mirror of https://gitee.com/bigwinds/arangodb
2057 lines
72 KiB
C
2057 lines
72 KiB
C
/**
|
|
* \file geodesic.c
|
|
* \brief Implementation of the geodesic routines in C
|
|
*
|
|
* For the full documentation see geodesic.h.
|
|
**********************************************************************/
|
|
|
|
/** @cond SKIP */
|
|
|
|
/*
|
|
* This is a C implementation of the geodesic algorithms described in
|
|
*
|
|
* C. F. F. Karney,
|
|
* Algorithms for geodesics,
|
|
* J. Geodesy <b>87</b>, 43--55 (2013);
|
|
* https://doi.org/10.1007/s00190-012-0578-z
|
|
* Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
|
|
*
|
|
* See the comments in geodesic.h for documentation.
|
|
*
|
|
* Copyright (c) Charles Karney (2012-2017) <charles@karney.com> and licensed
|
|
* under the MIT/X11 License. For more information, see
|
|
* https://geographiclib.sourceforge.io/
|
|
*/
|
|
|
|
#include "geodesic.h"
|
|
#include <math.h>
|
|
|
|
#if !defined(HAVE_C99_MATH)
|
|
#define HAVE_C99_MATH 0
|
|
#endif
|
|
|
|
#define GEOGRAPHICLIB_GEODESIC_ORDER 6
|
|
#define nA1 GEOGRAPHICLIB_GEODESIC_ORDER
|
|
#define nC1 GEOGRAPHICLIB_GEODESIC_ORDER
|
|
#define nC1p GEOGRAPHICLIB_GEODESIC_ORDER
|
|
#define nA2 GEOGRAPHICLIB_GEODESIC_ORDER
|
|
#define nC2 GEOGRAPHICLIB_GEODESIC_ORDER
|
|
#define nA3 GEOGRAPHICLIB_GEODESIC_ORDER
|
|
#define nA3x nA3
|
|
#define nC3 GEOGRAPHICLIB_GEODESIC_ORDER
|
|
#define nC3x ((nC3 * (nC3 - 1)) / 2)
|
|
#define nC4 GEOGRAPHICLIB_GEODESIC_ORDER
|
|
#define nC4x ((nC4 * (nC4 + 1)) / 2)
|
|
#define nC (GEOGRAPHICLIB_GEODESIC_ORDER + 1)
|
|
|
|
typedef double real;
|
|
typedef int boolx;
|
|
|
|
static unsigned init = 0;
|
|
static const int FALSE = 0;
|
|
static const int TRUE = 1;
|
|
static unsigned digits, maxit1, maxit2;
|
|
static real epsilon, realmin, pi, degree, NaN,
|
|
tiny, tol0, tol1, tol2, tolb, xthresh;
|
|
|
|
static void Init() {
|
|
if (!init) {
|
|
#if defined(__DBL_MANT_DIG__)
|
|
digits = __DBL_MANT_DIG__;
|
|
#else
|
|
digits = 53;
|
|
#endif
|
|
#if defined(__DBL_EPSILON__)
|
|
epsilon = __DBL_EPSILON__;
|
|
#else
|
|
epsilon = pow(0.5, digits - 1);
|
|
#endif
|
|
#if defined(__DBL_MIN__)
|
|
realmin = __DBL_MIN__;
|
|
#else
|
|
realmin = pow(0.5, 1022);
|
|
#endif
|
|
#if defined(M_PI)
|
|
pi = M_PI;
|
|
#else
|
|
pi = atan2(0.0, -1.0);
|
|
#endif
|
|
maxit1 = 20;
|
|
maxit2 = maxit1 + digits + 10;
|
|
tiny = sqrt(realmin);
|
|
tol0 = epsilon;
|
|
/* Increase multiplier in defn of tol1 from 100 to 200 to fix inverse case
|
|
* 52.784459512564 0 -52.784459512563990912 179.634407464943777557
|
|
* which otherwise failed for Visual Studio 10 (Release and Debug) */
|
|
tol1 = 200 * tol0;
|
|
tol2 = sqrt(tol0);
|
|
/* Check on bisection interval */
|
|
tolb = tol0 * tol2;
|
|
xthresh = 1000 * tol2;
|
|
degree = pi/180;
|
|
{
|
|
real minus1 = -1;
|
|
NaN = sqrt(minus1);
|
|
}
|
|
init = 1;
|
|
}
|
|
}
|
|
|
|
enum captype {
|
|
CAP_NONE = 0U,
|
|
CAP_C1 = 1U<<0,
|
|
CAP_C1p = 1U<<1,
|
|
CAP_C2 = 1U<<2,
|
|
CAP_C3 = 1U<<3,
|
|
CAP_C4 = 1U<<4,
|
|
CAP_ALL = 0x1FU,
|
|
OUT_ALL = 0x7F80U
|
|
};
|
|
|
|
static real sq(real x) { return x * x; }
|
|
#if HAVE_C99_MATH
|
|
#define atanhx atanh
|
|
#define copysignx copysign
|
|
#define hypotx hypot
|
|
#define cbrtx cbrt
|
|
#else
|
|
static real log1px(real x) {
|
|
volatile real
|
|
