1
0
Fork 0
arangodb/arangod/Aql/ExecutionEngine.cpp

762 lines
27 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// DISCLAIMER
///
/// Copyright 2014-2017 ArangoDB GmbH, Cologne, Germany
/// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany
///
/// Licensed under the Apache License, Version 2.0 (the "License");
/// you may not use this file except in compliance with the License.
/// You may obtain a copy of the License at
///
/// http://www.apache.org/licenses/LICENSE-2.0
///
/// Unless required by applicable law or agreed to in writing, software
/// distributed under the License is distributed on an "AS IS" BASIS,
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
/// See the License for the specific language governing permissions and
/// limitations under the License.
///
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
///
/// @author Jan Steemann
////////////////////////////////////////////////////////////////////////////////
#include "ExecutionEngine.h"
#include "Aql/AqlResult.h"
#include "Aql/Collection.h"
#include "Aql/EngineInfoContainerCoordinator.h"
#include "Aql/EngineInfoContainerDBServerServerBased.h"
#include "Aql/ExecutionBlockImpl.h"
#include "Aql/ExecutionNode.h"
#include "Aql/ExecutionPlan.h"
#include "Aql/GraphNode.h"
#include "Aql/IdExecutor.h"
#include "Aql/OptimizerRule.h"
#include "Aql/Query.h"
#include "Aql/QueryRegistry.h"
#include "Aql/RemoteExecutor.h"
#include "Aql/ReturnExecutor.h"
#include "Aql/WalkerWorker.h"
#include "Basics/ScopeGuard.h"
#include "Cluster/ServerState.h"
#include "Futures/Utilities.h"
#include "Logger/LogMacros.h"
#include "Logger/Logger.h"
#include "Network/Methods.h"
#include "Network/NetworkFeature.h"
#include "Network/Utils.h"
#include "RestServer/QueryRegistryFeature.h"
using namespace arangodb;
using namespace arangodb::aql;
// @brief Local struct to create the
// information required to build traverser engines
// on DB servers.
struct TraverserEngineShardLists {
explicit TraverserEngineShardLists(size_t length) {
// Make sure they all have a fixed size.
edgeCollections.resize(length);
}
~TraverserEngineShardLists() = default;
// Mapping for edge collections to shardIds.
// We have to retain the ordering of edge collections, all
// vectors of these in one run need to have identical size.
// This is because the conditions to query those edges have the
// same ordering.
std::vector<std::vector<ShardID>> edgeCollections;
// Mapping for vertexCollections to shardIds.
std::unordered_map<std::string, std::vector<ShardID>> vertexCollections;
#ifdef USE_ENTERPRISE
std::set<ShardID> inaccessibleShards;
#endif
};
/**
* @brief Create AQL blocks from a list of ExectionNodes
* Only works in cluster mode
*
* @param nodes The list of Nodes => Blocks
* @param restrictToShards This query is restricted to those shards
* @param queryIds A Mapping: RemoteNodeId -> DBServerId -> [snippetId]
*
* @return A result containing the error in bad case.
*/
Result ExecutionEngine::createBlocks(std::vector<ExecutionNode*> const& nodes,
std::unordered_set<std::string> const& restrictToShards,
MapRemoteToSnippet const& queryIds) {
TRI_ASSERT(arangodb::ServerState::instance()->isCoordinator());
std::unordered_map<ExecutionNode*, ExecutionBlock*> cache;
RemoteNode* remoteNode = nullptr;
// We need to traverse the nodes from back to front, the walker collects
// them in the wrong ordering
for (auto it = nodes.rbegin(); it != nodes.rend(); ++it) {
auto en = *it;
auto const nodeType = en->getType();
if (nodeType == ExecutionNode::REMOTE) {
remoteNode = ExecutionNode::castTo<RemoteNode*>(en);
continue;
}
// for all node types but REMOTEs, we create blocks
auto uptrEb = en->createBlock(*this, cache);
if (!uptrEb) {
return {TRI_ERROR_INTERNAL, "illegal node type"};
}
// transfers ownership
// store the pointer to the block
auto eb = addBlock(std::move(uptrEb));
for (auto const& dep : en->getDependencies()) {
auto d = cache.find(dep);
if (d != cache.end()) {
// add regular dependencies
TRI_ASSERT((*d).second != nullptr);
eb->addDependency((*d).second);
}
}
if (nodeType == ExecutionNode::GATHER) {
// we found a gather node
if (remoteNode == nullptr) {
return {TRI_ERROR_INTERNAL, "expecting a RemoteNode"};
}
// now we'll create a remote node for each shard and add it to the
// gather node (eb->addDependency)
auto serversForRemote = queryIds.find(remoteNode->id());
// Planning gone terribly wrong. The RemoteNode does not have a
// counter-part to fetch data from.
