lNode->nextNode() == rNode) {
// Interval empty, nothing to do with it.
return false;
}
if (nullptr != rNode && rNode->nextNode() == lNode) {
// Interval empty, nothing to do with it.
return false;
}
if (_index->_skiplistIndex->getNrUsed() == 0) {
return false;
}
if (lNode == _index->_skiplistIndex->startNode() || nullptr == rNode) {
// The index is not empty, the nodes are not neighbours, one of them
// is at the boundary, so the interval is valid and not empty.
return true;
}
int compareResult =
_index->CmpElmElm(lNode->document(), rNode->document(),
arangodb::basics::SKIPLIST_CMP_TOTORDER);
return (compareResult == -1);
// Since we know that the nodes are not neighbours, we can guarantee
// at least one document in the interval.
}
bool SkiplistIterator::findHelperIntervalIntersectionValid(
SkiplistIteratorInterval const& lInterval,
SkiplistIteratorInterval const& rInterval,
SkiplistIteratorInterval& interval) {
Node* lNode = lInterval._leftEndPoint;
Node* rNode = rInterval._leftEndPoint;
if (nullptr == lNode || nullptr == rNode) {
// At least one left boundary is the end, intersection is empty.
return false;
}
int compareResult;
// Now find the larger of the two start nodes:
if (lNode == _index->_skiplistIndex->startNode()) {
// We take rNode, even if it is the start node as well.
compareResult = -1;
} else if (rNode == _index->_skiplistIndex->startNode()) {
// We take lNode
compareResult = 1;
} else {
compareResult = _index->CmpElmElm(lNode->document(), rNode->document(),
arangodb::basics::SKIPLIST_CMP_TOTORDER);
}
if (compareResult < 1) {
interval._leftEndPoint = rNode;
} else {
interval._leftEndPoint = lNode;
}
lNode = lInterval._rightEndPoint;
rNode = rInterval._rightEndPoint;
// Now find the smaller of the two end nodes:
if (nullptr == lNode) {
// We take rNode, even is this also the end node.
compareResult = 1;
} else if (nullptr == rNode) {
// We take lNode.
compareResult = -1;
} else {
compareResult = _index->CmpElmElm(lNode->document(), rNode->document(),
arangodb::basics::SKIPLIST_CMP_TOTORDER);
}
if (compareResult < 1) {
interval._rightEndPoint = lNode;
} else {
interval._rightEndPoint = rNode;
}
return findHelperIntervalValid(interval);
}
void SkiplistIterator::findHelper(
TRI_index_operator_t const* indexOperator,
std::vector<SkiplistIteratorInterval>& intervals) {
TRI_skiplist_index_key_t values;
std::vector<SkiplistIteratorInterval> leftResult;
std::vector<SkiplistIteratorInterval> rightResult;
SkiplistIteratorInterval interval;
Node* temp;
switch (indexOperator->_type) {
case TRI_EQ_INDEX_OPERATOR:
case TRI_LE_INDEX_OPERATOR:
case TRI_LT_INDEX_OPERATOR:
case TRI_GE_INDEX_OPERATOR:
case TRI_GT_INDEX_OPERATOR: {
TRI_relation_index_operator_t* relationOperator =
(TRI_relation_index_operator_t*)indexOperator;
values._fields = relationOperator->_fields;
values._numFields = relationOperator->_numFields;
break; // this is to silence a compiler warning
}
default: {
// must not access relationOperator->xxx if the operator is not a
// relational one otherwise we'll get invalid reads and the prog
// might crash
}
}
switch (indexOperator->_type) {
case TRI_AND_INDEX_OPERATOR: {
TRI_logical_index_operator_t* logicalOperator =
(TRI_logical_index_operator_t*)indexOperator;
findHelper(logicalOperator->_left, leftResult);
findHelper(logicalOperator->_right, rightResult);
size_t nl = leftResult.size();
size_t nr = rightResult.size();
for (size_t i = 0; i < nl; ++i) {
for (size_t j = 0; j < nr; ++j) {
auto tempLeftInterval = leftResult[i];
auto tempRightInterval = rightResult[j];
if (findHelperIntervalIntersectionValid(
tempLeftInterval, tempRightInterval, interval)) {
intervals.emplace_back(interval);
}
}
}
return;
}
case TRI_EQ_INDEX_OPERATOR: {
temp = _index->_skiplistIndex->leftKeyLookup(&values);
TRI_ASSERT(nullptr != temp);
interval._leftEndPoint = temp;
bool const allAttributesCoveredByCondition =
(values._numFields == _index->numPaths());
if (_index->unique() && allAttributesCoveredByCondition) {
// At most one hit:
temp = temp->nextNode();
if (nullptr != temp) {
if (0 == _index->CmpKeyElm(&values, temp->document())) {
interval._rightEndPoint = temp->nextNode();
if (findHelperIntervalValid(interval)) {
intervals.emplace_back(interval);
}
}
}
} else {
temp = _index->_skiplistIndex->rightKeyLookup(&values);
interval._rightEndPoint = temp->nextNode();
if (findHelperIntervalValid(interval)) {
intervals.emplace_back(interval);
}
}
return;
}
case TRI_LE_INDEX_OPERATOR: {
interval._leftEndPoint = _index->_skiplistIndex->startNode();
