1
0
Fork 0
arangodb/arangod/Aql/TraversalBlock.cpp

607 lines
17 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// @brief Implementation of the ExecutionBlock for Traversals
///
/// @file arangod/Aql/TraversalBlock.cpp
///
/// DISCLAIMER
///
/// Copyright 2010-2014 triagens GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is triAGENS GmbH, Cologne, Germany
///
/// @author Michael Hackstein
/// @author Copyright 2014, triagens GmbH, Cologne, Germany
/// @author Copyright 2014-2015, ArangoDB GmbH, Cologne, Germany
////////////////////////////////////////////////////////////////////////////////
#include "Aql/Ast.h"
#include "Aql/ExecutionPlan.h"
#include "Aql/TraversalBlock.h"
#include "Aql/ExecutionNode.h"
#include "Utils/ShapedJsonTransformer.h"
#include "Utils/SingleCollectionReadOnlyTransaction.h"
#include <iostream> /// TODO: remove me.
using namespace std;
using namespace triagens::basics;
using namespace triagens::arango;
using namespace triagens::aql;
// -----------------------------------------------------------------------------
// --SECTION-- class TraversalBlock
// -----------------------------------------------------------------------------
TraversalBlock::TraversalBlock (ExecutionEngine* engine,
TraversalNode const* ep)
: ExecutionBlock(engine, ep),
_posInPaths(0),
_useRegister(false),
_usedConstant(false),
_vertexReg(0),
_edgeReg(0),
_pathReg(0),
_condition((ep->condition()) ? ep->condition()->root(): nullptr),
_hasV8Expression(false),
_AccessP(Json::Object, 1),
_currentJsonPath(Json::Array, 10)
{
basics::traverser::TraverserOptions opts;
ep->fillTraversalOptions(opts);
std::vector<TRI_document_collection_t*> edgeCollections;
auto cids = ep->edgeCids();
Json theCurrentJsonPath(Json::Array, 10),
_currentPath(TRI_UNKNOWN_MEM_ZONE, theCurrentJsonPath.json(), Json::NOFREE);
_AccessP = Json(Json::Object, 1)
("p", Json(Json::Object, 1)
("edges", theCurrentJsonPath)
);
for (auto const& cid : cids) {
edgeCollections.push_back(_trx->documentCollection(cid));
}
_traverser.reset(new basics::traverser::DepthFirstTraverser(edgeCollections, opts));
_resolver = new CollectionNameResolver(_trx->vocbase());
if (!ep->usesInVariable()) {
_vertexId = ep->getStartVertex();
auto pos = _vertexId.find("/");
_startId = VertexId(
_resolver->getCollectionId(_vertexId.substr(0, pos).c_str()),
_vertexId.c_str() + pos + 1
);
}
else {
auto it = ep->getRegisterPlan()->varInfo.find(ep->inVariable()->id);
TRI_ASSERT(it != ep->getRegisterPlan()->varInfo.end());
_reg = it->second.registerId;
_useRegister = true;
}
_vertexVar = nullptr;
_edgeVar = nullptr;
_pathVar = nullptr;
if (ep->usesVertexOutVariable()) {
_vertexVar = ep->vertexOutVariable();
}
if (ep->usesEdgeOutVariable()) {
_edgeVar = ep->edgeOutVariable();
}
if (ep->usesPathOutVariable()) {
_pathVar = ep->pathOutVariable();
}
_CalculationNodeId = ep->getCalculationNodeId();
/*
auto pruner = [] (const TraversalPath<TRI_doc_mptr_copy_t, VertexId>& path) -> bool {
if (strcmp(path.vertices.back().key, "1") == 0) {
return true;
}
if (strcmp(path.vertices.back().key, "31") == 0) {
return true;
}
return false;
};
opts.setPruningFunction(pruner);
*/
}
TraversalBlock::~TraversalBlock () {
delete _resolver;
freeCaches();
}
void TraversalBlock::freeCaches () {
for (auto& v : _vertices) {
v.destroy();
}
_vertices.clear();
for (auto& e : _edges) {
e.destroy();
}
_edges.clear();
for (auto& p : _paths) {
p.destroy();
}
_paths.clear();
}
int TraversalBlock::initialize () {
int res = ExecutionBlock::initialize();
auto en = static_cast<TraversalNode const*>(getPlanNode());
auto ast = en->_plan->getAst();
auto varInfo = getPlanNode()->getRegisterPlan()->varInfo;
