1
0
Fork 0
arangodb/lib/Basics/RandomGenerator.cpp

637 lines
17 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Dr. Frank Celler
////////////////////////////////////////////////////////////////////////////////
#include "RandomGenerator.h"
#include "Basics/Logger.h"
#include "Basics/Exceptions.h"
#include "Basics/Mutex.h"
#include "Basics/MutexLocker.h"
#include "Basics/Thread.h"
#include <random>
#include <chrono>
using namespace arangodb;
using namespace arangodb::basics;
// -----------------------------------------------------------------------------
// random helper functions
// -----------------------------------------------------------------------------
namespace {
////////////////////////////////////////////////////////////////////////////////
/// @brief random version
////////////////////////////////////////////////////////////////////////////////
Random::random_e random_version = Random::RAND_MERSENNE;
////////////////////////////////////////////////////////////////////////////////
/// @brief random lock
////////////////////////////////////////////////////////////////////////////////
Mutex RandomLock;
}
// -----------------------------------------------------------------------------
// random device
// -----------------------------------------------------------------------------
namespace RandomHelper {
class RandomDevice {
public:
virtual ~RandomDevice() {}
virtual uint32_t random() = 0;
static unsigned long getSeed() {
unsigned long seed = (unsigned long)time(0);
struct timeval tv;
int result = gettimeofday(&tv, 0);
seed ^= static_cast<unsigned long>(tv.tv_sec);
seed ^= static_cast<unsigned long>(tv.tv_usec);
seed ^= static_cast<unsigned long>(result);
seed ^= static_cast<unsigned long>(Thread::currentProcessId());
return seed;
};
};
template <int N>
class RandomDeviceDirect : public RandomDevice {
public:
explicit RandomDeviceDirect(std::string const& path) : fd(-1), pos(0) {
fd = TRI_OPEN(path.c_str(), O_RDONLY | TRI_O_CLOEXEC);
if (fd < 0) {
std::string message("cannot open random source '" + path + "'");
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL, message);
}
fillBuffer();
}
~RandomDeviceDirect() {
if (fd >= 0) {
TRI_CLOSE(fd);
}
}
uint32_t random() {
if (pos >= N) {
fillBuffer();
}
return buffer[pos++];
}
private:
void fillBuffer() {
size_t n = sizeof(buffer);
char* ptr = reinterpret_cast<char*>(&buffer);
while (0 < n) {
ssize_t r = TRI_READ(fd, ptr, (TRI_read_t)n);
if (r == 0) {
LOG(FATAL) << "read on random device failed: nothing read"; FATAL_ERROR_EXIT();
} else if (r < 0) {
LOG(FATAL) << "read on random device failed: " << strerror(errno); FATAL_ERROR_EXIT();
}
ptr += r;
n -= r;
}
pos = 0;
}
private:
int fd;
uint32_t buffer[N];
size_t pos;
};
template <int N>
class RandomDeviceCombined : public RandomDevice {
public:
explicit RandomDeviceCombined(std::string const& path)
: fd(-1), pos(0), rseed(0) {
fd = TRI_OPEN(path.c_str(), O_RDONLY | TRI_O_CLOEXEC);
if (fd < 0) {
std::string message("cannot open random source '" + path + "'");
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL, message);
}
// ..............................................................................
// Set the random number generator file to be non-blocking (not for windows)
// ..............................................................................