temp = _index->_skiplistIndex->rightKeyLookup(&values);
interval._rightEndPoint = temp->nextNode();
if (findHelperIntervalValid(interval)) {
intervals.emplace_back(interval);
}
return;
}
case TRI_LT_INDEX_OPERATOR: {
interval._leftEndPoint = _index->_skiplistIndex->startNode();
temp = _index->_skiplistIndex->leftKeyLookup(&values);
interval._rightEndPoint = temp->nextNode();
if (findHelperIntervalValid(interval)) {
intervals.emplace_back(interval);
}
return;
}
case TRI_GE_INDEX_OPERATOR: {
temp = _index->_skiplistIndex->leftKeyLookup(&values);
interval._leftEndPoint = temp;
interval._rightEndPoint = _index->_skiplistIndex->endNode();
if (findHelperIntervalValid(interval)) {
intervals.emplace_back(interval);
}
return;
}
case TRI_GT_INDEX_OPERATOR: {
temp = _index->_skiplistIndex->rightKeyLookup(&values);
interval._leftEndPoint = temp;
interval._rightEndPoint = _index->_skiplistIndex->endNode();
if (findHelperIntervalValid(interval)) {
intervals.emplace_back(interval);
}
return;
}
default: { TRI_ASSERT(false); }
} // end of switch statement
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Attempts to determine if there is a previous document within an
/// interval or before it - without advancing the iterator.
////////////////////////////////////////////////////////////////////////////////
bool SkiplistIterator::hasPrevIteration() const {
// ...........................................................................
// if we have more intervals than the one we are currently working
// on then of course we have a previous doc, because intervals are nonempty.
// ...........................................................................
if (_currentInterval > 0) {
return true;
}
Node const* leftNode = _index->_skiplistIndex->prevNode(_cursor);
// Note that leftNode can be nullptr here!
// ...........................................................................
// If the leftNode == left end point AND there are no more intervals
// then we have no next.
// ...........................................................................
return leftNode != _intervals.at(_currentInterval)._leftEndPoint;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Attempts to determine if there is a next document within an
/// interval - without advancing the iterator.
////////////////////////////////////////////////////////////////////////////////
bool SkiplistIterator::hasNextIteration() const {
if (_cursor == nullptr) {
return false;
}
// ...........................................................................
// if we have more intervals than the one we are currently working
// on then of course we have a next doc, since intervals are nonempty.
// ...........................................................................
if (_intervals.size() - 1 > _currentInterval) {
return true;
}
Node const* leftNode = _cursor->nextNode();
// Note that leftNode can be nullptr here!
// ...........................................................................
// If the left == right end point AND there are no more intervals then we have
// no next.
// ...........................................................................
return leftNode != _intervals.at(_currentInterval)._rightEndPoint;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Jumps backwards by 1 and returns the document
////////////////////////////////////////////////////////////////////////////////
TRI_index_element_t* SkiplistIterator::prevIteration() {
if (_currentInterval >= _intervals.size()) {
return nullptr;
}
SkiplistIteratorInterval& interval = _intervals.at(_currentInterval);
// ...........................................................................
// use the current cursor and move 1 backward
// ...........................................................................
Node* result = nullptr;
result = _index->_skiplistIndex->prevNode(_cursor);
if (result == interval._leftEndPoint) {
if (_currentInterval == 0) {
_cursor = nullptr; // exhausted
return nullptr;
}
--_currentInterval;
interval = _intervals.at(_currentInterval);
_cursor = interval._rightEndPoint;
result = _index->_skiplistIndex->prevNode(_cursor);
}
_cursor = result;
TRI_ASSERT(result != nullptr);
return result->document();
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Jumps forwards by jumpSize and returns the document
////////////////////////////////////////////////////////////////////////////////
TRI_index_element_t* SkiplistIterator::nextIteration() {
if (_cursor == nullptr) {
// In this case the iterator is exhausted or does not even have intervals.
