1
0
Fork 0
arangodb/tests/Cache/TransactionalCache.cpp

368 lines
11 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// @brief test suite for arangodb::cache::TransactionalCache
///
/// @file
///
/// DISCLAIMER
///
/// Copyright 2017 ArangoDB GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Daniel H. Larkin
/// @author Copyright 2017, ArangoDB GmbH, Cologne, Germany
////////////////////////////////////////////////////////////////////////////////
#include "Basics/Common.h"
#include "Cache/Common.h"
#include "Cache/Manager.h"
#include "Cache/Transaction.h"
#include "Cache/TransactionalCache.h"
#include "Random/RandomGenerator.h"
#include "MockScheduler.h"
#include "gtest/gtest.h"
#include <stdint.h>
#include <string>
#include <thread>
#include <vector>
using namespace arangodb;
using namespace arangodb::cache;
// long-running
TEST(CacheTransactionalCacheTest, test_basic_cache_construction) {
auto postFn = [](std::function<void()>) -> bool { return false; };
Manager manager(postFn, 1024 * 1024);
auto cache1 = manager.createCache(CacheType::Transactional, false, 256 * 1024);
auto cache2 = manager.createCache(CacheType::Transactional, false, 512 * 1024);
ASSERT_TRUE(0 == cache1->usage());
ASSERT_TRUE(256 * 1024 >= cache1->size());
ASSERT_TRUE(0 == cache2->usage());
ASSERT_TRUE(512 * 1024 >= cache2->size());
manager.destroyCache(cache1);
manager.destroyCache(cache2);
}
TEST(CacheTransactionalCacheTest, verify_that_insertion_works_as_expected) {
uint64_t cacheLimit = 128 * 1024;
auto postFn = [](std::function<void()>) -> bool { return false; };
Manager manager(postFn, 4 * cacheLimit);
auto cache = manager.createCache(CacheType::Transactional, false, cacheLimit);
for (uint64_t i = 0; i < 1024; i++) {
CachedValue* value =
CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = cache->insert(value);
if (status.ok()) {
auto f = cache->find(&i, sizeof(uint64_t));
ASSERT_TRUE(f.found());
} else {
delete value;
}
}
for (uint64_t i = 0; i < 1024; i++) {
uint64_t j = 2 * i;
CachedValue* value =
CachedValue::construct(&i, sizeof(uint64_t), &j, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = cache->insert(value);
if (status.ok()) {
auto f = cache->find(&i, sizeof(uint64_t));
ASSERT_TRUE(f.found());
ASSERT_TRUE(0 == memcmp(f.value()->value(), &j, sizeof(uint64_t)));
} else {
delete value;
}
}
for (uint64_t i = 1024; i < 128 * 1024; i++) {
CachedValue* value =
CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = cache->insert(value);
if (status.ok()) {
auto f = cache->find(&i, sizeof(uint64_t));
ASSERT_TRUE(f.found());
} else {
delete value;
}
}
ASSERT_TRUE(cache->size() <= 128 * 1024);
manager.destroyCache(cache);
}
TEST(CacheTransactionalCacheTest, verify_removal_works_as_expected) {
uint64_t cacheLimit = 128 * 1024;
auto postFn = [](std::function<void()>) -> bool { return false; };
Manager manager(postFn, 4 * cacheLimit);
auto cache = manager.createCache(CacheType::Transactional, false, cacheLimit);
for (uint64_t i = 0; i < 1024; i++) {
CachedValue* value =
CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = cache->insert(value);
if (status.ok()) {
auto f = cache->find(&i, sizeof(uint64_t));
ASSERT_TRUE(f.found());
ASSERT_TRUE(f.value() != nullptr);
ASSERT_TRUE(f.value()->sameKey(&i, sizeof(uint64_t)));
} else {
delete value;
}
}
uint64_t inserted = 0;
for (uint64_t j = 0; j < 1024; j++) {
auto f = cache->find(&j, sizeof(uint64_t));
if (f.found()) {
inserted++;
ASSERT_TRUE(f.value() != nullptr);
ASSERT_TRUE(f.value()->sameKey(&j, sizeof(uint64_t)));
}
}
// test removal of bogus keys
for (uint64_t i = 1024; i < 1088; i++) {
auto status = cache->remove(&i, sizeof(uint64_t));
ASSERT_TRUE(status.ok());
// ensure existing keys not removed
uint64_t found = 0;
for (uint64_t j = 0; j < 1024; j++) {
auto f = cache->find(&j, sizeof(uint64_t));
if (f.found()) {
found++;
ASSERT_TRUE(f.value() != nullptr);
ASSERT_TRUE(f.value()->sameKey(&j, sizeof(uint64_t)));
}
}
ASSERT_TRUE(inserted == found);
}
// remove actual keys
for (uint64_t i = 0; i < 1024; i++) {
auto status = cache->remove(&i, sizeof(uint64_t));
ASSERT_TRUE(status.ok());
auto f = cache->find(&i, sizeof(uint64_t));
ASSERT_TRUE(!f.found());
}
manager.destroyCache(cache);
}
TEST(CacheTransactionalCacheTest, verify_blacklisting_works_as_expected) {
uint64_t cacheLimit = 128 * 1024;
auto postFn = [](std::function<void()>) -> bool { return false; };
Manager manager(postFn, 4 * cacheLimit);
auto cache = manager.createCache(CacheType::Transactional, false, cacheLimit);
Transaction* tx = manager.beginTransaction(false);
for (uint64_t i = 0; i < 1024; i++) {
CachedValue* value =
CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = cache->insert(value);
if (status.ok()) {