TRI_ASSERT(serversForRemote != queryIds.end());
if (serversForRemote == queryIds.end()) {
return {TRI_ERROR_INTERNAL,
"Did not find a DBServer to contact for RemoteNode"};
}
// use "server:" instead of "shard:" to send query fragments to
// the correct servers, even after failover or when a follower drops
// the problem with using the previous shard-based approach was that
// responsibilities for shards may change at runtime.
// however, an AQL query must send all requests for the query to the
// initially used servers.
// if there is a failover while the query is executing, we must still
// send all following requests to the same servers, and not the newly
// responsible servers.
// otherwise we potentially would try to get data from a query from
// server B while the query was only instanciated on server A.
for (auto const& serverToSnippet : serversForRemote->second) {
std::string const& serverID = serverToSnippet.first;
for (std::string const& snippetId : serverToSnippet.second) {
remoteNode->queryId(snippetId);
remoteNode->server(serverID);
remoteNode->setDistributeId({""});
std::unique_ptr<ExecutionBlock> r = remoteNode->createBlock(*this, {});
#ifdef ARANGODB_ENABLE_MAINTAINER_MODE
auto remoteBlock = dynamic_cast<ExecutionBlockImpl<RemoteExecutor>*>(r.get());
TRI_ASSERT(remoteBlock->server() == serverID);
TRI_ASSERT(remoteBlock->ownName() == ""); // NOLINT(readability-container-size-empty)
TRI_ASSERT(remoteBlock->queryId() == snippetId);
#endif
TRI_ASSERT(r != nullptr);
eb->addDependency(r.get());
addBlock(std::move(r));
}
}
}
// the last block is always the root
root(eb);
// put it into our cache:
cache.try_emplace(en, eb);
}
return {TRI_ERROR_NO_ERROR};
}
/// @brief create the engine
ExecutionEngine::ExecutionEngine(Query& query, SerializationFormat format)
: _stats(),
_itemBlockManager(query.resourceMonitor(), format),
_blocks(),
_root(nullptr),
_query(query),
_resultRegister(0),
_initializeCursorCalled(false),
_wasShutdown(false) {
_blocks.reserve(8);
}
/// @brief destroy the engine, frees all assigned blocks
ExecutionEngine::~ExecutionEngine() {
try {
shutdownSync(TRI_ERROR_INTERNAL);
} catch (...) {
// shutdown can throw - ignore it in the destructor
}
for (auto& it : _blocks) {
delete it;
}
}
struct SingleServerQueryInstanciator final : public WalkerWorker<ExecutionNode> {
ExecutionEngine& engine;
ExecutionBlock* root{};
std::unordered_map<ExecutionNode*, ExecutionBlock*> cache;
explicit SingleServerQueryInstanciator(ExecutionEngine& engine) noexcept
: engine(engine) {}
virtual void after(ExecutionNode* en) override final {
ExecutionBlock* block = nullptr;
bool doEmplace = true;
{
if (en->getType() == ExecutionNode::TRAVERSAL ||
en->getType() == ExecutionNode::SHORTEST_PATH ||
en->getType() == ExecutionNode::K_SHORTEST_PATHS) {
// We have to prepare the options before we build the block
ExecutionNode::castTo<GraphNode*>(en)->prepareOptions();
}
if (!arangodb::ServerState::instance()->isDBServer()) {
// do we need to adjust the root node?
auto const nodeType = en->getType();
if (nodeType == ExecutionNode::DISTRIBUTE ||
nodeType == ExecutionNode::SCATTER || nodeType == ExecutionNode::GATHER) {
THROW_ARANGO_EXCEPTION_MESSAGE(
TRI_ERROR_INTERNAL,
"logic error, got cluster node in local query");
}
block = engine.addBlock(en->createBlock(engine, cache));
} else {
auto const& cached = cache.find(en);
if (cached != cache.end()) {
// We allow to have SCATTER, REMOTE and DISTRIBUTE multiple times.
// But only these.
// Chances are if you hit a different node here, that you created a loop.