return nullptr;
}
if (_currentInterval >= _intervals.size()) {
return nullptr;
}
SkiplistIteratorInterval& interval = _intervals.at(_currentInterval);
while (true) { // will be left by break
_cursor = _cursor->nextNode();
if (_cursor != interval._rightEndPoint) {
if (_cursor == nullptr) {
return nullptr;
}
break; // we found a next one
}
if (_currentInterval == _intervals.size() - 1) {
_cursor = nullptr; // exhausted
return nullptr;
}
++_currentInterval;
interval = _intervals.at(_currentInterval);
_cursor = interval._leftEndPoint;
}
return _cursor->document();
}
TRI_doc_mptr_t* SkiplistIndexIterator::next() {
while (_iterator == nullptr) {
if (_currentOperator == _operators.size()) {
// Sorry nothing found at all
return nullptr;
}
// We restart the lookup
_iterator = _index->lookup(_trx, _operators[_currentOperator], _reverse);
if (_iterator == nullptr) {
// This iterator was not created.
_currentOperator++;
}
}
TRI_ASSERT(_iterator != nullptr);
TRI_index_element_t* res = _iterator->next();
while (res == nullptr) {
// Try the next iterator
_currentOperator++;
if (_currentOperator == _operators.size()) {
// We are done
return nullptr;
}
// Free the former iterator and get the next one
delete _iterator;
_iterator = _index->lookup(_trx, _operators[_currentOperator], _reverse);
res = _iterator->next();
}
return res->document();
}
void SkiplistIndexIterator::reset() {
delete _iterator;
_iterator = nullptr;
_currentOperator = 0;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief create the skiplist index
////////////////////////////////////////////////////////////////////////////////
SkiplistIndex::SkiplistIndex(
TRI_idx_iid_t iid, TRI_document_collection_t* collection,
std::vector<std::vector<arangodb::basics::AttributeName>> const& fields,
bool unique, bool sparse)
: PathBasedIndex(iid, collection, fields, unique, sparse, true),
CmpElmElm(this),
CmpKeyElm(this),
_skiplistIndex(nullptr) {
_skiplistIndex =
new TRI_Skiplist(CmpElmElm, CmpKeyElm, FreeElm, unique, _useExpansion);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief create an index stub with a hard-coded selectivity estimate
/// this is used in the cluster coordinator case
////////////////////////////////////////////////////////////////////////////////
SkiplistIndex::SkiplistIndex(VPackSlice const& slice)
: PathBasedIndex(slice, true),
CmpElmElm(this),
CmpKeyElm(this),
_skiplistIndex(nullptr) {}
////////////////////////////////////////////////////////////////////////////////
/// @brief destroy the skiplist index
////////////////////////////////////////////////////////////////////////////////
SkiplistIndex::~SkiplistIndex() { delete _skiplistIndex; }
size_t SkiplistIndex::memory() const {
return _skiplistIndex->memoryUsage() +
static_cast<size_t>(_skiplistIndex->getNrUsed()) * elementSize();
}
////////////////////////////////////////////////////////////////////////////////
/// @brief return a VelocyPack representation of the index
////////////////////////////////////////////////////////////////////////////////
void SkiplistIndex::toVelocyPack(VPackBuilder& builder,
bool withFigures) const {
Index::toVelocyPack(builder, withFigures);
builder.add("unique", VPackValue(_unique));
builder.add("sparse", VPackValue(_sparse));
}
////////////////////////////////////////////////////////////////////////////////
/// @brief return a VelocyPack representation of the index figures
////////////////////////////////////////////////////////////////////////////////
void SkiplistIndex::toVelocyPackFigures(VPackBuilder& builder) const {
TRI_ASSERT(builder.isOpenObject());
builder.add("memory", VPackValue(memory()));
_skiplistIndex->appendToVelocyPack(builder);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief inserts a document into a skiplist index
////////////////////////////////////////////////////////////////////////////////
int SkiplistIndex::insert(arangodb::Transaction*, TRI_doc_mptr_t const* doc,
bool) {
std::vector<TRI_index_element_t*> elements;
int res = fillElement(elements, doc);
if (res != TRI_ERROR_NO_ERROR) {
for (auto& it : elements) {
// free all elements to prevent leak
TRI_index_element_t::freeElement(it);
}
return res;
}
// insert into the index. the memory for the element will be owned or freed
// by the index
size_t const count = elements.size();
for (size_t i = 0; i < count; ++i) {
res = _skiplistIndex->insert(elements[i]);
if (res == TRI_ERROR_ARANGO_UNIQUE_CONSTRAINT_VIOLATED && !_unique) {
// We ignore unique_constraint violated if we are not unique
res = TRI_ERROR_NO_ERROR;
}
if (res != TRI_ERROR_NO_ERROR) {
TRI_index_element_t::freeElement(elements[i]);
// Note: this element is freed already
for (size_t j = i + 1; j < count; ++j) {
TRI_index_element_t::freeElement(elements[j]);