{
#ifdef _WIN32
std::abort();
#else
long flags = fcntl(fd, F_GETFL, 0);
bool ok = (flags >= 0);
if (ok) {
flags = fcntl(fd, F_SETFL, flags | O_NONBLOCK);
ok = (flags >= 0);
}
if (!ok) {
std::string message("cannot switch random source '" + path +
"' to non-blocking");
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL, message);
}
#endif
}
fillBuffer();
}
~RandomDeviceCombined() {
if (fd >= 0) {
TRI_CLOSE(fd);
}
}
uint32_t random() {
if (pos >= N) {
fillBuffer();
}
return buffer[pos++];
}
private:
void fillBuffer() {
size_t n = sizeof(buffer);
char* ptr = reinterpret_cast<char*>(&buffer);
while (0 < n) {
ssize_t r = TRI_READ(fd, ptr, (TRI_read_t)n);
if (r == 0) {
LOG(FATAL) << "read on random device failed: nothing read"; FATAL_ERROR_EXIT();
} else if (errno == EWOULDBLOCK || errno == EAGAIN) {
LOG(INFO) << "not enough entropy (got " << (sizeof(buffer) - n) << "), switching to pseudo-random";
break;
} else if (r < 0) {
LOG(FATAL) << "read on random device failed: " << strerror(errno); FATAL_ERROR_EXIT();
}
ptr += r;
n -= r;
rseed = buffer[0];
LOG(TRACE) << "using seed " << (long unsigned int)rseed;
}
if (0 < n) {
std::mt19937 engine;
unsigned long seed = RandomDevice::getSeed();
engine.seed((uint32_t)(rseed ^ (uint32_t)seed));
while (0 < n) {
*ptr++ = engine();
--n;
}
}
pos = 0;
}
private:
int fd;
uint32_t buffer[N];
size_t pos;
uint32_t rseed;
};
template <int N>
class RandomDeviceWin32 : public RandomDevice {
#ifndef _WIN32
public:
RandomDeviceWin32() { TRI_ASSERT(false); }
~RandomDeviceWin32() {}
uint32_t random() { return 0; }
#else
public:
RandomDeviceWin32() : cryptoHandle(0), pos(0) {
BOOL result;
result = CryptAcquireContext(&cryptoHandle, nullptr, nullptr, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT | CRYPT_SILENT);
if (cryptoHandle == 0 || result == FALSE) {
std::string message("cannot create cryptographic windows handle");
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL, message);
}
fillBuffer();
}
~RandomDeviceWin32() {
if (cryptoHandle != 0) {
CryptReleaseContext(cryptoHandle, 0);
}
}
uint32_t random() {
if (pos >= N) {
fillBuffer();
}
return buffer[pos++];
}
private:
void fillBuffer() {
DWORD n = sizeof(buffer);
BYTE* ptr = reinterpret_cast<BYTE*>(&buffer);
// fill the buffer with random characters
int result = CryptGenRandom(cryptoHandle, n, ptr);
if (result == 0) {
LOG(FATAL) << "read on random device failed: nothing read"; FATAL_ERROR_EXIT();
}
pos = 0;
}
private:
HCRYPTPROV cryptoHandle;
uint32_t buffer[N];
size_t pos;
#endif
};
std::unique_ptr<RandomDevice> randomDevice;
std::unique_ptr<RandomDevice> urandomDevice;
std::unique_ptr<RandomDevice> combinedDevice;
std::unique_ptr<RandomDevice> win32Device;
}
// -----------------------------------------------------------------------------
// uniform generator
// -----------------------------------------------------------------------------
namespace RandomHelper {
class UniformGenerator {
private:
UniformGenerator(UniformGenerator const&);
UniformGenerator& operator=(UniformGenerator const&);
public:
explicit UniformGenerator(RandomDevice* device) : device(device) {}
virtual ~UniformGenerator() {}
int32_t random(int32_t left, int32_t right) {
if (left >= right) {
return left;
}
if (left == INT32_MIN && right == INT32_MAX) {
return static_cast<int32_t>(device->random());
}
uint32_t range = static_cast<uint32_t>(right - left + 1);
switch (range) {
case 0x00000002:
return power2(left, 0x00000002 - 1);
case 0x00000004:
return power2(left, 0x00000004 - 1);
case 0x00000008:
return power2(left, 0x00000008 - 1);
case 0x00000010:
return power2(left, 0x00000010 - 1);
case 0x00000020:
return power2(left, 0x00000020 - 1);
case 0x00000040:
return power2(left, 0x00000040 - 1);
case 0x00000080:
