1
0
Fork 0
arangodb/arangod/Indexes/SkiplistIndex.cpp

1136 lines
38 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Dr. Frank Celler
////////////////////////////////////////////////////////////////////////////////
#include "SkiplistIndex.h"
#include "Aql/AstNode.h"
#include "Aql/SortCondition.h"
#include "Basics/AttributeNameParser.h"
#include "Basics/StaticStrings.h"
#include "Basics/debugging.h"
#include "Basics/VelocyPackHelper.h"
#include "Utils/Transaction.h"
#include "VocBase/document-collection.h"
#include <velocypack/Iterator.h>
#include <velocypack/velocypack-aliases.h>
using namespace arangodb;
static size_t sortWeight(arangodb::aql::AstNode const* node) {
switch (node->type) {
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ:
return 1;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN:
return 2;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
return 3;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
return 4;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
return 5;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
return 6;
default:
return 42;
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief frees an element in the skiplist
////////////////////////////////////////////////////////////////////////////////
static void FreeElm(void* e) {
auto element = static_cast<TRI_index_element_t*>(e);
TRI_index_element_t::freeElement(element);
}
// .............................................................................
// recall for all of the following comparison functions:
//
// left < right return -1
// left > right return 1
// left == right return 0
//
// furthermore:
//
// the following order is currently defined for placing an order on documents
// undef < null < boolean < number < strings < lists < hash arrays
// note: undefined will be treated as NULL pointer not NULL JSON OBJECT
// within each type class we have the following order
// boolean: false < true
// number: natural order
// strings: lexicographical
// lists: lexicographically and within each slot according to these rules.
// ...........................................................................
////////////////////////////////////////////////////////////////////////////////
/// @brief compares a key with an element, version with proper types
////////////////////////////////////////////////////////////////////////////////
static int CompareKeyElement(VPackSlice const* left,
TRI_index_element_t const* right,
size_t rightPosition) {
TRI_ASSERT(nullptr != left);
TRI_ASSERT(nullptr != right);
auto rightSubobjects = right->subObjects();
return arangodb::basics::VelocyPackHelper::compare(*left,
rightSubobjects[rightPosition].slice(right->document()), true);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief compares elements, version with proper types
////////////////////////////////////////////////////////////////////////////////
static int CompareElementElement(TRI_index_element_t const* left,
size_t leftPosition,
TRI_index_element_t const* right,
size_t rightPosition) {
TRI_ASSERT(nullptr != left);
TRI_ASSERT(nullptr != right);
auto leftSubobjects = left->subObjects();
auto rightSubobjects = right->subObjects();
VPackSlice l = leftSubobjects[leftPosition].slice(left->document());
VPackSlice r = rightSubobjects[rightPosition].slice(right->document());
return arangodb::basics::VelocyPackHelper::compare(l, r, true);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Reset the cursor
////////////////////////////////////////////////////////////////////////////////
void SkiplistIterator::reset() {
if (_reverse) {
_cursor = _rightEndPoint;
} else {
_cursor = _leftEndPoint;
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Get the next element in the skiplist
////////////////////////////////////////////////////////////////////////////////
TRI_doc_mptr_t* SkiplistIterator::next() {
if (_cursor == nullptr) {
// We are exhausted already, sorry
return nullptr;
}
Node* tmp = _cursor;
if (_reverse) {
if (_cursor == _leftEndPoint) {
_cursor = nullptr;
} else {
_cursor = _cursor->prevNode();
}
} else {
if (_cursor == _rightEndPoint) {
_cursor = nullptr;
} else {
_cursor = _cursor->nextNode();
}
}
TRI_ASSERT(tmp != nullptr);
TRI_ASSERT(tmp->document() != nullptr);
return tmp->document()->document();
}
////////////////////////////////////////////////////////////////////////////////
/// @brief create the skiplist index
////////////////////////////////////////////////////////////////////////////////
SkiplistIndex::SkiplistIndex(