}
for (size_t j = 0; j < i; ++j) {
_skiplistIndex->remove(elements[j]);
// No need to free elements[j] skiplist has taken over already
}
break;
}
}
return res;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief removes a document from a skiplist index
////////////////////////////////////////////////////////////////////////////////
int SkiplistIndex::remove(arangodb::Transaction*, TRI_doc_mptr_t const* doc,
bool) {
std::vector<TRI_index_element_t*> elements;
int res = fillElement(elements, doc);
if (res != TRI_ERROR_NO_ERROR) {
for (auto& it : elements) {
// free all elements to prevent leak
TRI_index_element_t::freeElement(it);
}
return res;
}
// attempt the removal for skiplist indexes
// ownership for the index element is transferred to the index
size_t const count = elements.size();
for (size_t i = 0; i < count; ++i) {
int result = _skiplistIndex->remove(elements[i]);
// we may be looping through this multiple times, and if an error
// occurs, we want to keep it
if (result != TRI_ERROR_NO_ERROR) {
res = result;
}
TRI_index_element_t::freeElement(elements[i]);
}
return res;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief attempts to locate an entry in the skip list index
///
/// Note: this function will not destroy the passed slOperator before it returns
/// Warning: who ever calls this function is responsible for destroying
/// the TRI_index_operator_t* and the SkiplistIterator* results
////////////////////////////////////////////////////////////////////////////////
SkiplistIterator* SkiplistIndex::lookup(arangodb::Transaction* trx,
TRI_index_operator_t* slOperator,
bool reverse) const {
TRI_ASSERT(slOperator != nullptr);
// .........................................................................
// fill the relation operators which may be embedded in the slOperator with
// additional information. Recall the slOperator is what information was
// received from a user for query the skiplist.
// .........................................................................
int res = FillLookupOperator(slOperator, _collection);
if (res != TRI_ERROR_NO_ERROR) {
TRI_set_errno(res);
return nullptr;
}
auto results = std::make_unique<SkiplistIterator>(this, reverse);
results->findHelper(slOperator, results->_intervals);
results->initCursor();
// Finally initialize _cursor if the result is not empty:
return results.release();
}
////////////////////////////////////////////////////////////////////////////////
/// @brief compares a key with an element in a skip list, generic callback
////////////////////////////////////////////////////////////////////////////////
int SkiplistIndex::KeyElementComparator::operator()(
TRI_skiplist_index_key_t const* leftKey,
TRI_index_element_t const* rightElement) const {
TRI_ASSERT(nullptr != leftKey);
TRI_ASSERT(nullptr != rightElement);
auto shaper =
_idx->collection()->getShaper(); // ONLY IN INDEX, PROTECTED by RUNTIME
// Note that the key might contain fewer fields than there are indexed
// attributes, therefore we only run the following loop to
// leftKey->_numFields.
for (size_t j = 0; j < leftKey->_numFields; j++) {
int compareResult =
CompareKeyElement(&leftKey->_fields[j], rightElement, j, shaper);
if (compareResult != 0) {
return compareResult;
}
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief compares two elements in a skip list, this is the generic callback
////////////////////////////////////////////////////////////////////////////////
int SkiplistIndex::ElementElementComparator::operator()(
TRI_index_element_t const* leftElement,
TRI_index_element_t const* rightElement,
arangodb::basics::SkipListCmpType cmptype) const {
TRI_ASSERT(nullptr != leftElement);
TRI_ASSERT(nullptr != rightElement);
// ..........................................................................
// The document could be the same -- so no further comparison is required.
// ..........................................................................
if (leftElement == rightElement ||
(!_idx->_skiplistIndex->isArray() &&
leftElement->document() == rightElement->document())) {
return 0;
}
auto shaper =
_idx->_collection->getShaper(); // ONLY IN INDEX, PROTECTED by RUNTIME
for (size_t j = 0; j < _idx->numPaths(); j++) {
int compareResult =
CompareElementElement(leftElement, j, rightElement, j, shaper);
if (compareResult != 0) {
return compareResult;
}
}
// ...........................................................................
// This is where the difference between the preorder and the proper total
// order comes into play. Here if the 'keys' are the same,
// but the doc ptr is different (which it is since we are here), then
// we return 0 if we use the preorder and look at the _key attribute
// otherwise.