TRI_ASSERT(en->getType() == ExecutionNode::REMOTE ||
en->getType() == ExecutionNode::SCATTER ||
en->getType() == ExecutionNode::DISTRIBUTE);
block = cached->second;
doEmplace = false;
} else {
block = engine.addBlock(en->createBlock(engine, cache));
}
}
if (!en->hasParent()) {
// yes. found a new root!
root = block;
}
}
TRI_ASSERT(block != nullptr);
if (doEmplace) {
// We have visited this node earlier, so we got it's dependencies
// Now add dependencies:
for (auto const& it : en->getDependencies()) {
auto it2 = cache.find(it);
TRI_ASSERT(it2 != cache.end());
TRI_ASSERT(it2->second != nullptr);
block->addDependency(it2->second);
}
cache.try_emplace(en, block);
}
}
// Override this method for DBServers, there it is now possible to visit the same block twice
bool done(ExecutionNode* en) override { return false; }
};
// Here is a description of how the instantiation of an execution plan
// works in the cluster. See below for a complete example
//
// The instantiation of this works as follows:
// (0) Variable usage and register planning is done in the global plan
// (1) A walk with subqueries is done on the whole plan
// The purpose is to plan how many ExecutionEngines we need, where they
// have to be instantiated and which plan nodes belong to each of them.
// Such a walk is depth first and visits subqueries after it has visited
// the dependencies of the subquery node recursively. Whenever the
// walk passes by a RemoteNode it switches location between coordinator
// and DBserver and starts a new engine. The nodes of an engine are
// collected in the after method.
// This walk results in a list of engines and a list of nodes for
// each engine. It follows that the order in these lists is as follows:
// The first engine is the main one on the coordinator, it has id 0.
// The order of the engines is exactly as they are discovered in the
// walk. That is, engines closer to the root are earlier and engines
// in subqueries are later. The nodes in each engine are always
// done in a way such that a dependency D of a node N is earlier in the
// list as N, and a subquery node is later in the list than the nodes
// of the subquery.
// (2) buildEngines is called with that data. It proceeds engine by engine,
// starting from the back of the list. This means that an engine that
// is referred to in a RemoteNode (because its nodes are dependencies
// of that node) are always already instantiated before the RemoteNode
// is instantiated. The corresponding query ids are collected in a
// global hash table, for which the key consists of the id of the
// RemoteNode using the query and the actual query id. For each engine,
// the nodes are instantiated along the list of nodes for that engine.
// This means that all dependencies of a node N are already instantiated
// when N is instantiated. We distinguish the coordinator and the
// DBserver case. In the former one we have to clone a part of the
// plan and in the latter we have to send a part to a DBserver via HTTP.
//
// Here is a fully worked out example:
//
// FOR i IN [1,2]
// FOR d IN coll
// FILTER d.pass == i
// LET s = (FOR e IN coll2 FILTER e.name == d.name RETURN e)
// RETURN {d:d, s:s}
//
// this is optimized to, variable and register planning is done in this plan:
//
// Singleton
// ^
// EnumList [1,2] Singleton
// ^ ^
// Scatter (2) Enum coll2
// ^ ^
// Remote Calc e.name==d.name
// ^ ^
// Enum coll Filter (3)
// ^ ^
// Calc d.pass==i Remote
// ^ ^
// Filter (1) Gather
// ^ ^
// Remote Return
// ^ ^
// Gather |
// ^ |
// Subquery -------------------/
// ^
// Calc {d:d, s:s}
// ^
// Return (0)
//
// There are 4 engines here, their corresponding root nodes are labelled
// in the above picture in round brackets with the ids of the engine.
// Engines 1 and 3 have to be replicated for each shard of coll or coll2
// respectively, and sent to the right DBserver via HTTP. Engine 0 is the
// main one on the coordinator and engine 2 is a non-main part on the
// coordinator. Recall that the walk goes first to the dependencies before
// it visits the nodes of the subquery. Thus, the walk builds up the lists
// in this order:
// engine 0: [Remote, Gather, Remote, Gather, Return, Subquery, Calc, Return]
// engine 1: [Remote, Enum coll, Calc d.pass==i, Filter]
// engine 2: [Singleton, EnumList [1,2], Scatter]
// engine 3: [Singleton, Enum coll2, Calc e.name==d.name, Filter]
// buildEngines will then do engines in the order 3, 2, 1, 0 and for each
// of them the nodes from left to right in these lists. In the end, we have
// a proper instantiation of the whole thing.
struct DistributedQueryInstanciator final : public WalkerWorker<ExecutionNode> {
private:
EngineInfoContainerCoordinator _coordinatorParts;
EngineInfoContainerDBServerServerBased _dbserverParts;
bool _isCoordinator;
bool const _pushToSingleServer;
QueryId _lastClosed;
Query& _query;
// This is a handle to the last gather node that we see while traversing the
// plan The guarantee is that we only have the combination `Remote <- Gather
// <- before` Therefore we will always assert that this is NULLPTR with the
// only exception of this case.