y = 1 + x,
|
|
z = y - 1;
|
|
/* Here's the explanation for this magic: y = 1 + z, exactly, and z
|
|
* approx x, thus log(y)/z (which is nearly constant near z = 0) returns
|
|
* a good approximation to the true log(1 + x)/x. The multiplication x *
|
|
* (log(y)/z) introduces little additional error. */
|
|
return z == 0 ? x : x * log(y) / z;
|
|
}
|
|
|
|
static real atanhx(real x) {
|
|
real y = fabs(x); /* Enforce odd parity */
|
|
y = log1px(2 * y/(1 - y))/2;
|
|
return x < 0 ? -y : y;
|
|
}
|
|
|
|
static real copysignx(real x, real y) {
|
|
return fabs(x) * (y < 0 || (y == 0 && 1/y < 0) ? -1 : 1);
|
|
}
|
|
|
|
static real hypotx(real x, real y)
|
|
{ return sqrt(x * x + y * y); }
|
|
|
|
static real cbrtx(real x) {
|
|
real y = pow(fabs(x), 1/(real)(3)); /* Return the real cube root */
|
|
return x < 0 ? -y : y;
|
|
}
|
|
#endif
|
|
|
|
static real sumx(real u, real v, real* t) {
|
|
volatile real s = u + v;
|
|
volatile real up = s - v;
|
|
volatile real vpp = s - up;
|
|
up -= u;
|
|
vpp -= v;
|
|
if (t) *t = -(up + vpp);
|
|
/* error-free sum:
|
|
* u + v = s + t
|
|
* = round(u + v) + t */
|
|
return s;
|
|
}
|
|
|
|
static real polyval(int N, const real p[], real x) {
|
|
real y = N < 0 ? 0 : *p++;
|
|
while (--N >= 0) y = y * x + *p++;
|
|
return y;
|
|
}
|
|
|
|
/* mimic C++ std::min and std::max */
|
|
static real minx(real a, real b)
|
|
{ return (b < a) ? b : a; }
|
|
|
|
static real maxx(real a, real b)
|
|
{ return (a < b) ? b : a; }
|
|
|
|
static void swapx(real* x, real* y)
|
|
{ real t = *x; *x = *y; *y = t; }
|
|
|
|
static void norm2(real* sinx, real* cosx) {
|
|
real r = hypotx(*sinx, *cosx);
|
|
*sinx /= r;
|
|
*cosx /= r;
|
|
}
|
|
|
|
static real AngNormalize(real x) {
|
|
#if HAVE_C99_MATH
|
|
x = remainder(x, (real)(360));
|
|
return x != -180 ? x : 180;
|
|
#else
|
|
x = fmod(x, (real)(360));
|
|
return x <= -180 ? x + 360 : (x <= 180 ? x : x - 360);
|
|
#endif
|
|
}
|
|
|
|
static real LatFix(real x)
|
|
{ return fabs(x) > 90 ? NaN : x; }
|
|
|
|
static real AngDiff(real x, real y, real* e) {
|
|
real t, d = AngNormalize(sumx(AngNormalize(-x), AngNormalize(y), &t));
|
|
/* Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and
|
|
* abs(t) <= eps (eps = 2^-45 for doubles). The only case where the
|
|
* addition of t takes the result outside the range (-180,180] is d = 180
|
|
* and t > 0. The case, d = -180 + eps, t = -eps, can't happen, since
|
|
* sum would have returned the exact result in such a case (i.e., given t
|
|
* = 0). */
|
|
return sumx(d == 180 && t > 0 ? -180 : d, t, e);
|
|
}
|
|
|
|
static real AngRound(real x) {
|
|
const real z = 1/(real)(16);
|
|
volatile real y;
|
|
if (x == 0) return 0;
|
|
y = fabs(x);
|
|
/* The compiler mustn't "simplify" z - (z - y) to y */
|
|
y = y < z ? z - (z - y) : y;
|
|
return x < 0 ? -y : y;
|
|
}
|
|
|
|
static void sincosdx(real x, real* sinx, real* cosx) {
|
|
/* In order to minimize round-off errors, this function exactly reduces
|
|
* the argument to the range [-45, 45] before converting it to radians. */
|
|
real r, s, c; int q;
|
|
#if HAVE_C99_MATH && !defined(__GNUC__)
|
|
/* Disable for gcc because of bug in glibc version < 2.22, see
|
|
* https://sourceware.org/bugzilla/show_bug.cgi?id=17569 */
|
|
r = remquo(x, (real)(90), &q);
|
|
#else
|
|
r = fmod(x, (real)(360));