auto f = cache->find(&i, sizeof(uint64_t));
ASSERT_TRUE(f.found());
ASSERT_TRUE(f.value() != nullptr);
ASSERT_TRUE(f.value()->sameKey(&i, sizeof(uint64_t)));
} else {
delete value;
}
}
for (uint64_t i = 512; i < 1024; i++) {
auto status = cache->blacklist(&i, sizeof(uint64_t));
ASSERT_TRUE(status.ok());
auto f = cache->find(&i, sizeof(uint64_t));
ASSERT_TRUE(!f.found());
}
for (uint64_t i = 512; i < 1024; i++) {
CachedValue* value =
CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = cache->insert(value);
ASSERT_TRUE(status.fail());
delete value;
auto f = cache->find(&i, sizeof(uint64_t));
ASSERT_TRUE(!f.found());
}
manager.endTransaction(tx);
tx = manager.beginTransaction(false);
uint64_t reinserted = 0;
for (uint64_t i = 512; i < 1024; i++) {
CachedValue* value =
CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = cache->insert(value);
if (status.ok()) {
reinserted++;
auto f = cache->find(&i, sizeof(uint64_t));
ASSERT_TRUE(f.found());
} else {
delete value;
}
}
ASSERT_TRUE(reinserted >= 256);
manager.endTransaction(tx);
manager.destroyCache(cache);
}
TEST(CacheTransactionalCacheTest, verify_cache_can_grow_correctly_when_it_runs_out_of_space_LongRunning) {
MockScheduler scheduler(4);
auto postFn = [&scheduler](std::function<void()> fn) -> bool {
scheduler.post(fn);
return true;
};
Manager manager(postFn, 1024 * 1024 * 1024);
auto cache = manager.createCache(CacheType::Transactional);
uint64_t minimumUsage = cache->usageLimit() * 2;
for (uint64_t i = 0; i < 4 * 1024 * 1024; i++) {
CachedValue* value =
CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = cache->insert(value);
if (status.fail()) {
delete value;
}
}
EXPECT_GT(cache->usageLimit(), minimumUsage);
EXPECT_GT(cache->usage(), minimumUsage);
manager.destroyCache(cache);
}
TEST(CacheTransactionalCacheTest, test_behavior_under_mixed_load_LongRunning) {
RandomGenerator::initialize(RandomGenerator::RandomType::MERSENNE);
MockScheduler scheduler(4);
auto postFn = [&scheduler](std::function<void()> fn) -> bool {
scheduler.post(fn);
return true;
};
Manager manager(postFn, 1024 * 1024 * 1024);
size_t threadCount = 4;
std::shared_ptr<Cache> cache = manager.createCache(CacheType::Transactional);
uint64_t chunkSize = 16 * 1024 * 1024;
uint64_t initialInserts = 4 * 1024 * 1024;
uint64_t operationCount = 16 * 1024 * 1024;
std::atomic<uint64_t> hitCount(0);
std::atomic<uint64_t> missCount(0);
auto worker = [&manager, &cache, initialInserts, operationCount, &hitCount,
&missCount](uint64_t lower, uint64_t upper) -> void {
Transaction* tx = manager.beginTransaction(false);
// fill with some initial data
for (uint64_t i = 0; i < initialInserts; i++) {
uint64_t item = lower + i;
CachedValue* value =
CachedValue::construct(&item, sizeof(uint64_t), &item, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = cache->insert(value);
if (status.fail()) {
delete value;
}
}
// initialize valid range for keys that *might* be in cache
uint64_t validLower = lower;
uint64_t validUpper = lower + initialInserts - 1;
uint64_t blacklistUpper = validUpper;
// commence mixed workload
for (uint64_t i = 0; i < operationCount; i++) {
uint32_t r = RandomGenerator::interval(static_cast<uint32_t>(99UL));
if (r >= 99) { // remove something
if (validLower == validUpper) {
continue; // removed too much
}
uint64_t item = validLower++;
cache->remove(&item, sizeof(uint64_t));
} else if (r >= 90) { // insert something
if (validUpper == upper) {
continue; // already maxed out range
}
uint64_t item = ++validUpper;
if (validUpper > blacklistUpper) {
blacklistUpper = validUpper;
}
CachedValue* value =
CachedValue::construct(&item, sizeof(uint64_t), &item, sizeof(uint64_t));
TRI_ASSERT(value != nullptr);
auto status = cache->insert(value);
if (status.fail()) {
delete value;
}
} else if (r >= 80) { // blacklist something
if (blacklistUpper == upper) {
continue; // already maxed out range
}
uint64_t item = ++blacklistUpper;
cache->blacklist(&item, sizeof(uint64_t));
} else { // lookup something
uint64_t item = RandomGenerator::interval(static_cast<int64_t>(validLower),
static_cast<int64_t>(validUpper));
Finding f = cache->find(&item, sizeof(uint64_t));
if (f.found()) {
hitCount++;
TRI_ASSERT(f.value() != nullptr);
TRI_ASSERT(f.value()->sameKey(&item, sizeof(uint64_t)));
} else {
missCount++;
TRI_ASSERT(f.value() == nullptr);
}
}
}
manager.endTransaction(tx);
};
std::vector<std::thread*> threads;
// dispatch threads
for (size_t i = 0; i < threadCount; i++) {
uint64_t lower = i * chunkSize;
uint64_t upper = ((i + 1) * chunkSize) - 1;
threads.push_back(new std::thread(worker, lower, upper));
}
// join threads
for (auto t : threads) {
t->join();
delete t;
}
manager.destroyCache(cache);
RandomGenerator::shutdown();
}