1
0
Fork 0
arangodb/arangod/RocksDBEngine/RocksDBGeoIndex.cpp

519 lines
18 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2017 ArangoDB GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Simon Grätzer
////////////////////////////////////////////////////////////////////////////////
#include "RocksDBGeoIndex.h"
#include "Aql/Ast.h"
#include "Aql/AstNode.h"
#include "Aql/Function.h"
#include "Aql/SortCondition.h"
#include "Basics/StringRef.h"
#include "Basics/VelocyPackHelper.h"
#include "GeoIndex/Near.h"
#include "Indexes/IndexResult.h"
#include "Logger/Logger.h"
#include "RocksDBEngine/RocksDBCommon.h"
#include "RocksDBEngine/RocksDBMethods.h"
#include "VocBase/LogicalCollection.h"
#include "VocBase/ManagedDocumentResult.h"
#include <rocksdb/db.h>
#include <velocypack/Iterator.h>
#include <velocypack/velocypack-aliases.h>
using namespace arangodb;
template <typename CMP = geo_index::DocumentsAscending>
class RDBNearIterator final : public IndexIterator {
public:
/// @brief Construct an RocksDBGeoIndexIterator based on Ast Conditions
RDBNearIterator(LogicalCollection* collection, transaction::Methods* trx,
ManagedDocumentResult* mmdr, RocksDBGeoIndex const* index,
geo::QueryParams&& params)
: IndexIterator(collection, trx, index),
_index(index),
_mmdr(mmdr),
_near(std::move(params)) {
RocksDBMethods* mthds = RocksDBTransactionState::toMethods(trx);
rocksdb::ReadOptions options = mthds->readOptions();
TRI_ASSERT(options.prefix_same_as_start);
_iter = mthds->NewIterator(options, _index->columnFamily());
TRI_ASSERT(_index->columnFamily()->GetID() ==
RocksDBColumnFamily::geo()->GetID());
if (!params.fullRange) {
estimateDensity();
}
}
char const* typeName() const override {
return "geo-index-iterator";
}
/// internal retrieval loop
inline bool nextToken(std::function<bool(geo_index::Document const&)>&& cb,
size_t limit) {
if (_near.isDone()) {
// we already know that no further results will be returned by the index
TRI_ASSERT(!_near.hasNearest());
return false;
}
while (limit > 0 && !_near.isDone()) {
while (limit > 0 && _near.hasNearest()) {
if (cb(_near.nearest())) {
limit--;
}
_near.popNearest();
}
// need to fetch more geo results
if (limit > 0 && !_near.isDone()) {
TRI_ASSERT(!_near.hasNearest());
performScan();
}
}
return !_near.isDone();
}
bool nextDocument(DocumentCallback const& cb, size_t limit) override {
return nextToken(
[this, &cb](geo_index::Document const& gdoc) -> bool {
if (!_collection->readDocument(_trx, gdoc.token, *_mmdr)) {
return false;
}
VPackSlice doc(_mmdr->vpack());
geo::FilterType const ft = _near.filterType();
if (ft != geo::FilterType::NONE) { // expensive test
geo::ShapeContainer const& filter = _near.filterShape();
TRI_ASSERT(filter.type() != geo::ShapeContainer::Type::EMPTY);
geo::ShapeContainer test;
Result res = _index->shape(doc, test);
TRI_ASSERT(res.ok()); // this should never fail here
if (res.fail() ||
(ft == geo::FilterType::CONTAINS && !filter.contains(&test)) ||
(ft == geo::FilterType::INTERSECTS &&
!filter.intersects(&test))) {
return false;
}
}
cb(gdoc.token, doc); // return result
return true;
},
limit);
}
bool next(LocalDocumentIdCallback const& cb, size_t limit) override {
return nextToken(
[this, &cb](geo_index::Document const& gdoc) -> bool {
geo::FilterType const ft = _near.filterType();
if (ft != geo::FilterType::NONE) {
geo::ShapeContainer const& filter = _near.filterShape();
TRI_ASSERT(!filter.empty());
if (!_collection->readDocument(_trx, gdoc.token, *_mmdr)) {
return false;
}
geo::ShapeContainer test;
Result res = _index->shape(VPackSlice(_mmdr->vpack()), test);
TRI_ASSERT(res.ok()); // this should never fail here
if (res.fail() ||
(ft == geo::FilterType::CONTAINS && !filter.contains(&test)) ||
(ft == geo::FilterType::INTERSECTS &&
!filter.intersects(&test))) {