// ...........................................................................
if (arangodb::basics::SKIPLIST_CMP_PREORDER == cmptype) {
return 0;
}
// We break this tie in the key comparison by looking at the key:
int compareResult = strcmp(
TRI_EXTRACT_MARKER_KEY(
leftElement->document()), // ONLY IN INDEX, PROTECTED by RUNTIME
TRI_EXTRACT_MARKER_KEY(
rightElement->document())); // ONLY IN INDEX, PROTECTED by RUNTIME
if (compareResult < 0) {
return -1;
} else if (compareResult > 0) {
return 1;
}
return 0;
}
bool SkiplistIndex::accessFitsIndex(
arangodb::aql::AstNode const* access, arangodb::aql::AstNode const* other,
arangodb::aql::AstNode const* op, arangodb::aql::Variable const* reference,
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>>&
found,
bool isExecution) const {
if (!this->canUseConditionPart(access, other, op, reference, isExecution)) {
return false;
}
arangodb::aql::AstNode const* what = access;
std::pair<arangodb::aql::Variable const*,
std::vector<arangodb::basics::AttributeName>> attributeData;
if (op->type != arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
if (!what->isAttributeAccessForVariable(attributeData) ||
attributeData.first != reference) {
// this access is not referencing this collection
return false;
}
if (arangodb::basics::TRI_AttributeNamesHaveExpansion(
attributeData.second)) {
// doc.value[*] == 'value'
return false;
}
if (isAttributeExpanded(attributeData.second)) {
// doc.value == 'value' (with an array index)
return false;
}
} else {
// ok, we do have an IN here... check if it's something like 'value' IN
// doc.value[*]
TRI_ASSERT(op->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN);
bool canUse = false;
if (what->isAttributeAccessForVariable(attributeData) &&
attributeData.first == reference &&
!arangodb::basics::TRI_AttributeNamesHaveExpansion(
attributeData.second) &&
attributeMatches(attributeData.second)) {
// doc.value IN 'value'
// can use this index
canUse = true;
} else {
// check for 'value' IN doc.value AND 'value' IN doc.value[*]
what = other;
if (what->isAttributeAccessForVariable(attributeData) &&
attributeData.first == reference &&
isAttributeExpanded(attributeData.second) &&
attributeMatches(attributeData.second)) {
canUse = true;
}
}
if (!canUse) {
return false;
}
}
std::vector<arangodb::basics::AttributeName> const& fieldNames =
attributeData.second;
for (size_t i = 0; i < _fields.size(); ++i) {
if (_fields[i].size() != fieldNames.size()) {
// attribute path length differs
continue;
}
if (this->isAttributeExpanded(i) &&
op->type != arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
// If this attribute is correct or not, it could only serve for IN
continue;
}
bool match = arangodb::basics::AttributeName::isIdentical(_fields[i],
fieldNames, true);
if (match) {
// mark ith attribute as being covered
auto it = found.find(i);
if (it == found.end()) {
found.emplace(i, std::vector<arangodb::aql::AstNode const*>{op});
} else {
(*it).second.emplace_back(op);
}
TRI_IF_FAILURE("SkiplistIndex::accessFitsIndex") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
return true;
}
}
return false;
}
void SkiplistIndex::matchAttributes(
arangodb::aql::AstNode const* node,
arangodb::aql::Variable const* reference,
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>>&
found,
size_t& values, bool isExecution) const {
for (size_t i = 0; i < node->numMembers(); ++i) {
auto op = node->getMember(i);
switch (op->type) {
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
TRI_ASSERT(op->numMembers() == 2);
accessFitsIndex(op->getMember(0), op->getMember(1), op, reference,
found, isExecution);
accessFitsIndex(op->getMember(1), op->getMember(0), op, reference,
found, isExecution);
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN:
if (accessFitsIndex(op->getMember(0), op->getMember(1), op, reference,
found, isExecution)) {
auto m = op->getMember(1);
if (m->isArray() && m->numMembers() > 1) {
// attr IN [ a, b, c ] => this will produce multiple items, so
// count them!