TRI_idx_iid_t iid, TRI_document_collection_t* collection,
std::vector<std::vector<arangodb::basics::AttributeName>> const& fields,
bool unique, bool sparse)
: PathBasedIndex(iid, collection, fields, unique, sparse, true),
CmpElmElm(this),
CmpKeyElm(this),
_skiplistIndex(nullptr) {
_skiplistIndex =
new TRI_Skiplist(CmpElmElm, CmpKeyElm, FreeElm, unique, _useExpansion);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief create an index stub with a hard-coded selectivity estimate
/// this is used in the cluster coordinator case
////////////////////////////////////////////////////////////////////////////////
SkiplistIndex::SkiplistIndex(VPackSlice const& slice)
: PathBasedIndex(slice, true),
CmpElmElm(this),
CmpKeyElm(this),
_skiplistIndex(nullptr) {}
////////////////////////////////////////////////////////////////////////////////
/// @brief destroy the skiplist index
////////////////////////////////////////////////////////////////////////////////
SkiplistIndex::~SkiplistIndex() { delete _skiplistIndex; }
size_t SkiplistIndex::memory() const {
return _skiplistIndex->memoryUsage() +
static_cast<size_t>(_skiplistIndex->getNrUsed()) * elementSize();
}
////////////////////////////////////////////////////////////////////////////////
/// @brief return a VelocyPack representation of the index
////////////////////////////////////////////////////////////////////////////////
void SkiplistIndex::toVelocyPack(VPackBuilder& builder,
bool withFigures) const {
Index::toVelocyPack(builder, withFigures);
builder.add("unique", VPackValue(_unique));
builder.add("sparse", VPackValue(_sparse));
}
////////////////////////////////////////////////////////////////////////////////
/// @brief return a VelocyPack representation of the index figures
////////////////////////////////////////////////////////////////////////////////
void SkiplistIndex::toVelocyPackFigures(VPackBuilder& builder) const {
TRI_ASSERT(builder.isOpenObject());
builder.add("memory", VPackValue(memory()));
_skiplistIndex->appendToVelocyPack(builder);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief inserts a document into a skiplist index
////////////////////////////////////////////////////////////////////////////////
int SkiplistIndex::insert(arangodb::Transaction*, TRI_doc_mptr_t const* doc,
bool) {
std::vector<TRI_index_element_t*> elements;
int res;
try {
res = fillElement(elements, doc);
} catch (...) {
res = TRI_ERROR_OUT_OF_MEMORY;
}
if (res != TRI_ERROR_NO_ERROR) {
for (auto& it : elements) {
// free all elements to prevent leak
TRI_index_element_t::freeElement(it);
}
return res;
}
// insert into the index. the memory for the element will be owned or freed
// by the index
size_t const count = elements.size();
for (size_t i = 0; i < count; ++i) {
res = _skiplistIndex->insert(elements[i]);
if (res != TRI_ERROR_NO_ERROR) {
TRI_index_element_t::freeElement(elements[i]);
// Note: this element is freed already
for (size_t j = i + 1; j < count; ++j) {
TRI_index_element_t::freeElement(elements[j]);
}
for (size_t j = 0; j < i; ++j) {
_skiplistIndex->remove(elements[j]);
// No need to free elements[j] skiplist has taken over already
}
if (res == TRI_ERROR_ARANGO_UNIQUE_CONSTRAINT_VIOLATED && !_unique) {
// We ignore unique_constraint violated if we are not unique
res = TRI_ERROR_NO_ERROR;
}
break;
}
}
return res;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief removes a document from a skiplist index
////////////////////////////////////////////////////////////////////////////////
int SkiplistIndex::remove(arangodb::Transaction*, TRI_doc_mptr_t const* doc,
bool) {
std::vector<TRI_index_element_t*> elements;
int res;
try {
res = fillElement(elements, doc);
} catch (...) {
res = TRI_ERROR_OUT_OF_MEMORY;
}
if (res != TRI_ERROR_NO_ERROR) {
for (auto& it : elements) {
// free all elements to prevent leak
TRI_index_element_t::freeElement(it);
}
return res;
}
// attempt the removal for skiplist indexes
// ownership for the index element is transferred to the index
size_t const count = elements.size();
for (size_t i = 0; i < count; ++i) {
int result = _skiplistIndex->remove(elements[i]);
// we may be looping through this multiple times, and if an error
// occurs, we want to keep it
if (result != TRI_ERROR_NO_ERROR) {
res = result;
}
TRI_index_element_t::freeElement(elements[i]);
}
return res;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Checks if the interval is valid. It is declared invalid if
/// one border is nullptr or the right is lower than left.