if (usesVertexOutput()) {
auto it = varInfo.find(_vertexVar->id);
TRI_ASSERT(it != varInfo.end());
TRI_ASSERT(it->second.registerId < ExecutionNode::MaxRegisterId);
_vertexReg = it->second.registerId;
}
if (usesEdgeOutput()) {
auto it = varInfo.find(_edgeVar->id);
TRI_ASSERT(it != varInfo.end());
TRI_ASSERT(it->second.registerId < ExecutionNode::MaxRegisterId);
_edgeReg = it->second.registerId;
}
if (usesPathOutput()) {
auto it = varInfo.find(_pathVar->id);
TRI_ASSERT(it != varInfo.end());
TRI_ASSERT(it->second.registerId < ExecutionNode::MaxRegisterId);
_pathReg = it->second.registerId;
}
// instantiate expressions:
auto instantiateExpression = [&] (AstNode const* a) -> void {
// all new AstNodes are registered with the Ast in the Query
std::unique_ptr<Expression> e(new Expression(ast, a));
TRI_IF_FAILURE("TraversalBlock::initialize") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
_hasV8Expression |= e->isV8();
std::unordered_set<Variable const*> inVars;
e->variables(inVars);
std::unique_ptr<NonConstExpression> nce(new NonConstExpression(0, 0, 0, e.get()));
e.release();
_nonConstExpressions.push_back(nce.get());
nce.release();
// Prepare _inVars and _inRegs:
_inVars.emplace_back();
auto& inVarsCur = _inVars.back();
_inRegs.emplace_back();
auto& inRegsCur = _inRegs.back();
for (auto const& v : inVars) {
inVarsCur.emplace_back(v);
auto it = getPlanNode()->getRegisterPlan()->varInfo.find(v->id);
TRI_ASSERT(it != getPlanNode()->getRegisterPlan()->varInfo.end());
TRI_ASSERT(it->second.registerId < ExecutionNode::MaxRegisterId);
inRegsCur.emplace_back(it->second.registerId);
}
};
if (_condition) {
instantiateExpression(_condition);
}
return res;
}
int TraversalBlock::initializeCursor (AqlItemBlock* items,
size_t pos) {
int res = ExecutionBlock::initializeCursor(items, pos);
if (res != TRI_ERROR_NO_ERROR) {
return res;
}
return TRI_ERROR_NO_ERROR;
}
Json TraversalBlock::extractVertexJson (
VertexId const& v
) {
auto collection = _trx->trxCollection(v.cid);
if (collection == nullptr) {
SingleCollectionReadOnlyTransaction intTrx(new StandaloneTransactionContext(), _trx->vocbase(), v.cid);
int res = intTrx.begin();
if (res != TRI_ERROR_NO_ERROR) {
THROW_ARANGO_EXCEPTION(res);
}
collection = intTrx.trxCollection();
TRI_doc_mptr_copy_t mptr;
intTrx.read(&mptr, v.key);
Json tmp = TRI_ExpandShapedJson(
collection->_collection->_collection->getShaper(),
_resolver,
v.cid,
&mptr
);
intTrx.finish(res);
return tmp;
}
TRI_doc_mptr_copy_t mptr;
_trx->readSingle(collection, &mptr, v.key);
return TRI_ExpandShapedJson(
collection->_collection->_collection->getShaper(),
_resolver,
v.cid,
&mptr
);
}
Json TraversalBlock::extractEdgeJson (
EdgeInfo const& e
) {
auto cid = e.cid;
auto collection = _trx->trxCollection(cid);
TRI_shaped_json_t shapedJson;
TRI_EXTRACT_SHAPED_JSON_MARKER(shapedJson, &e.mptr);
return TRI_ExpandShapedJson(
collection->_collection->_collection->getShaper(),
_resolver,
cid,
&e.mptr
);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Transform the VertexId to AQLValue object
////////////////////////////////////////////////////////////////////////////////
AqlValue TraversalBlock::vertexToAqlValue (
VertexId const& v
) {
// This json is freed by the AqlValue. No unique_ptr here.
Json* result = new Json(extractVertexJson(v));
return AqlValue(result);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Transform the EdgeInfo to AQLValue object
////////////////////////////////////////////////////////////////////////////////
AqlValue TraversalBlock::edgeToAqlValue (
EdgeInfo const& e
) {
// This json is freed by the AqlValue. No unique_ptr here.