values += m->numMembers() - 1;
}
}
break;
default:
break;
}
}
}
bool SkiplistIndex::supportsFilterCondition(
arangodb::aql::AstNode const* node,
arangodb::aql::Variable const* reference, size_t itemsInIndex,
size_t& estimatedItems, double& estimatedCost) const {
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>> found;
size_t values = 0;
matchAttributes(node, reference, found, values, false);
bool lastContainsEquality = true;
size_t attributesCovered = 0;
size_t attributesCoveredByEquality = 0;
double equalityReductionFactor = 20.0;
estimatedCost = static_cast<double>(itemsInIndex);
for (size_t i = 0; i < _fields.size(); ++i) {
auto it = found.find(i);
if (it == found.end()) {
// index attribute not covered by condition
break;
}
// check if the current condition contains an equality condition
auto const& nodes = (*it).second;
bool containsEquality = false;
for (size_t j = 0; j < nodes.size(); ++j) {
if (nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ ||
nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
containsEquality = true;
break;
}
}
if (!lastContainsEquality) {
// unsupported condition. must abort
break;
}
++attributesCovered;
if (containsEquality) {
++attributesCoveredByEquality;
estimatedCost /= equalityReductionFactor;
// decrease the effect of the equality reduction factor
equalityReductionFactor *= 0.25;
if (equalityReductionFactor < 2.0) {
// equalityReductionFactor shouldn't get too low
equalityReductionFactor = 2.0;
}
} else {
// quick estimate for the potential reductions caused by the conditions
if (nodes.size() >= 2) {
// at least two (non-equality) conditions. probably a range with lower
// and upper bound defined
estimatedCost /= 7.5;
} else {
// one (non-equality). this is either a lower or a higher bound
estimatedCost /= 2.0;
}
}
lastContainsEquality = containsEquality;
}
if (values == 0) {
values = 1;
}
if (attributesCoveredByEquality == _fields.size() && unique()) {
// index is unique and condition covers all attributes by equality
if (estimatedItems >= values) {
// reduce costs due to uniqueness
estimatedItems = values;
estimatedCost = static_cast<double>(estimatedItems);
} else {
// cost is already low... now slightly prioritize the unique index
estimatedCost *= 0.995;
}
return true;
}
if (attributesCovered > 0 &&
(!_sparse || (_sparse && attributesCovered == _fields.size()))) {
// if the condition contains at least one index attribute and is not sparse,
// or the index is sparse and all attributes are covered by the condition,
// then it can be used (note: additional checks for condition parts in
// sparse indexes are contained in Index::canUseConditionPart)
estimatedItems = static_cast<size_t>((std::max)(
static_cast<size_t>(estimatedCost * values), static_cast<size_t>(1)));
estimatedCost *= static_cast<double>(values);
return true;
}
// no condition
estimatedItems = itemsInIndex;
estimatedCost = static_cast<double>(estimatedItems);
return false;
}
bool SkiplistIndex::supportsSortCondition(
arangodb::aql::SortCondition const* sortCondition,
arangodb::aql::Variable const* reference, size_t itemsInIndex,
double& estimatedCost) const {
TRI_ASSERT(sortCondition != nullptr);
if (!_sparse) {
// only non-sparse indexes can be used for sorting
if (!_useExpansion && sortCondition->isUnidirectional() &&
sortCondition->isOnlyAttributeAccess()) {
size_t const coveredAttributes =
sortCondition->coveredAttributes(reference, _fields);
if (coveredAttributes >= sortCondition->numAttributes()) {
// sort is fully covered by index. no additional sort costs!
estimatedCost = 0.0;
return true;
} else if (coveredAttributes > 0) {
estimatedCost = (itemsInIndex / coveredAttributes) *
std::log2(static_cast<double>(itemsInIndex));
return true;
}
}
}
// by default no sort conditions are supported
if (itemsInIndex > 0) {
estimatedCost = itemsInIndex * std::log2(static_cast<double>(itemsInIndex));
} else {
estimatedCost = 0.0;
}
return false;
}
IndexIterator* SkiplistIndex::iteratorForCondition(
arangodb::Transaction* trx, IndexIteratorContext* context,
arangodb::aql::Ast* ast, arangodb::aql::AstNode const* node,
arangodb::aql::Variable const* reference, bool reverse) const {
// Create the skiplistOperator for the IndexLookup
if (node == nullptr) {
// We have no condition, we just use sort
auto builder = std::make_shared<VPackBuilder>();
{
VPackArrayBuilder b(builder.get());
builder->add(VPackValue(VPackValueType::Null));
}
std::unique_ptr<TRI_index_operator_t> unboundOperator(
TRI_CreateIndexOperator(TRI_GE_INDEX_OPERATOR, nullptr, nullptr,
builder, _shaper, 1));
std::vector<TRI_index_operator_t*> searchValues({unboundOperator.get()});
unboundOperator.release();
TRI_IF_FAILURE("SkiplistIndex::noSortIterator") {
// prevent a (false-positive) memleak here
for (auto& it : searchValues) {
delete it;
}
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
return new SkiplistIndexIterator(trx, this, searchValues, reverse);
}
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>> found;
size_t unused = 0;
matchAttributes(node, reference, found, unused, true);
// found contains all attributes that are relevant for this node.
// It might be less than fields().