////////////////////////////////////////////////////////////////////////////////
bool SkiplistIndex::intervalValid(Node* left, Node* right) const {
if (left == nullptr) {
return false;
}
if (right == nullptr) {
return false;
}
if (left == right) {
// Exactly one result. Improve speed on unique indexes
return true;
}
if (CmpElmElm(left->document(), right->document(),
arangodb::basics::SKIPLIST_CMP_TOTORDER) > 0) {
return false;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief attempts to locate an entry in the skip list index
///
/// Warning: who ever calls this function is responsible for destroying
/// the SkiplistIterator* results
////////////////////////////////////////////////////////////////////////////////
SkiplistIterator* SkiplistIndex::lookup(arangodb::Transaction* trx,
VPackSlice const searchValues,
bool reverse) const {
TRI_ASSERT(searchValues.isArray());
TRI_ASSERT(searchValues.length() <= _fields.size());
TransactionBuilderLeaser leftSearch(trx);
VPackSlice lastNonEq;
leftSearch->openArray();
for (auto const& it : VPackArrayIterator(searchValues)) {
TRI_ASSERT(it.isObject());
VPackSlice eq = it.get(StaticStrings::IndexEq);
if (eq.isNone()) {
lastNonEq = it;
break;
}
leftSearch->add(eq);
}
Node* leftBorder = nullptr;
Node* rightBorder = nullptr;
if (lastNonEq.isNone()) {
// We only have equality!
leftSearch->close();
VPackSlice search = leftSearch->slice();
rightBorder = _skiplistIndex->rightKeyLookup(&search);
if (rightBorder == _skiplistIndex->startNode()) {
// No matching elements
rightBorder = nullptr;
leftBorder = nullptr;
} else {
leftBorder = _skiplistIndex->leftKeyLookup(&search);
leftBorder = leftBorder->nextNode();
// NOTE: rightBorder < leftBorder => no Match.
// Will be checked by interval valid
}
} else {
// Copy rightSearch = leftSearch for right border
TransactionBuilderLeaser rightSearch(trx);
*(rightSearch.builder()) = *leftSearch.builder();
// Define Lower-Bound
VPackSlice lastLeft = lastNonEq.get(StaticStrings::IndexGe);
if (!lastLeft.isNone()) {
TRI_ASSERT(!lastNonEq.hasKey(StaticStrings::IndexGt));
leftSearch->add(lastLeft);
leftSearch->close();
VPackSlice search = leftSearch->slice();
leftBorder = _skiplistIndex->leftKeyLookup(&search);
// leftKeyLookup guarantees that we find the element before search. This
// should not be in the cursor, but the next one
// This is also save for the startNode, it should never be contained in the index.
leftBorder = leftBorder->nextNode();
} else {
lastLeft = lastNonEq.get(StaticStrings::IndexGt);
if (!lastLeft.isNone()) {
leftSearch->add(lastLeft);
leftSearch->close();
VPackSlice search = leftSearch->slice();
leftBorder = _skiplistIndex->rightKeyLookup(&search);
// leftBorder is identical or smaller than search, skip it.
// It is guaranteed that the next element is greater than search
leftBorder = leftBorder->nextNode();
} else {
// No lower bound set default to (null <= x)
leftSearch->close();
VPackSlice search = leftSearch->slice();
leftBorder = _skiplistIndex->leftKeyLookup(&search);
leftBorder = leftBorder->nextNode();
// Now this is the correct leftBorder.