|
|
q = (int)(floor(r / 90 + (real)(0.5)));
|
|
r -= 90 * q;
|
|
#endif
|
|
/* now abs(r) <= 45 */
|
|
r *= degree;
|
|
/* Possibly could call the gnu extension sincos */
|
|
s = sin(r); c = cos(r);
|
|
switch ((unsigned)q & 3U) {
|
|
case 0U: *sinx = s; *cosx = c; break;
|
|
case 1U: *sinx = c; *cosx = -s; break;
|
|
case 2U: *sinx = -s; *cosx = -c; break;
|
|
default: *sinx = -c; *cosx = s; break; /* case 3U */
|
|
}
|
|
if (x != 0) { *sinx += (real)(0); *cosx += (real)(0); }
|
|
}
|
|
|
|
static real atan2dx(real y, real x) {
|
|
/* In order to minimize round-off errors, this function rearranges the
|
|
* arguments so that result of atan2 is in the range [-pi/4, pi/4] before
|
|
* converting it to degrees and mapping the result to the correct
|
|
* quadrant. */
|
|
int q = 0; real ang;
|
|
if (fabs(y) > fabs(x)) { swapx(&x, &y); q = 2; }
|
|
if (x < 0) { x = -x; ++q; }
|
|
/* here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4] */
|
|
ang = atan2(y, x) / degree;
|
|
switch (q) {
|
|
/* Note that atan2d(-0.0, 1.0) will return -0. However, we expect that
|
|
* atan2d will not be called with y = -0. If need be, include
|
|
*
|
|
* case 0: ang = 0 + ang; break;
|
|
*/
|
|
case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
|
|
case 2: ang = 90 - ang; break;
|
|
case 3: ang = -90 + ang; break;
|
|
}
|
|
return ang;
|
|
}
|
|
|
|
static void A3coeff(struct geod_geodesic* g);
|
|
static void C3coeff(struct geod_geodesic* g);
|
|
static void C4coeff(struct geod_geodesic* g);
|
|
static real SinCosSeries(boolx sinp,
|
|
real sinx, real cosx,
|
|
const real c[], int n);
|
|
static void Lengths(const struct geod_geodesic* g,
|
|
real eps, real sig12,
|
|
real ssig1, real csig1, real dn1,
|
|
real ssig2, real csig2, real dn2,
|
|
real cbet1, real cbet2,
|
|
real* ps12b, real* pm12b, real* pm0,
|
|
real* pM12, real* pM21,
|
|
/* Scratch area of the right size */
|
|
real Ca[]);
|
|
static real Astroid(real x, real y);
|
|
static real InverseStart(const struct geod_geodesic* g,
|
|
real sbet1, real cbet1, real dn1,
|
|
real sbet2, real cbet2, real dn2,
|
|
real lam12, real slam12, real clam12,
|
|
real* psalp1, real* pcalp1,
|
|
/* Only updated if return val >= 0 */
|
|
real* psalp2, real* pcalp2,
|
|
/* Only updated for short lines */
|
|
real* pdnm,
|
|
/* Scratch area of the right size */
|
|
real Ca[]);
|
|
static real Lambda12(const struct geod_geodesic* g,
|
|
real sbet1, real cbet1, real dn1,
|
|
real sbet2, real cbet2, real dn2,
|
|
real salp1, real calp1,
|
|
real slam120, real clam120,
|
|
real* psalp2, real* pcalp2,
|
|
real* psig12,
|
|
real* pssig1, real* pcsig1,
|
|
real* pssig2, real* pcsig2,
|
|
real* peps,
|
|
real* pgomg12,
|
|
boolx diffp, real* pdlam12,
|
|
/* Scratch area of the right size */
|
|
real Ca[]);
|
|
static real A3f(const struct geod_geodesic* g, real eps);
|
|
static void C3f(const struct geod_geodesic* g, real eps, real c[]);
|
|
static void C4f(const struct geod_geodesic* g, real eps, real c[]);
|
|
static real A1m1f(real eps);
|
|
static void C1f(real eps, real c[]);
|
|
static void C1pf(real eps, real c[]);
|
|
static real A2m1f(real eps);
|
|
static void C2f(real eps, real c[]);
|
|
static int transit(real lon1, real lon2);
|
|
static int transitdirect(real lon1, real lon2);
|
|
static void accini(real s[]);