return power2(left, 0x00000080 - 1);
case 0x00000100:
return power2(left, 0x00000100 - 1);
case 0x00000200:
return power2(left, 0x00000200 - 1);
case 0x00000400:
return power2(left, 0x00000400 - 1);
case 0x00000800:
return power2(left, 0x00000800 - 1);
case 0x00001000:
return power2(left, 0x00001000 - 1);
case 0x00002000:
return power2(left, 0x00002000 - 1);
case 0x00004000:
return power2(left, 0x00004000 - 1);
case 0x00008000:
return power2(left, 0x00008000 - 1);
case 0x00010000:
return power2(left, 0x00010000 - 1);
case 0x00020000:
return power2(left, 0x00020000 - 1);
case 0x00040000:
return power2(left, 0x00040000 - 1);
case 0x00080000:
return power2(left, 0x00080000 - 1);
case 0x00100000:
return power2(left, 0x00100000 - 1);
case 0x00200000:
return power2(left, 0x00200000 - 1);
case 0x00400000:
return power2(left, 0x00400000 - 1);
case 0x00800000:
return power2(left, 0x00800000 - 1);
case 0x01000000:
return power2(left, 0x01000000 - 1);
case 0x02000000:
return power2(left, 0x02000000 - 1);
case 0x04000000:
return power2(left, 0x04000000 - 1);
case 0x08000000:
return power2(left, 0x08000000 - 1);
case 0x10000000:
return power2(left, 0x10000000 - 1);
case 0x20000000:
return power2(left, 0x20000000 - 1);
case 0x40000000:
return power2(left, 0x40000000 - 1);
case 0x80000000:
return power2(left, 0x80000000 - 1);
}
return other(left, range);
}
private:
int32_t power2(int32_t left, uint32_t mask) {
return left + static_cast<int32_t>(device->random() & mask);
}
int32_t other(int32_t left, uint32_t range) {
uint32_t g = UINT32_MAX - UINT32_MAX % range;
uint32_t r = device->random();
int count = 0;
static int const MAX_COUNT = 20;
TRI_ASSERT(g > 0);
while (r >= g) {
if (++count >= MAX_COUNT) {
LOG(ERR) << "cannot generate small random number after " << count << " tries";
r %= g;
continue;
}
LOG(DEBUG) << "random number too large, trying again";
r = device->random();
}
r %= range;
return left + static_cast<int32_t>(r);
}
private:
RandomDevice* device;
};
}
// -----------------------------------------------------------------------------
// random helper class
// -----------------------------------------------------------------------------
namespace arangodb {
namespace basics {
namespace Random {
// -----------------------------------------------------------------------------
// implementation
// -----------------------------------------------------------------------------
struct UniformIntegerImpl {
virtual ~UniformIntegerImpl() {}
virtual int32_t random(int32_t left, int32_t right) = 0;
};
// MERSENNE
struct UniformIntegerMersenne : public UniformIntegerImpl {
UniformIntegerMersenne()
: engine(static_cast<unsigned int>(
std::chrono::system_clock::now().time_since_epoch().count())) {}
int32_t random(int32_t left, int32_t right) {
int64_t const range = (int64_t)right - (int64_t)left + 1LL;
TRI_ASSERT(range > 0);
uint32_t result = engine();
result = (int32_t)(std::abs((int64_t)result % range) + (int64_t)left);
return result;
}
std::mt19937 engine;
};
// RANDOM DEVICE
struct UniformIntegerRandom : public UniformIntegerImpl,
private RandomHelper::UniformGenerator {
explicit UniformIntegerRandom(RandomHelper::RandomDevice* device)
: RandomHelper::UniformGenerator(device) {}
int32_t random(int32_t left, int32_t right) {
return RandomHelper::UniformGenerator::random(left, right);
}
};
// RANDOM DEVICE
struct UniformIntegerWin32 : public UniformIntegerImpl,
private RandomHelper::UniformGenerator {
explicit UniformIntegerWin32(RandomHelper::RandomDevice* device)
: RandomHelper::UniformGenerator(device) {}
int32_t random(int32_t left, int32_t right) {
return RandomHelper::UniformGenerator::random(left, right);
}
};
// current implementation (see version at the top of the file)
std::unique_ptr<UniformIntegerImpl> uniformInteger(new UniformIntegerMersenne);
// -----------------------------------------------------------------------------
// uniform integer generator
// -----------------------------------------------------------------------------
int32_t UniformInteger::random() {
MUTEX_LOCKER(mutexLocker, RandomLock);
if (uniformInteger == nullptr) {
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL,
"unknown random generator");
}
return uniformInteger->random(left, right);
}
// -----------------------------------------------------------------------------
// uniform character generator
// -----------------------------------------------------------------------------
UniformCharacter::UniformCharacter(size_t length)
: length(length),
characters(
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"),
generator(0, (int32_t)characters.size() - 1) {}
UniformCharacter::UniformCharacter(std::string const& characters)
: length(1),
characters(characters),
generator(0, (int32_t)characters.size() - 1) {}
UniformCharacter::UniformCharacter(size_t length, std::string const& characters)
: length(length),
characters(characters),
generator(0, (int32_t)characters.size() - 1) {}
std::string UniformCharacter::random() { return random(length); }
std::string UniformCharacter::random(size_t length) {
std::string buffer;
buffer.reserve(length);
for (size_t i = 0; i < length; ++i) {
size_t r = generator.random();
buffer.push_back(characters[r]);
}
return buffer;
}
// -----------------------------------------------------------------------------
// public methods
// -----------------------------------------------------------------------------
random_e selectVersion(random_e newVersion) {
MUTEX_LOCKER(mutexLocker, RandomLock);
random_e oldVersion = random_version;
random_version = newVersion;
switch (random_version) {
case RAND_MERSENNE: {
uniformInteger.reset(new UniformIntegerMersenne);
break;
}
case RAND_RANDOM: {
if (RandomHelper::randomDevice == nullptr) {
RandomHelper::randomDevice.reset(
new RandomHelper::RandomDeviceDirect<1024>("/dev/random"));
}
uniformInteger.reset(
new UniformIntegerRandom(RandomHelper::randomDevice.get()));
break;
}
case RAND_URANDOM: {
if (RandomHelper::urandomDevice == nullptr) {
RandomHelper::urandomDevice.reset(
new RandomHelper::RandomDeviceDirect<1024>("/dev/urandom"));
}
uniformInteger.reset(
new UniformIntegerRandom(RandomHelper::urandomDevice.get()));
break;
}
case RAND_COMBINED: {
if (RandomHelper::combinedDevice == nullptr) {
RandomHelper::combinedDevice.reset(
new RandomHelper::RandomDeviceCombined<600>("/dev/random"));
}
uniformInteger.reset(
new UniformIntegerRandom(RandomHelper::combinedDevice.get()));
break;
}
case RAND_WIN32: {
if (RandomHelper::win32Device == nullptr) {
RandomHelper::win32Device.reset(
new RandomHelper::RandomDeviceWin32<1024>());
}
uniformInteger.reset(
new UniformIntegerWin32(RandomHelper::win32Device.get()));
break;
}
default: {
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL,
"unknown random generator");
}
}
return oldVersion;
}
random_e currentVersion() { return random_version; }
void shutdown() {}
bool isBlocking() { return random_version == RAND_RANDOM; }
int32_t interval(int32_t left, int32_t right) {
MUTEX_LOCKER(mutexLocker, RandomLock);
if (uniformInteger == nullptr) {
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL,
"unknown random generator");
}
return uniformInteger->random(left, right);
}
uint32_t interval(uint32_t left, uint32_t right) {
MUTEX_LOCKER(mutexLocker, RandomLock);
if (uniformInteger == nullptr) {
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL,
"unknown random generator");
}
int32_t l = left + INT32_MIN;
int32_t r = right + INT32_MIN;
return uniformInteger->random(l, r) - INT32_MIN;
}
}
}
}