GatherNode const* _lastGatherNode;
public:
DistributedQueryInstanciator(Query& query, bool pushToSingleServer)
: _dbserverParts(query),
_isCoordinator(true),
_pushToSingleServer(pushToSingleServer),
_lastClosed(0),
_query(query),
_lastGatherNode(nullptr) {}
/// @brief before method for collection of pieces phase
/// Collects all nodes on the path and divides them
/// into coordinator and dbserver parts
bool before(ExecutionNode* en) final {
auto const nodeType = en->getType();
if (_isCoordinator) {
_coordinatorParts.addNode(en);
switch (nodeType) {
case ExecutionNode::GATHER:
_lastGatherNode = ExecutionNode::castTo<GatherNode const*>(en);
break;
case ExecutionNode::REMOTE:
// Flip over to DBServer
_isCoordinator = false;
TRI_ASSERT(_lastGatherNode != nullptr);
_dbserverParts.openSnippet(_lastGatherNode, en->id());
_lastGatherNode = nullptr;
break;
case ExecutionNode::TRAVERSAL:
case ExecutionNode::SHORTEST_PATH:
case ExecutionNode::K_SHORTEST_PATHS:
if (!_pushToSingleServer) {
_dbserverParts.addGraphNode(ExecutionNode::castTo<GraphNode*>(en));
}
break;
default:
// Do nothing
break;
}
// lastGatherNode <=> nodeType is gather
TRI_ASSERT((_lastGatherNode != nullptr) == (nodeType == ExecutionNode::GATHER));
} else {
// on dbserver
_dbserverParts.addNode(en);
// switch back from DB server to coordinator, if we are not pushing the
// entire plan to the DB server
if (ExecutionNode::REMOTE == nodeType) {
TRI_ASSERT(!_pushToSingleServer);
_isCoordinator = true;
_coordinatorParts.openSnippet(en->id());
}
}
// Always return false to not abort searching
return false;
}
void after(ExecutionNode* en) final {
if (en->getType() == ExecutionNode::REMOTE) {
if (_isCoordinator) {
_lastClosed = _coordinatorParts.closeSnippet();
_isCoordinator = false;
} else {
_dbserverParts.closeSnippet(_lastClosed);
_isCoordinator = true;
}
}
}
/// @brief Builds the Engines necessary for the query execution
/// For Coordinator Parts:
/// * Creates the ExecutionBlocks
/// * Injects all Parts but the First one into QueryRegistery
/// For DBServer Parts
/// * Creates one Query-Entry for each Snippet per Shard (multiple on
/// the same DB) Each Snippet knows all details about locking.
/// * Only the first snippet does lock the collections.
/// other snippets are not responsible for any locking.
/// * After this step DBServer-Collections are locked!
///
/// Error Case:
/// * It is guaranteed that all DBServers will be send a request
/// to remove query snippets / locks they have locally created.
/// * No Engines for this query will remain in the Coordinator
/// Registry.
/// * In case the Network is broken, all non-reachable DBServers will
/// clean out their snippets after a TTL.
/// Returns the First Coordinator Engine, the one not in the registry.
ExecutionEngineResult buildEngines(QueryRegistry* registry) {
// QueryIds are filled by responses of DBServer parts.
MapRemoteToSnippet queryIds{};
NetworkFeature const& nf = _query.vocbase().server().getFeature<NetworkFeature>();
network::ConnectionPool* pool = nf.pool();
auto cleanupGuard = scopeGuard([this, pool, &queryIds]() {
_dbserverParts.cleanupEngines(pool, TRI_ERROR_INTERNAL,
_query.vocbase().name(), queryIds);
});
std::unordered_map<size_t, size_t> nodeAliases;
ExecutionEngineResult res = _dbserverParts.buildEngines(queryIds, nodeAliases);
if (res.fail()) {
return res;
}
// The coordinator engines cannot decide on lock issues later on,
// however every engine gets injected the list of locked shards.
std::vector<uint64_t> coordinatorQueryIds{};
res = _coordinatorParts.buildEngines(_query, registry, _query.vocbase().name(),
_query.queryOptions().shardIds,
queryIds, coordinatorQueryIds);
if (res.ok()) {
TRI_ASSERT(_query.engine() != nullptr);
_query.engine()->_stats.addAliases(std::move(nodeAliases));
cleanupGuard.cancel();
}
_query.engine()->snippetMapping(std::move(queryIds), std::move(coordinatorQueryIds));
return res;
}
};
void ExecutionEngine::kill() {
// kill coordinator parts
// TODO: this doesn't seem to be necessary and sometimes even show adverse
// effects so leaving this deactivated for now
/*
auto queryRegistry = QueryRegistryFeature::registry();
if (queryRegistry != nullptr) {
for (auto const& id : _coordinatorQueryIds) {
queryRegistry->kill(&(_query.vocbase()), id);
}
}
*/
// kill DB server parts
// RemoteNodeId -> DBServerId -> [snippetId]
NetworkFeature const& nf = _query.vocbase().server().getFeature<NetworkFeature>();
network::ConnectionPool* pool = nf.pool();
if (pool == nullptr) {
return;
}
VPackBuffer<uint8_t> body;
std::vector<network::FutureRes> futures;
for (auto const& it : _dbServerMapping) {
for (auto const& it2 : it.second) {
for (auto const& snippetId : it2.second) {
TRI_ASSERT(it2.first.substr(0, 7) == "server:");
auto future = network::sendRequest(pool, it2.first, fuerte::RestVerb::Delete,
"/_api/aql/kill/" + snippetId, body);
futures.emplace_back(std::move(future));
}
}
}
if (!futures.empty()) {
// killing is best-effort
// we are ignoring all errors intentionally here
futures::collectAll(futures).get();
}
}
std::pair<ExecutionState, Result> ExecutionEngine::initializeCursor(SharedAqlItemBlockPtr&& items,
size_t pos) {
if (_query.killed()) {
THROW_ARANGO_EXCEPTION(TRI_ERROR_QUERY_KILLED);
}
InputAqlItemRow inputRow{CreateInvalidInputRowHint{}};
if (items != nullptr) {
inputRow = InputAqlItemRow{std::move(items), pos};
}
auto res = _root->initializeCursor(inputRow);
if (res.first == ExecutionState::WAITING) {
return res;
}
_initializeCursorCalled = true;
return res;
}
std::pair<ExecutionState, SharedAqlItemBlockPtr> ExecutionEngine::getSome(size_t atMost) {
if (_query.killed()) {
THROW_ARANGO_EXCEPTION(TRI_ERROR_QUERY_KILLED);
}
if (!_initializeCursorCalled) {
auto res = initializeCursor(nullptr, 0);
if (res.first == ExecutionState::WAITING) {
return {res.first, nullptr};
}
}
return _root->getSome((std::min)(atMost, ExecutionBlock::DefaultBatchSize()));
}
std::pair<ExecutionState, size_t> ExecutionEngine::skipSome(size_t atMost) {
if (_query.killed()) {
THROW_ARANGO_EXCEPTION(TRI_ERROR_QUERY_KILLED);
}
if (!_initializeCursorCalled) {
auto res = initializeCursor(nullptr, 0);
if (res.first == ExecutionState::WAITING) {
return {res.first, 0};
}
}
return _root->skipSome(atMost);
}
Result ExecutionEngine::shutdownSync(int errorCode) noexcept try {
Result res{TRI_ERROR_INTERNAL, "unable to shutdown query"};
ExecutionState state = ExecutionState::WAITING;
try {
TRI_IF_FAILURE("ExecutionEngine::shutdownSync") {
THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG);
}
std::shared_ptr<SharedQueryState> sharedState = _query.sharedState();
if (sharedState != nullptr) {
sharedState->resetWakeupHandler();
while (state == ExecutionState::WAITING) {
std::tie(state, res) = shutdown(errorCode);
if (state == ExecutionState::WAITING) {
sharedState->waitForAsyncWakeup();
}
}
}
} catch (basics::Exception const& ex) {
res.reset(ex.code(), std::string("unable to shutdown query: ") + ex.what());
} catch (std::exception const& ex) {
res.reset(TRI_ERROR_INTERNAL, std::string("unable to shutdown query: ") + ex.what());
} catch (...) {
res.reset(TRI_ERROR_INTERNAL);
}
if (res.fail() && ServerState::instance()->isCoordinator()) {
// shutdown attempt has failed...
// in a cluster, try to at least abort all other coordinator parts
auto queryRegistry = QueryRegistryFeature::registry();
if (queryRegistry != nullptr) {
for (auto const& id : _coordinatorQueryIds) {
try {
queryRegistry->destroy(_query.vocbase().name(), id, errorCode, false);
} catch (...) {
// we want to abort all parts, even if aborting other parts fails
}
}
}
}
return res;
} catch (...) {
// nothing we can do here...
return Result(TRI_ERROR_INTERNAL, "unable to shutdown query");
}
/// @brief shutdown, will be called exactly once for the whole query
std::pair<ExecutionState, Result> ExecutionEngine::shutdown(int errorCode) {
ExecutionState state = ExecutionState::DONE;
Result res;
if (_root != nullptr && !_wasShutdown) {
std::tie(state, res) = _root->shutdown(errorCode);
if (state == ExecutionState::WAITING) {
return {state, res};
}
// prevent a duplicate shutdown
_wasShutdown = true;
}
return {state, res};
}
/// @brief create an execution engine from a plan
ExecutionEngine* ExecutionEngine::instantiateFromPlan(QueryRegistry& queryRegistry,
Query& query, ExecutionPlan& plan,
bool planRegisters,
SerializationFormat format) {
auto role = arangodb::ServerState::instance()->getRole();
plan.findVarUsage();
if (planRegisters) {
plan.planRegisters();
}
std::unique_ptr<ExecutionEngine> engine;
ExecutionBlock* root = nullptr;
#ifdef USE_ENTERPRISE
bool const pushToSingleServer = plan.hasAppliedRule(
static_cast<int>(OptimizerRule::RuleLevel::clusterOneShardRule));
#else
bool const pushToSingleServer = false;
#endif
if (arangodb::ServerState::isCoordinator(role)) {
// distributed query
DistributedQueryInstanciator inst(query, pushToSingleServer);
plan.root()->walk(inst);
auto result = inst.buildEngines(&queryRegistry);
if (!result.ok()) {
THROW_ARANGO_EXCEPTION_MESSAGE(result.errorNumber(), result.errorMessage());
}
engine.reset(result.engine());
TRI_ASSERT(engine != nullptr);
root = engine->root();
TRI_ASSERT(root != nullptr);
} else {
// instantiate the engine on a local server
engine.reset(new ExecutionEngine(query, format));
SingleServerQueryInstanciator inst(*engine);
plan.root()->walk(inst);
root = inst.root;
TRI_ASSERT(root != nullptr);
}
TRI_ASSERT(root != nullptr);
// inspect the root block of the query
if (root->getPlanNode()->getType() == ExecutionNode::RETURN) {
// it's a return node. now tell it to not copy its results from above,
// but directly return it. we also need to note the RegisterId the
// caller needs to look into when fetching the results
// in short: this avoids copying the return values
bool const returnInheritedResults = !arangodb::ServerState::isDBServer(role);
if (returnInheritedResults) {
auto returnNode = dynamic_cast<ExecutionBlockImpl<IdExecutor<void>>*>(root);
TRI_ASSERT(returnNode != nullptr);
engine->resultRegister(returnNode->getOutputRegisterId());
} else {
auto returnNode = dynamic_cast<ExecutionBlockImpl<ReturnExecutor>*>(root);
TRI_ASSERT(returnNode != nullptr);
}
}
engine->_root = root;
return engine.release();
}
/// @brief add a block to the engine
ExecutionBlock* ExecutionEngine::addBlock(std::unique_ptr<ExecutionBlock> block) {
TRI_ASSERT(block != nullptr);
_blocks.emplace_back(block.get());
return block.release();
}
ExecutionBlock* ExecutionEngine::root() const {
TRI_ASSERT(_root != nullptr);
return _root;
}
void ExecutionEngine::root(ExecutionBlock* root) {
TRI_ASSERT(root != nullptr);
_root = root;
}
Query* ExecutionEngine::getQuery() const { return &_query; }
bool ExecutionEngine::initializeCursorCalled() const {
return _initializeCursorCalled;
}
void ExecutionEngine::resultRegister(RegisterId resultRegister) {
_resultRegister = resultRegister;
}
RegisterId ExecutionEngine::resultRegister() const { return _resultRegister; }
AqlItemBlockManager& ExecutionEngine::itemBlockManager() {
return _itemBlockManager;
}