return false;
}
}
cb(gdoc.token); // return result
return true;
},
limit);
}
void reset() override { _near.reset(); }
private:
// we need to get intervals representing areas in a ring (annulus)
// around our target point. We need to fetch them ALL and then sort
// found results in a priority list according to their distance
void performScan() {
rocksdb::Comparator const* cmp = _index->comparator();
// list of sorted intervals to scan
std::vector<geo::Interval> const scan = _near.intervals();
// LOG_TOPIC(INFO, Logger::FIXME) << "# intervals: " << scan.size();
// size_t seeks = 0;
for (size_t i = 0; i < scan.size(); i++) {
geo::Interval const& it = scan[i];
TRI_ASSERT(it.min <= it.max);
RocksDBKeyBounds bds = RocksDBKeyBounds::GeoIndex(
_index->objectId(), it.min.id(), it.max.id());
// intervals are sorted and likely consecutive, try to avoid seeks
// by checking whether we are in the range already
bool seek = true;
if (i > 0) {
TRI_ASSERT(scan[i - 1].max < it.min);
if (!_iter->Valid()) { // no more valid keys after this
break;
} else if (cmp->Compare(_iter->key(), bds.end()) > 0) {
continue; // beyond range already
} else if (cmp->Compare(bds.start(), _iter->key()) <= 0) {
seek = false; // already in range: min <= key <= max
TRI_ASSERT(cmp->Compare(_iter->key(), bds.end()) <= 0);
} else { // cursor is positioned below min range key
TRI_ASSERT(cmp->Compare(_iter->key(), bds.start()) < 0);
int k = 10; // try to catch the range
while (k > 0 && _iter->Valid() &&
cmp->Compare(_iter->key(), bds.start()) < 0) {
_iter->Next();
--k;
}
seek = !_iter->Valid() || (cmp->Compare(_iter->key(), bds.start()) < 0);
}
}
if (seek) { // try to avoid seeking at all cost
// LOG_TOPIC(INFO, Logger::FIXME) << "[Scan] seeking:" << it.min;
// seeks++;
_iter->Seek(bds.start());
}
while (_iter->Valid() && cmp->Compare(_iter->key(), bds.end()) <= 0) {
LocalDocumentId documentId = RocksDBKey::documentId(
RocksDBEntryType::GeoIndexValue, _iter->key());
_near.reportFound(documentId, RocksDBValue::centroid(_iter->value()));
_iter->Next();
}
}
_near.didScanIntervals(); // calculate next bounds
// LOG_TOPIC(INFO, Logger::FIXME) << "# seeks: " << seeks;
}
/// find the first indexed entry to estimate the # of entries
/// around our target coordinates
void estimateDensity() {
S2CellId cell = S2CellId(_near.origin());
RocksDBKeyLeaser key(_trx);
key->constructGeoIndexValue(_index->objectId(), cell.id(), LocalDocumentId(1));
_iter->Seek(key->string());
if (!_iter->Valid()) {
_iter->SeekForPrev(key->string());
}
if (_iter->Valid()) {
_near.estimateDensity(RocksDBValue::centroid(_iter->value()));
}
}
private:
RocksDBGeoIndex const* _index;
ManagedDocumentResult* _mmdr;
geo_index::NearUtils<CMP> _near;
std::unique_ptr<rocksdb::Iterator> _iter;
};
typedef RDBNearIterator<geo_index::DocumentsAscending> LegacyIterator;
RocksDBGeoIndex::RocksDBGeoIndex(TRI_idx_iid_t iid,
LogicalCollection* collection,
VPackSlice const& info,
std::string const& typeName)
: RocksDBIndex(iid, collection, info, RocksDBColumnFamily::geo(), false),
geo_index::Index(info, _fields),
_typeName(typeName) {
TRI_ASSERT(iid != 0);
_unique = false;
_sparse = true;
TRI_ASSERT(_variant != geo_index::Index::Variant::NONE);
}
/// @brief return a JSON representation of the index
void RocksDBGeoIndex::toVelocyPack(VPackBuilder& builder, bool withFigures,
bool forPersistence) const {
TRI_ASSERT(_variant != geo_index::Index::Variant::NONE);
builder.openObject();
RocksDBIndex::toVelocyPack(builder, withFigures, forPersistence);
_coverParams.toVelocyPack(builder);
builder.add("geoJson",
VPackValue(_variant == geo_index::Index::Variant::GEOJSON));
// geo indexes are always non-unique
builder.add(
arangodb::StaticStrings::IndexUnique,
arangodb::velocypack::Value(false)
);
// geo indexes are always sparse.