// It is either the first equal one, or the first one greater than.
}
}
// NOTE: leftBorder could be nullptr (no element fulfilling condition.)
// This is checked later
// Define upper-bound
VPackSlice lastRight = lastNonEq.get(StaticStrings::IndexLe);
if (!lastRight.isNone()) {
TRI_ASSERT(!lastNonEq.hasKey(StaticStrings::IndexLt));
rightSearch->add(lastRight);
rightSearch->close();
VPackSlice search = rightSearch->slice();
rightBorder = _skiplistIndex->rightKeyLookup(&search);
if (rightBorder == _skiplistIndex->startNode()) {
// No match make interval invalid
rightBorder = nullptr;
}
// else rightBorder is correct
} else {
lastRight = lastNonEq.get(StaticStrings::IndexLt);
if (!lastRight.isNone()) {
rightSearch->add(lastRight);
rightSearch->close();
VPackSlice search = rightSearch->slice();
rightBorder = _skiplistIndex->leftKeyLookup(&search);
if (rightBorder == _skiplistIndex->startNode()) {
// No match make interval invalid
rightBorder = nullptr;
}
// else rightBorder is correct
} else {
// No upper bound set default to (x <= INFINITY)
rightSearch->close();
VPackSlice search = rightSearch->slice();
rightBorder = _skiplistIndex->rightKeyLookup(&search);
if (rightBorder == _skiplistIndex->startNode()) {
// No match make interval invalid
rightBorder = nullptr;
}
// else rightBorder is correct
}
}
}
// Check if the interval is valid and not empty
if (intervalValid(leftBorder, rightBorder)) {
return new SkiplistIterator(reverse, leftBorder, rightBorder);
}
// Creates an empty iterator
return new SkiplistIterator(reverse, nullptr, nullptr);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief compares a key with an element in a skip list, generic callback
////////////////////////////////////////////////////////////////////////////////
int SkiplistIndex::KeyElementComparator::operator()(
VPackSlice const* leftKey,
TRI_index_element_t const* rightElement) const {
TRI_ASSERT(nullptr != leftKey);
TRI_ASSERT(nullptr != rightElement);
// Note that the key might contain fewer fields than there are indexed
// attributes, therefore we only run the following loop to
// leftKey->_numFields.
TRI_ASSERT(leftKey->isArray());
size_t numFields = leftKey->length();
for (size_t j = 0; j < numFields; j++) {
VPackSlice field = leftKey->at(j);
int compareResult =
CompareKeyElement(&field, rightElement, j);
if (compareResult != 0) {
return compareResult;
}
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief compares two elements in a skip list, this is the generic callback
////////////////////////////////////////////////////////////////////////////////
int SkiplistIndex::ElementElementComparator::operator()(
TRI_index_element_t const* leftElement,
TRI_index_element_t const* rightElement,
arangodb::basics::SkipListCmpType cmptype) const {
TRI_ASSERT(nullptr != leftElement);
TRI_ASSERT(nullptr != rightElement);
// ..........................................................................
// The document could be the same -- so no further comparison is required.
// ..........................................................................
if (leftElement == rightElement ||
(!_idx->_skiplistIndex->isArray() &&
leftElement->document() == rightElement->document())) {
return 0;
}
for (size_t j = 0; j < _idx->numPaths(); j++) {
int compareResult =
CompareElementElement(leftElement, j, rightElement, j);
if (compareResult != 0) {
return compareResult;
}
}
// ...........................................................................
// This is where the difference between the preorder and the proper total
// order comes into play. Here if the 'keys' are the same,
// but the doc ptr is different (which it is since we are here), then
// we return 0 if we use the preorder and look at the _key attribute
// otherwise.