Json* result = new Json(extractEdgeJson(e));
return AqlValue(result);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Transform the path to AQLValue object
////////////////////////////////////////////////////////////////////////////////
AqlValue TraversalBlock::pathToAqlValue (
const TraversalPath<EdgeInfo, VertexId, TRI_doc_mptr_copy_t>& p
) {
// This json is freed by the AqlValue. No unique_ptr here.
Json* path = new Json(Json::Object, 2);
Json vertices(Json::Array);
for (size_t i = 0; i < p.vertices.size(); ++i) {
vertices(extractVertexJson(p.vertices[i]));
}
Json edges(Json::Array);
for (size_t i = 0; i < p.edges.size(); ++i) {
edges(extractEdgeJson(p.edges[i]));
}
(*path)("vertices", vertices)
("edges", edges);
return AqlValue(path);
}
bool TraversalBlock::executeExpressions (AqlValue& pathValue) {
TRI_ASSERT(_condition != nullptr);
auto& toReplace = _nonConstExpressions[0];
auto exp = toReplace->expression;
TRI_document_collection_t const* myCollection = nullptr;
AqlItemBlock b(1, 3);
b.setValue(0, 2, pathValue);
AqlValue a = exp->execute(_trx, &b, 0, _inVars[0], _inRegs[0], &myCollection);
b.eraseValue(0, 2);
bool rc = a.isTrue();
a.destroy();
return rc;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief read more paths
////////////////////////////////////////////////////////////////////////////////
bool TraversalBlock::morePaths (size_t hint) {
freeCaches();
_posInPaths = 0;
if (!_traverser->hasMore()) {
return false;
}
auto en = static_cast<TraversalNode const*>(getPlanNode());
for (size_t j = 0; j < hint; ++j) {
auto p = _traverser->next();
if (p.edges.size() == 0) {
// There are no further paths available.
break;
}
_currentJsonPath.add(extractEdgeJson(p.edges.back()));
AqlValue pathValue;
if (usesPathOutput() || (en->condition() != NULL)) {
pathValue = pathToAqlValue(p);
}
if ((en->condition() != NULL) &&
!executeExpressions(pathValue)) {
_traverser->prune();
continue;
}
if ( usesVertexOutput() ) {
_vertices.push_back(vertexToAqlValue(p.vertices.back()));
}
if ( usesEdgeOutput() ) {
_edges.push_back(edgeToAqlValue(p.edges.back()));
}
if ( usesPathOutput() ) {
_paths.push_back(pathValue);
}
}
// This is only save as long as _vertices is still build
return _vertices.size() > 0;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief skip the next paths
////////////////////////////////////////////////////////////////////////////////
size_t TraversalBlock::skipPaths (size_t hint) {
freeCaches();
_posInPaths = 0;
if (!_traverser->hasMore()) {
return 0;
}
return _traverser->skip(hint);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief initialize the list of paths
////////////////////////////////////////////////////////////////////////////////
void TraversalBlock::initializePaths (AqlItemBlock const* items) {
if (_vertices.size() > 0) {
// No Initialisation required.
return;
}
if (!_useRegister) {
if (!_usedConstant) {
_usedConstant = true;
_traverser->setStartVertex(_startId);
}
}
else {
auto in = items->getValueReference(_pos, _reg);
if (in.isShaped()) {
auto col = items->getDocumentCollection(_reg);
VertexId v(col->_info._cid, TRI_EXTRACT_MARKER_KEY(in.getMarker()));
_traverser->setStartVertex(v);
}
else if (in.isObject()) {
Json input = in.toJson(_trx, nullptr, false);
if (input.has("_id") ) {
Json _idJson = input.get("_id");
if (_idJson.isString()) {
_vertexId = JsonHelper::getStringValue(_idJson.json(), "");
VertexId v = triagens::basics::traverser::IdStringToVertexId (
_resolver,
_vertexId
);
_traverser->setStartVertex(v);
}
}
else if (input.has("vertex")) {
// This is used whenever the input is the result of another traversal.