builder.add(
arangodb::StaticStrings::IndexSparse,
arangodb::velocypack::Value(true)
);
builder.close();
}
/// @brief Test if this index matches the definition
bool RocksDBGeoIndex::matchesDefinition(VPackSlice const& info) const {
TRI_ASSERT(_variant != geo_index::Index::Variant::NONE);
TRI_ASSERT(info.isObject());
#ifdef ARANGODB_ENABLE_MAINTAINER_MODE
auto typeSlice = info.get(arangodb::StaticStrings::IndexType);
TRI_ASSERT(typeSlice.isString());
StringRef typeStr(typeSlice);
TRI_ASSERT(typeStr == oldtypeName());
#endif
auto value = info.get(arangodb::StaticStrings::IndexId);
if (!value.isNone()) {
// We already have an id.
if (!value.isString()) {
// Invalid ID
return false;
}
// Short circuit. If id is correct the index is identical.
StringRef idRef(value);
return idRef == std::to_string(_iid);
}
if (_unique != basics::VelocyPackHelper::getBooleanValue(
info, arangodb::StaticStrings::IndexUnique.c_str(), false
)
) {
return false;
}
if (_sparse != basics::VelocyPackHelper::getBooleanValue(
info, arangodb::StaticStrings::IndexSparse.c_str(), true
)
) {
return false;
}
value = info.get(arangodb::StaticStrings::IndexFields);
if (!value.isArray()) {
return false;
}
size_t const n = static_cast<size_t>(value.length());
if (n != _fields.size()) {
return false;
}
if (n == 1) {
bool gj1 =
basics::VelocyPackHelper::getBooleanValue(info, "geoJson", false);
bool gj2 = _variant == geo_index::Index::Variant::GEOJSON;
if (gj1 != gj2) {
return false;
}
}
// This check takes ordering of attributes into account.
std::vector<arangodb::basics::AttributeName> translate;
for (size_t i = 0; i < n; ++i) {
translate.clear();
VPackSlice f = value.at(i);
if (!f.isString()) {
// Invalid field definition!
return false;
}
arangodb::StringRef in(f);
TRI_ParseAttributeString(in, translate, true);
if (!arangodb::basics::AttributeName::isIdentical(_fields[i], translate,
false)) {
return false;
}
}
return true;
}
/// @brief creates an IndexIterator for the given Condition
IndexIterator* RocksDBGeoIndex::iteratorForCondition(
transaction::Methods* trx, ManagedDocumentResult* mmdr,
arangodb::aql::AstNode const* node,
arangodb::aql::Variable const* reference,
IndexIteratorOptions const& opts) {
TRI_ASSERT(!isSorted() || opts.sorted);
TRI_ASSERT(node != nullptr);
geo::QueryParams params;
params.sorted = opts.sorted;
params.ascending = opts.ascending;
params.pointsOnly = pointsOnly();
params.fullRange = opts.fullRange;
params.limit = opts.limit;
geo_index::Index::parseCondition(node, reference, params);
// FIXME: <Optimize away>
params.sorted = true;
if (params.filterType != geo::FilterType::NONE) {
TRI_ASSERT(!params.filterShape.empty());
params.filterShape.updateBounds(params);
}
// </Optimize away>
TRI_ASSERT(!opts.sorted || params.origin.is_valid());
// params.cover.worstIndexedLevel < _coverParams.worstIndexedLevel
// is not necessary, > would be missing entries.
params.cover.worstIndexedLevel = _coverParams.worstIndexedLevel;
if (params.cover.bestIndexedLevel > _coverParams.bestIndexedLevel) {
// it is unnessesary to use a better level than configured
params.cover.bestIndexedLevel = _coverParams.bestIndexedLevel;
}
if (params.ascending) {
return new RDBNearIterator<geo_index::DocumentsAscending>(
_collection, trx, mmdr, this, std::move(params));
} else {
return new RDBNearIterator<geo_index::DocumentsDescending>(
_collection, trx, mmdr, this, std::move(params));
}
}
/// internal insert function, set batch or trx before calling
Result RocksDBGeoIndex::insertInternal(transaction::Methods* trx,
RocksDBMethods* mthd,
LocalDocumentId const& documentId,
velocypack::Slice const& doc,
OperationMode mode) {
// covering and centroid of coordinate / polygon / ...