// ...........................................................................
if (arangodb::basics::SKIPLIST_CMP_PREORDER == cmptype) {
return 0;
}
// We break this tie in the key comparison by looking at the key:
VPackSlice leftKey = VPackSlice(leftElement->document()->vpack()).get(StaticStrings::KeyString);
VPackSlice rightKey = VPackSlice(rightElement->document()->vpack()).get(StaticStrings::KeyString);
int compareResult = leftKey.compareString(rightKey.copyString());
if (compareResult < 0) {
return -1;
} else if (compareResult > 0) {
return 1;
}
return 0;
}
bool SkiplistIndex::accessFitsIndex(
arangodb::aql::AstNode const* access, arangodb::aql::AstNode const* other,
arangodb::aql::AstNode const* op, arangodb::aql::Variable const* reference,
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>>&
found,
bool isExecution) const {
if (!this->canUseConditionPart(access, other, op, reference, isExecution)) {
return false;
}
arangodb::aql::AstNode const* what = access;
std::pair<arangodb::aql::Variable const*,
std::vector<arangodb::basics::AttributeName>> attributeData;
if (op->type != arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
if (!what->isAttributeAccessForVariable(attributeData) ||
attributeData.first != reference) {
// this access is not referencing this collection
return false;
}
if (arangodb::basics::TRI_AttributeNamesHaveExpansion(
attributeData.second)) {
// doc.value[*] == 'value'
return false;
}
if (isAttributeExpanded(attributeData.second)) {
// doc.value == 'value' (with an array index)
return false;
}
} else {
// ok, we do have an IN here... check if it's something like 'value' IN
// doc.value[*]
TRI_ASSERT(op->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN);
bool canUse = false;
if (what->isAttributeAccessForVariable(attributeData) &&
attributeData.first == reference &&
!arangodb::basics::TRI_AttributeNamesHaveExpansion(
attributeData.second) &&
attributeMatches(attributeData.second)) {
// doc.value IN 'value'
// can use this index
canUse = true;
} else {
// check for 'value' IN doc.value AND 'value' IN doc.value[*]
what = other;
if (what->isAttributeAccessForVariable(attributeData) &&
attributeData.first == reference &&
isAttributeExpanded(attributeData.second) &&
attributeMatches(attributeData.second)) {
canUse = true;
}
}
if (!canUse) {
return false;
}
}
std::vector<arangodb::basics::AttributeName> const& fieldNames =
attributeData.second;
for (size_t i = 0; i < _fields.size(); ++i) {
if (_fields[i].size() != fieldNames.size()) {
// attribute path length differs
continue;
}
if (this->isAttributeExpanded(i) &&
op->type != arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
// If this attribute is correct or not, it could only serve for IN
continue;
}
bool match = arangodb::basics::AttributeName::isIdentical(_fields[i],
fieldNames, true);
if (match) {
// mark ith attribute as being covered
auto it = found.find(i);
if (it == found.end()) {
found.emplace(i, std::vector<arangodb::aql::AstNode const*>{op});
} else {
(*it).second.emplace_back(op);
}
TRI_IF_FAILURE("SkiplistIndex::accessFitsIndex") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
return true;
}
}
return false;
}
void SkiplistIndex::matchAttributes(
arangodb::aql::AstNode const* node,
arangodb::aql::Variable const* reference,
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>>&
found,
size_t& values, bool isExecution) const {
for (size_t i = 0; i < node->numMembers(); ++i) {
auto op = node->getMember(i);
switch (op->type) {
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
TRI_ASSERT(op->numMembers() == 2);
accessFitsIndex(op->getMember(0), op->getMember(1), op, reference,
found, isExecution);
accessFitsIndex(op->getMember(1), op->getMember(0), op, reference,
found, isExecution);
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN:
if (accessFitsIndex(op->getMember(0), op->getMember(1), op, reference,
found, isExecution)) {
auto m = op->getMember(1);
if (m->isArray() && m->numMembers() > 1) {
// attr IN [ a, b, c ] => this will produce multiple items, so
// count them!