//
// Handle the first attributes. They can only be == or IN and only
// one node per attribute
auto getValueAccess = [&](arangodb::aql::AstNode const* comp,
arangodb::aql::AstNode const*& access,
arangodb::aql::AstNode const*& value) -> bool {
access = comp->getMember(0);
value = comp->getMember(1);
std::pair<arangodb::aql::Variable const*,
std::vector<arangodb::basics::AttributeName>> paramPair;
if (!(access->isAttributeAccessForVariable(paramPair) &&
paramPair.first == reference)) {
access = comp->getMember(1);
value = comp->getMember(0);
if (!(access->isAttributeAccessForVariable(paramPair) &&
paramPair.first == reference)) {
// Both side do not have a correct AttributeAccess, this should not
// happen and indicates
// an error in the optimizer
TRI_ASSERT(false);
}
return true;
}
return false;
};
// initialize permutations
std::vector<PermutationState> permutationStates;
permutationStates.reserve(_fields.size());
size_t maxPermutations = 1;
size_t usedFields = 0;
for (; usedFields < _fields.size(); ++usedFields) {
// We are in the equality range, we only allow one == or IN node per
// attribute
auto it = found.find(usedFields);
if (it == found.end() || it->second.size() != 1) {
// We are either done,
// or this is a range.
// Continue with more complicated loop
break;
}
auto comp = it->second[0];
TRI_ASSERT(comp->numMembers() == 2);
arangodb::aql::AstNode const* access = nullptr;
arangodb::aql::AstNode const* value = nullptr;
getValueAccess(comp, access, value);
// We found an access for this field
if (comp->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ) {
// This is an equalityCheck, we can continue with the next field
permutationStates.emplace_back(
PermutationState(comp->type, value, usedFields, 1));
TRI_IF_FAILURE("SkiplistIndex::permutationEQ") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
} else if (comp->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
if (isAttributeExpanded(usedFields)) {
permutationStates.emplace_back(PermutationState(
aql::NODE_TYPE_OPERATOR_BINARY_EQ, value, usedFields, 1));
TRI_IF_FAILURE("SkiplistIndex::permutationArrayIN") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
} else {
if (value->numMembers() == 0) {
return nullptr;
}
permutationStates.emplace_back(PermutationState(
comp->type, value, usedFields, value->numMembers()));
TRI_IF_FAILURE("SkiplistIndex::permutationIN") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
maxPermutations *= value->numMembers();
}
} else {
// This is a one-sided range
break;
}
}
// Now handle the next element, which might be a range
bool includeLower = false;
bool includeUpper = false;
auto lower = std::make_shared<VPackBuilder>();
auto upper = std::make_shared<VPackBuilder>();
if (usedFields < _fields.size()) {
auto it = found.find(usedFields);
if (it != found.end()) {
auto rangeConditions = it->second;
TRI_ASSERT(rangeConditions.size() <= 2);
for (auto& comp : rangeConditions) {
TRI_ASSERT(comp->numMembers() == 2);
arangodb::aql::AstNode const* access = nullptr;
arangodb::aql::AstNode const* value = nullptr;
bool isReverseOrder = getValueAccess(comp, access, value);
auto setBorder = [&](bool isLower, bool includeBound) -> void {
if (isLower == isReverseOrder) {
// We set an upper bound
TRI_ASSERT(upper->isEmpty());
upper = value->toVelocyPackValue();
includeUpper = includeBound;
} else {
// We set an lower bound
TRI_ASSERT(lower->isEmpty());
lower = value->toVelocyPackValue();
includeLower = includeBound;
}
};
// This is not an equalityCheck, set lower or upper
switch (comp->type) {
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
setBorder(false, false);
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
setBorder(false, true);
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
setBorder(true, false);
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
setBorder(true, true);
break;
default:
// unsupported right now. Should have been rejected by
// supportsFilterCondition
TRI_ASSERT(false);
return nullptr;
}
}
}
}
std::vector<TRI_index_operator_t*> searchValues;
searchValues.reserve(maxPermutations);
VPackSlice emptySlice;
try {
if (usedFields == 0) {
// We have a range query based on the first _field
std::unique_ptr<TRI_index_operator_t> op(
buildRangeOperator(lower->slice(), includeLower, upper->slice(),
includeUpper, emptySlice, _shaper));
if (op != nullptr) {
searchValues.emplace_back(op.get());
op.release();
TRI_IF_FAILURE("SkiplistIndex::onlyRangeOperator") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
}
} else {
bool done = false;
// create all permutations
while (!done) {
auto parameter = std::make_shared<VPackBuilder>();
bool valid = true;
try {
VPackArrayBuilder b(parameter.get());
for (size_t i = 0; i < usedFields; ++i) {
TRI_ASSERT(i < permutationStates.size());
auto& state = permutationStates[i];
std::shared_ptr<VPackBuilder> valueBuilder =
state.getValue()->toVelocyPackValue();
VPackSlice const value = valueBuilder->slice();
if (value.isNone()) {
valid = false;
break;
}
parameter->add(value);
}
} catch (...) {
// Out of Memory
return nullptr;
}
if (valid) {
std::unique_ptr<TRI_index_operator_t> tmpOp(
TRI_CreateIndexOperator(TRI_EQ_INDEX_OPERATOR, nullptr, nullptr,
parameter, _shaper, usedFields));
// Note we create a new RangeOperator always.