size_t reserve = _variant == Variant::GEOJSON ? 8 : 1;
std::vector<S2CellId> cells;
cells.reserve(reserve);
S2Point centroid;
Result res = geo_index::Index::indexCells(doc, cells, centroid);
if (res.fail()) {
// Invalid, no insert. Index is sparse
return res.is(TRI_ERROR_BAD_PARAMETER) ? IndexResult() : res;
}
TRI_ASSERT(!cells.empty());
TRI_ASSERT(S2::IsUnitLength(centroid));
RocksDBValue val = RocksDBValue::S2Value(centroid);
RocksDBKeyLeaser key(trx);
// FIXME: can we rely on the region coverer to return
// the same cells everytime for the same parameters ?
for (S2CellId cell : cells) {
key->constructGeoIndexValue(_objectId, cell.id(), documentId);
Result r = mthd->Put(RocksDBColumnFamily::geo(), key.ref(), val.string());
if (r.fail()) {
return r;
}
}
return IndexResult();
}
/// internal remove function, set batch or trx before calling
Result RocksDBGeoIndex::removeInternal(transaction::Methods* trx,
RocksDBMethods* mthd,
LocalDocumentId const& documentId,
VPackSlice const& doc,
OperationMode mode) {
// covering and centroid of coordinate / polygon / ...
std::vector<S2CellId> cells;
S2Point centroid;
Result res = geo_index::Index::indexCells(doc, cells, centroid);
if (res.fail()) { // might occur if insert is rolled back
// Invalid, no insert. Index is sparse
return res.is(TRI_ERROR_BAD_PARAMETER) ? IndexResult() : res;
}
TRI_ASSERT(!cells.empty());
RocksDBKeyLeaser key(trx);
// FIXME: can we rely on the region coverer to return
// the same cells everytime for the same parameters ?
for (S2CellId cell : cells) {
key->constructGeoIndexValue(_objectId, cell.id(), documentId);
Result r = mthd->Delete(RocksDBColumnFamily::geo(), key.ref());
if (r.fail()) {
return r;
}
}
return IndexResult();
}
namespace {
void retrieveNear(RocksDBGeoIndex const& index, transaction::Methods* trx,
double lat, double lon, double radius, size_t count,
std::string const& attributeName, VPackBuilder& builder) {
geo::QueryParams params;
params.origin = S2LatLng::FromDegrees(lat, lon);
params.sorted = true;
if (radius > 0.0) {
params.maxDistance = radius;
params.fullRange = true;
}
params.pointsOnly = index.pointsOnly();
params.limit = count;
size_t limit = (count > 0) ? count : SIZE_MAX;
ManagedDocumentResult mmdr;
LogicalCollection* collection = index.collection();
LegacyIterator iter(collection, trx, &mmdr, &index, std::move(params));
auto fetchDoc = [&](geo_index::Document gdoc) -> bool {
bool read = collection->readDocument(trx, gdoc.token, mmdr);
if (!read) {
return false;
}
VPackSlice doc(mmdr.vpack());
// add to builder results
if (!attributeName.empty()) {
double distance = gdoc.distAngle.radians() * geo::kEarthRadiusInMeters;
// We have to copy the entire document
VPackObjectBuilder docGuard(&builder);
builder.add(attributeName, VPackValue(distance));
for (auto const& entry : VPackObjectIterator(doc, true)) {
std::string key = entry.key.copyString();
if (key != attributeName) {
builder.add(key, entry.value);
}
}
} else {
mmdr.addToBuilder(builder, true);
}
return true;
};
bool more = iter.nextToken(fetchDoc, limit);
TRI_ASSERT(count > 0 || !more);
}
} // namespace
/// @brief looks up all points within a given radius
void RocksDBGeoIndex::withinQuery(transaction::Methods* trx, double lat,
double lon, double radius,
std::string const& attributeName,
VPackBuilder& builder) const {
::retrieveNear(*this, trx, lat, lon, radius, 0, attributeName, builder);
}
/// @brief looks up the nearest points
void RocksDBGeoIndex::nearQuery(transaction::Methods* trx, double lat,
double lon, size_t count,
std::string const& attributeName,
VPackBuilder& builder) const {
::retrieveNear(*this, trx, lat, lon, -1.0, count, attributeName, builder);
}