values += m->numMembers() - 1;
}
}
break;
default:
break;
}
}
}
bool SkiplistIndex::supportsFilterCondition(
arangodb::aql::AstNode const* node,
arangodb::aql::Variable const* reference, size_t itemsInIndex,
size_t& estimatedItems, double& estimatedCost) const {
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>> found;
size_t values = 0;
matchAttributes(node, reference, found, values, false);
bool lastContainsEquality = true;
size_t attributesCovered = 0;
size_t attributesCoveredByEquality = 0;
double equalityReductionFactor = 20.0;
estimatedCost = static_cast<double>(itemsInIndex);
for (size_t i = 0; i < _fields.size(); ++i) {
auto it = found.find(i);
if (it == found.end()) {
// index attribute not covered by condition
break;
}
// check if the current condition contains an equality condition
auto const& nodes = (*it).second;
bool containsEquality = false;
for (size_t j = 0; j < nodes.size(); ++j) {
if (nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ ||
nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
containsEquality = true;
break;
}
}
if (!lastContainsEquality) {
// unsupported condition. must abort
break;
}
++attributesCovered;
if (containsEquality) {
++attributesCoveredByEquality;
estimatedCost /= equalityReductionFactor;
// decrease the effect of the equality reduction factor
equalityReductionFactor *= 0.25;
if (equalityReductionFactor < 2.0) {
// equalityReductionFactor shouldn't get too low
equalityReductionFactor = 2.0;
}
} else {
// quick estimate for the potential reductions caused by the conditions
if (nodes.size() >= 2) {
// at least two (non-equality) conditions. probably a range with lower
// and upper bound defined
estimatedCost /= 7.5;
} else {
// one (non-equality). this is either a lower or a higher bound
estimatedCost /= 2.0;
}
}
lastContainsEquality = containsEquality;
}
if (values == 0) {
values = 1;
}
if (attributesCoveredByEquality == _fields.size() && unique()) {
// index is unique and condition covers all attributes by equality
if (estimatedItems >= values) {
// reduce costs due to uniqueness
estimatedItems = values;
estimatedCost = static_cast<double>(estimatedItems);
} else {
// cost is already low... now slightly prioritize the unique index
estimatedCost *= 0.995;
}
return true;
}
if (attributesCovered > 0 &&
(!_sparse || attributesCovered == _fields.size())) {
// if the condition contains at least one index attribute and is not sparse,
// or the index is sparse and all attributes are covered by the condition,
// then it can be used (note: additional checks for condition parts in
// sparse indexes are contained in Index::canUseConditionPart)
estimatedItems = static_cast<size_t>((std::max)(
static_cast<size_t>(estimatedCost * values), static_cast<size_t>(1)));
estimatedCost *= static_cast<double>(values);
return true;
}
// no condition
estimatedItems = itemsInIndex;
estimatedCost = static_cast<double>(estimatedItems);
return false;
}
bool SkiplistIndex::supportsSortCondition(
arangodb::aql::SortCondition const* sortCondition,
arangodb::aql::Variable const* reference, size_t itemsInIndex,
double& estimatedCost, size_t& coveredAttributes) const {
TRI_ASSERT(sortCondition != nullptr);
if (!_sparse) {
// only non-sparse indexes can be used for sorting
if (!_useExpansion && sortCondition->isUnidirectional() &&
sortCondition->isOnlyAttributeAccess()) {
coveredAttributes = sortCondition->coveredAttributes(reference, _fields);
if (coveredAttributes >= sortCondition->numAttributes()) {
// sort is fully covered by index. no additional sort costs!
estimatedCost = 0.0;
return true;
} else if (coveredAttributes > 0) {
estimatedCost = (itemsInIndex / coveredAttributes) *
std::log2(static_cast<double>(itemsInIndex));
return true;
}
}
}
coveredAttributes = 0;
// by default no sort conditions are supported
if (itemsInIndex > 0) {
estimatedCost = itemsInIndex * std::log2(static_cast<double>(itemsInIndex));
} else {
estimatedCost = 0.0;
}
return false;
}
IndexIterator* SkiplistIndex::iteratorForCondition(
arangodb::Transaction* trx, IndexIteratorContext* context,
arangodb::aql::AstNode const* node,
arangodb::aql::Variable const* reference, bool reverse) const {
TransactionBuilderLeaser searchValues(trx);
searchValues->openArray();
bool needNormalize = false;
if (node == nullptr) {
// We only use this index for sort. Empty searchValue
searchValues->openArray();
searchValues->close();
TRI_IF_FAILURE("SkiplistIndex::noSortIterator") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
} else {
// Create the search Values for the lookup
VPackArrayBuilder guard(searchValues.builder());
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>> found;
size_t unused = 0;
matchAttributes(node, reference, found, unused, true);
// found contains all attributes that are relevant for this node.
// It might be less than fields().
//
// Handle the first attributes. They can only be == or IN and only
// one node per attribute
auto getValueAccess = [&](arangodb::aql::AstNode const* comp,
arangodb::aql::AstNode const*& access,
arangodb::aql::AstNode const*& value) -> bool {
access = comp->getMember(0);
value = comp->getMember(1);
std::pair<arangodb::aql::Variable const*,
std::vector<arangodb::basics::AttributeName>> paramPair;
if (!(access->isAttributeAccessForVariable(paramPair) &&
paramPair.first == reference)) {
access = comp->getMember(1);
value = comp->getMember(0);
if (!(access->isAttributeAccessForVariable(paramPair) &&
paramPair.first == reference)) {
// Both side do not have a correct AttributeAccess, this should not
// happen and indicates
// an error in the optimizer
TRI_ASSERT(false);
}
return true;
}
return false;
};
size_t usedFields = 0;
for (; usedFields < _fields.size(); ++usedFields) {
auto it = found.find(usedFields);
if (it == found.end()) {
// We are either done
// or this is a range.
// Continue with more complicated loop
break;
}
auto comp = it->second[0];
TRI_ASSERT(comp->numMembers() == 2);
arangodb::aql::AstNode const* access = nullptr;
arangodb::aql::AstNode const* value = nullptr;
getValueAccess(comp, access, value);
// We found an access for this field
if (comp->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ) {
searchValues->openObject();
searchValues->add(VPackValue(StaticStrings::IndexEq));
TRI_IF_FAILURE("SkiplistIndex::permutationEQ") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
} else if (comp->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
if (isAttributeExpanded(usedFields)) {
searchValues->openObject();
searchValues->add(VPackValue(StaticStrings::IndexEq));
TRI_IF_FAILURE("SkiplistIndex::permutationArrayIN") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
} else {
needNormalize = true;
searchValues->openObject();
searchValues->add(VPackValue(StaticStrings::IndexIn));
}
} else {
// This is a one-sided range
break;
}
// We have to add the value always, the key was added before
value->toVelocyPackValue(*searchValues.builder());
searchValues->close();
}
// Now handle the next element, which might be a range
if (usedFields < _fields.size()) {
auto it = found.find(usedFields);
if (it != found.end()) {
auto rangeConditions = it->second;
TRI_ASSERT(rangeConditions.size() <= 2);
VPackObjectBuilder searchElement(searchValues.builder());
for (auto& comp : rangeConditions) {
TRI_ASSERT(comp->numMembers() == 2);
arangodb::aql::AstNode const* access = nullptr;
arangodb::aql::AstNode const* value = nullptr;
bool isReverseOrder = getValueAccess(comp, access, value);
// Add the key
switch (comp->type) {
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
if (isReverseOrder) {
searchValues->add(VPackValue(StaticStrings::IndexGt));
} else {
searchValues->add(VPackValue(StaticStrings::IndexLt));
}
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
if (isReverseOrder) {
searchValues->add(VPackValue(StaticStrings::IndexGe));
} else {
searchValues->add(VPackValue(StaticStrings::IndexLe));
}
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
if (isReverseOrder) {
searchValues->add(VPackValue(StaticStrings::IndexLt));
} else {
searchValues->add(VPackValue(StaticStrings::IndexGt));
}
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
if (isReverseOrder) {
searchValues->add(VPackValue(StaticStrings::IndexLe));
} else {
searchValues->add(VPackValue(StaticStrings::IndexGe));
}
break;
default:
// unsupported right now. Should have been rejected by
// supportsFilterCondition
TRI_ASSERT(false);
return nullptr;
}
value->toVelocyPackValue(*searchValues.builder());
}
}
}
}
searchValues->close();
TRI_IF_FAILURE("SkiplistIndex::noIterator") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
if (needNormalize) {
TransactionBuilderLeaser expandedSearchValues(trx);
expandInSearchValues(searchValues->slice(), *expandedSearchValues.builder());
VPackSlice expandedSlice = expandedSearchValues->slice();
std::vector<IndexIterator*> iterators;
iterators.reserve(expandedSlice.length());
try {
for (auto const& val : VPackArrayIterator(expandedSlice)) {
auto iterator = lookup(trx, val, reverse);
try {
iterators.push_back(iterator);
} catch (...) {
// avoid leak
delete iterator;
throw;
}
}
if (reverse) {
std::reverse(iterators.begin(), iterators.end());
}
}
catch (...) {
for (auto& it : iterators) {
delete it;
}
throw;
}
return new MultiIndexIterator(iterators);
}
VPackSlice searchSlice = searchValues->slice();
TRI_ASSERT(searchSlice.length() == 1);
searchSlice = searchSlice.at(0);
return lookup(trx, searchSlice, reverse);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief specializes the condition for use with the index
////////////////////////////////////////////////////////////////////////////////
arangodb::aql::AstNode* SkiplistIndex::specializeCondition(
arangodb::aql::AstNode* node,
arangodb::aql::Variable const* reference) const {
std::unordered_map<size_t, std::vector<arangodb::aql::AstNode const*>> found;
size_t values = 0;
matchAttributes(node, reference, found, values, false);
std::vector<arangodb::aql::AstNode const*> children;
bool lastContainsEquality = true;
for (size_t i = 0; i < _fields.size(); ++i) {
auto it = found.find(i);
if (it == found.end()) {
// index attribute not covered by condition
break;
}
// check if the current condition contains an equality condition
auto& nodes = (*it).second;
bool containsEquality = false;
for (size_t j = 0; j < nodes.size(); ++j) {
if (nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ ||
nodes[j]->type == arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN) {
containsEquality = true;
break;
}
}
if (!lastContainsEquality) {
// unsupported condition. must abort
break;
}
std::sort(
nodes.begin(), nodes.end(),
[](arangodb::aql::AstNode const* lhs, arangodb::aql::AstNode const* rhs)
-> bool { return sortWeight(lhs) < sortWeight(rhs); });
lastContainsEquality = containsEquality;
std::unordered_set<int> operatorsFound;
for (auto& it : nodes) {
// do not let duplicate or related operators pass
if (isDuplicateOperator(it, operatorsFound)) {
continue;
}
operatorsFound.emplace(static_cast<int>(it->type));
children.emplace_back(it);
}
}
while (node->numMembers() > 0) {
node->removeMemberUnchecked(0);
}
for (auto& it : children) {
node->addMember(it);
}
return node;
}
bool SkiplistIndex::isDuplicateOperator(
arangodb::aql::AstNode const* node,
std::unordered_set<int> const& operatorsFound) const {
auto type = node->type;
if (operatorsFound.find(static_cast<int>(type)) != operatorsFound.end()) {
// duplicate operator
return true;
}
if (operatorsFound.find(
static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ)) !=
operatorsFound.end() ||
operatorsFound.find(
static_cast<int>(arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN)) !=
operatorsFound.end()) {
return true;
}
bool duplicate = false;
switch (type) {
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LE:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_LT)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GE:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_GT)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN)) !=
operatorsFound.end();
break;
case arangodb::aql::NODE_TYPE_OPERATOR_BINARY_IN:
duplicate = operatorsFound.find(static_cast<int>(
arangodb::aql::NODE_TYPE_OPERATOR_BINARY_EQ)) !=
operatorsFound.end();
break;
default: {
// ignore
}
}
return duplicate;
}