std::unique_ptr<TRI_index_operator_t> rangeOperator(
buildRangeOperator(lower->slice(), includeLower, upper->slice(),
includeUpper, parameter->slice(), _shaper));
if (rangeOperator != nullptr) {
std::unique_ptr<TRI_index_operator_t> combinedOp(
TRI_CreateIndexOperator(
TRI_AND_INDEX_OPERATOR, tmpOp.get(), rangeOperator.get(),
std::make_shared<VPackBuilder>(), _shaper, 2));
rangeOperator.release();
tmpOp.release();
searchValues.emplace_back(combinedOp.get());
combinedOp.release();
TRI_IF_FAILURE("SkiplistIndex::rangeOperatorNoTmp") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
} else {
if (tmpOp != nullptr) {
searchValues.emplace_back(tmpOp.get());
tmpOp.release();
TRI_IF_FAILURE("SkiplistIndex::rangeOperatorTmp") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
}
}
}
size_t const np = permutationStates.size() - 1;
size_t current = 0;
// now permute
while (true) {
if (++permutationStates[np - current].current <
permutationStates[np - current].n) {
current = 0; // note: resetting the variable has no effect here
// abort inner iteration
break;
}
permutationStates[np - current].current = 0;
if (++current >= usedFields) {
done = true;
break;
}
// next inner iteration
}
}
}
if (searchValues.empty()) {
return nullptr;
}
if (reverse) {
std::reverse(searchValues.begin(), searchValues.end());
}
TRI_IF_FAILURE("SkiplistIndex::noIterator") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
} catch (...) {
// prevent memleak here
for (auto& it : searchValues) {
delete it;
}
throw;
}
TRI_IF_FAILURE("SkiplistIndex::noIterator") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
return new SkiplistIndexIterator(trx, this, searchValues, reverse);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief specializes the condition for use with the index
////////////////////////////////////////////////////////////////////////////////
arangodb::aql::AstNode* SkiplistIndex::specializeCondition(
arangodb::aql::AstNode* node,
arangodb::aql::Variable const* reference) const {
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>> found;
size_t values = 0;
matchAttributes(node, reference, found, values, false);
std::vector<arangodb::aql::AstNode const*> children;
bool lastContainsEquality = true;
for (size_t i = 0; i < _fields.size(); ++i) {
auto it = found.find(i);
if (it == found.end()) {
// index attribute not covered by condition
break;
}
// check if the current condition contains an equality condition
auto& nodes = (*it).second;
bool containsEquality = false;
for (size_t j = 0; j < nodes.size(); ++j) {
if (nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ ||
nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
containsEquality = true;
break;
}
}
if (!lastContainsEquality) {
// unsupported condition. must abort
break;
}
std::sort(
nodes.begin(), nodes.end(),
[](arangodb::aql::AstNode const* lhs, arangodb::aql::AstNode const* rhs)
-> bool { return sortWeight(lhs) < sortWeight(rhs); });
lastContainsEquality = containsEquality;
std::unordered_set<int> operatorsFound;
for (auto& it : nodes) {
// do not less duplicate or related operators pass
if (isDuplicateOperator(it, operatorsFound)) {
continue;
}
operatorsFound.emplace(static_cast<int>(it->type));
children.emplace_back(it);
}
}
while (node->numMembers() > 0) {
node->removeMemberUnchecked(0);
}
for (auto& it : children) {
node->addMember(it);
}
return node;
}
bool SkiplistIndex::isDuplicateOperator(
arangodb::aql::AstNode const* node,
std::unordered_set<int> const& operatorsFound) const {
auto type = node->type;
if (operatorsFound.find(static_cast<int>(type)) != operatorsFound.end()) {
// duplicate operator
return true;
}
if (operatorsFound.find(
static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ)) !=
operatorsFound.end() ||
operatorsFound.find(
static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN)) !=
operatorsFound.end()) {
return true;
}
bool duplicate = false;
switch (type) {
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ)) !=
operatorsFound.end();
break;
default: {
// ignore
}
}
return duplicate;
}