Json vertexJson = input.get("vertex");
if (vertexJson.has("_id") ) {
Json _idJson = vertexJson.get("_id");
if (_idJson.isString()) {
_vertexId = JsonHelper::getStringValue(_idJson.json(), "");
VertexId v = triagens::basics::traverser::IdStringToVertexId (
_resolver,
_vertexId
);
_traverser->setStartVertex(v);
}
}
}
}
else if (in._type == AqlValue::DOCVEC) {
THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_QUERY_PARSE,
std::string("Only one start vertex allowed. Embed it in a FOR loop."));
}
else {
std::cout << "FOUND Type: " << in.getTypeString() << std::endl;
}
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief getSome
////////////////////////////////////////////////////////////////////////////////
AqlItemBlock* TraversalBlock::getSome (size_t, // atLeast,
size_t atMost) {
if (_done) {
return nullptr;
}
if (_buffer.empty()) {
size_t toFetch = (std::min)(DefaultBatchSize, atMost);
if (! ExecutionBlock::getBlock(toFetch, toFetch)) {
_done = true;
return nullptr;
}
_pos = 0; // this is in the first block
}
// If we get here, we do have _buffer.front()
AqlItemBlock* cur = _buffer.front();
size_t const curRegs = cur->getNrRegs();
if (_pos == 0) {
// Initial initialisation
initializePaths(cur);
}
// Iterate more paths:
if (_posInPaths >= _vertices.size()) {
if (! morePaths(atMost)) {
// This input does not have any more paths. maybe the next one has.
// we can only return nullptr iff the buffer is empty.
if (++_pos >= cur->size()) {
_buffer.pop_front(); // does not throw
// returnBlock(cur);
delete cur;
_pos = 0;
} else {
initializePaths(cur);
}
return getSome(atMost, atMost);
}
}
size_t available = _vertices.size() - _posInPaths;
size_t toSend = (std::min)(atMost, available);
RegisterId nrRegs = getPlanNode()->getRegisterPlan()->nrRegs[getPlanNode()->getDepth()];
std::unique_ptr<AqlItemBlock> res(requestBlock(toSend, nrRegs));
// std::unique_ptr<AqlItemBlock> res(new AqlItemBlock(toSend, nrRegs));
// automatically freed if we throw
TRI_ASSERT(curRegs <= res->getNrRegs());
// only copy 1st row of registers inherited from previous frame(s)
inheritRegisters(cur, res.get(), _pos);
for (size_t j = 0; j < toSend; j++) {
if (j > 0) {
// re-use already copied aqlvalues
for (RegisterId i = 0; i < curRegs; i++) {
res->setValue(j, i, res->getValueReference(0, i));
// Note: if this throws, then all values will be deleted
// properly since the first one is.
}
}
if ( usesVertexOutput() ) {
res->setValue(j, _vertexReg, _vertices[_posInPaths].clone());
}
if ( usesEdgeOutput() ) {
res->setValue(j, _edgeReg, _edges[_posInPaths].clone());
}
if ( usesPathOutput() ) {
res->setValue(j,
_pathReg,
_paths[_posInPaths].clone()
);
}
++_posInPaths;
}
// Advance read position:
if (_posInPaths >= _vertices.size()) {
// we have exhausted our local paths buffer
// fetch more paths into our buffer
if (! morePaths(atMost)) {
// nothing more to read, re-initialize fetching of paths
if (++_pos >= cur->size()) {
_buffer.pop_front(); // does not throw
// returnBlock(cur);
delete cur;
_pos = 0;
} else {
initializePaths(cur);
}
}
}
// Clear out registers no longer needed later:
clearRegisters(res.get());
return res.release();
}
size_t TraversalBlock::skipSome (size_t atLeast, size_t atMost) {
size_t skipped = 0;
if (_done) {
return skipped;
}
if (_buffer.empty()) {
size_t toFetch = (std::min)(DefaultBatchSize, atMost);
if (! ExecutionBlock::getBlock(toFetch, toFetch)) {
_done = true;
return skipped;
}
_pos = 0; // this is in the first block
}
// If we get here, we do have _buffer.front()
AqlItemBlock* cur = _buffer.front();
if (_pos == 0) {
// Initial initialisation
initializePaths(cur);
}
size_t available = _vertices.size() - _posInPaths;
// We have not yet fetched any paths. We can skip the next atMost many
if (available == 0) {
return skipPaths(atMost);
}
// We have fewer paths available in our list, so we clear the list and thereby skip these.
if (available <= atMost) {
freeCaches();
_posInPaths = 0;
return available;
}
_posInPaths += atMost;
// Skip the next atMost many paths.
return atMost;
}
// Local Variables:
// mode: outline-minor
// outline-regexp: "^\\(/// @brief\\|/// {@inheritDoc}\\|/// @addtogroup\\|// --SECTION--\\|/// @\\}\\)"
// End: