mirror of https://gitee.com/bigwinds/arangodb
161 lines
5.1 KiB
C++
161 lines
5.1 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
/// DISCLAIMER
|
|
///
|
|
/// Copyright 2016 ArangoDB GmbH, Cologne, Germany
|
|
///
|
|
/// Licensed under the Apache License, Version 2.0 (the "License");
|
|
/// you may not use this file except in compliance with the License.
|
|
/// You may obtain a copy of the License at
|
|
///
|
|
/// http://www.apache.org/licenses/LICENSE-2.0
|
|
///
|
|
/// Unless required by applicable law or agreed to in writing, software
|
|
/// distributed under the License is distributed on an "AS IS" BASIS,
|
|
/// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
/// See the License for the specific language governing permissions and
|
|
/// limitations under the License.
|
|
///
|
|
/// Copyright holder is ArangoDB GmbH, Cologne, Germany
|
|
///
|
|
/// @author Simon Grätzer
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "RecoveringPageRank.h"
|
|
#include "Pregel/Aggregator.h"
|
|
#include "Pregel/GraphFormat.h"
|
|
#include "Pregel/Iterators.h"
|
|
#include "Pregel/MasterContext.h"
|
|
#include "Pregel/Utils.h"
|
|
#include "Pregel/VertexComputation.h"
|
|
|
|
using namespace arangodb;
|
|
using namespace arangodb::pregel;
|
|
using namespace arangodb::pregel::algos;
|
|
|
|
static float EPS = 0.00001f;
|
|
static std::string const kConvergence = "convergence";
|
|
static std::string const kStep = "step";
|
|
static std::string const kRank = "rank";
|
|
static std::string const kFailedCount = "failedCount";
|
|
static std::string const kNonFailedCount = "nonfailedCount";
|
|
static std::string const kScale = "scale";
|
|
|
|
struct RPRComputation : public VertexComputation<float, float, float> {
|
|
RPRComputation() {}
|
|
void compute(MessageIterator<float> const& messages) override {
|
|
float* ptr = mutableVertexData();
|
|
float copy = *ptr;
|
|
// TODO do initialization in GraphFormat?
|
|
if (globalSuperstep() == 0 && *ptr == 0) {
|
|
*ptr = 1.0f / context()->vertexCount();
|
|
} else if (globalSuperstep() > 0) {
|
|
float sum = 0;
|
|
for (const float* msg : messages) {
|
|
sum += *msg;
|
|
}
|
|
*ptr = 0.15f / context()->vertexCount() + 0.85f * sum;
|
|
}
|
|
float diff = fabsf(copy - *ptr);
|
|
aggregate(kConvergence, diff);
|
|
aggregate(kRank, ptr);
|
|
|
|
float val = *ptr / getEdgeCount();
|
|
sendMessageToAllNeighbours(val);
|
|
}
|
|
};
|
|
|
|
VertexComputation<float, float, float>* RecoveringPageRank::createComputation(
|
|
WorkerConfig const* config) const {
|
|
return new RPRComputation();
|
|
}
|
|
|
|
IAggregator* RecoveringPageRank::aggregator(std::string const& name) const {
|
|
if (name == kConvergence) {
|
|
return new MaxAggregator<float>(-1);
|
|
} else if (name == kNonFailedCount) {
|
|
return new SumAggregator<uint32_t>(0);
|
|
} else if (name == kRank) {
|
|
return new SumAggregator<float>(0);
|
|
} else if (name == kStep) {
|
|
return new OverwriteAggregator<uint32_t>(0);
|
|
} else if (name == kScale) {
|
|
return new OverwriteAggregator<float>(-1);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
struct RPRCompensation : public VertexCompensation<float, float, float> {
|
|
RPRCompensation() {}
|
|
void compensate(bool inLostPartition) override {
|
|
const uint32_t* step = getAggregatedValue<uint32_t>(kStep);
|
|
if (*step == 0 && !inLostPartition) {
|
|
uint32_t c = 1;
|
|
aggregate(kNonFailedCount, c);
|
|
aggregate(kRank, mutableVertexData());
|
|
} else if (*step == 1) {
|
|
float* data = mutableVertexData();
|
|
if (inLostPartition) {
|
|
*data = 1.0f / context()->vertexCount();
|
|
} else {
|
|
const float* scale = getAggregatedValue<float>(kScale);
|
|
if (*scale != 0) {
|
|
*data *= *scale;
|
|
}
|
|
}
|
|
|
|
voteActive();
|
|
}
|
|
}
|
|
};
|
|
|
|
VertexCompensation<float, float, float>* RecoveringPageRank::createCompensation(
|
|
WorkerConfig const* config) const {
|
|
return new RPRCompensation();
|
|
}
|
|
|
|
struct RPRMasterContext : public MasterContext {
|
|
float _threshold;
|
|
|
|
explicit RPRMasterContext(VPackSlice params) {
|
|
VPackSlice t = params.get("convergenceThreshold");
|
|
_threshold = t.isNumber() ? t.getNumber<float>() : EPS;
|
|
};
|
|
|
|
int32_t recoveryStep = 0;
|
|
float totalRank = 0;
|
|
|
|
bool postGlobalSuperstep() override {
|
|
const float* convergence = getAggregatedValue<float>(kConvergence);
|
|
LOG_TOPIC("60fab", DEBUG, Logger::PREGEL) << "Current convergence level" << *convergence;
|
|
totalRank = *getAggregatedValue<float>(kRank);
|
|
|
|
float const* diff = getAggregatedValue<float>(kConvergence);
|
|
return globalSuperstep() < 50 && *diff > _threshold;
|
|
}
|
|
|
|
bool preCompensation() override {
|
|
aggregate(kStep, recoveryStep);
|
|
return totalRank != 0;
|
|
}
|
|
|
|
bool postCompensation() override {
|
|
if (recoveryStep == 0) {
|
|
recoveryStep = 1;
|
|
|
|
const float* remainingRank = getAggregatedValue<float>(kRank);
|
|
const uint32_t* nonfailedCount = getAggregatedValue<uint32_t>(kNonFailedCount);
|
|
if (*remainingRank != 0 && *nonfailedCount != 0) {
|
|
float scale = totalRank * (*nonfailedCount);
|
|
scale /= this->vertexCount() * (*remainingRank);
|
|
aggregate(kScale, scale);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
MasterContext* RecoveringPageRank::masterContext(VPackSlice userParams) const {
|
|
return new RPRMasterContext(userParams);
|
|
}
|