|
|
static void acccopy(const real s[], real t[]);
|
|
static void accadd(real s[], real y);
|
|
static real accsum(const real s[], real y);
|
|
static void accneg(real s[]);
|
|
|
|
void geod_init(struct geod_geodesic* g, real a, real f) {
|
|
if (!init) Init();
|
|
g->a = a;
|
|
g->f = f;
|
|
g->f1 = 1 - g->f;
|
|
g->e2 = g->f * (2 - g->f);
|
|
g->ep2 = g->e2 / sq(g->f1); /* e2 / (1 - e2) */
|
|
g->n = g->f / ( 2 - g->f);
|
|
g->b = g->a * g->f1;
|
|
g->c2 = (sq(g->a) + sq(g->b) *
|
|
(g->e2 == 0 ? 1 :
|
|
(g->e2 > 0 ? atanhx(sqrt(g->e2)) : atan(sqrt(-g->e2))) /
|
|
sqrt(fabs(g->e2))))/2; /* authalic radius squared */
|
|
/* The sig12 threshold for "really short". Using the auxiliary sphere
|
|
* solution with dnm computed at (bet1 + bet2) / 2, the relative error in the
|
|
* azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2. (Error
|
|
* measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a given f and
|
|
* sig12, the max error occurs for lines near the pole. If the old rule for
|
|
* computing dnm = (dn1 + dn2)/2 is used, then the error increases by a
|
|
* factor of 2.) Setting this equal to epsilon gives sig12 = etol2. Here
|
|
* 0.1 is a safety factor (error decreased by 100) and max(0.001, abs(f))
|
|
* stops etol2 getting too large in the nearly spherical case. */
|
|
g->etol2 = 0.1 * tol2 /
|
|
sqrt( maxx((real)(0.001), fabs(g->f)) * minx((real)(1), 1 - g->f/2) / 2 );
|
|
|
|
A3coeff(g);
|
|
C3coeff(g);
|
|
C4coeff(g);
|
|
}
|
|
|
|
static void geod_lineinit_int(struct geod_geodesicline* l,
|
|
const struct geod_geodesic* g,
|
|
real lat1, real lon1,
|
|
real azi1, real salp1, real calp1,
|
|
unsigned caps) {
|
|
real cbet1, sbet1, eps;
|
|
l->a = g->a;
|
|
l->f = g->f;
|
|
l->b = g->b;
|
|
l->c2 = g->c2;
|
|
l->f1 = g->f1;
|
|
/* If caps is 0 assume the standard direct calculation */
|
|
l->caps = (caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE) |
|
|
/* always allow latitude and azimuth and unrolling of longitude */
|
|
GEOD_LATITUDE | GEOD_AZIMUTH | GEOD_LONG_UNROLL;
|
|
|
|
l->lat1 = LatFix(lat1);
|
|
l->lon1 = lon1;
|
|
l->azi1 = azi1;
|
|
l->salp1 = salp1;
|
|
l->calp1 = calp1;
|
|
|
|
sincosdx(AngRound(l->lat1), &sbet1, &cbet1); sbet1 *= l->f1;
|
|
/* Ensure cbet1 = +epsilon at poles */
|
|
norm2(&sbet1, &cbet1); cbet1 = maxx(tiny, cbet1);
|
|
l->dn1 = sqrt(1 + g->ep2 * sq(sbet1));
|
|
|
|
/* Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0), */
|
|
l->salp0 = l->salp1 * cbet1; /* alp0 in [0, pi/2 - |bet1|] */
|
|
/* Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following
|
|
* is slightly better (consider the case salp1 = 0). */
|
|
l->calp0 = hypotx(l->calp1, l->salp1 * sbet1);
|
|
/* Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
|
|
* sig = 0 is nearest northward crossing of equator.
|
|
* With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
|
|
* With bet1 = pi/2, alp1 = -pi, sig1 = pi/2
|
|
* With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2
|
|
* Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
|
|
* With alp0 in (0, pi/2], quadrants for sig and omg coincide.
|
|
* No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
|
|
* With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi. */
|
|
l->ssig1 = sbet1; l->somg1 = l->salp0 * sbet1;
|
|
l->csig1 = l->comg1 = sbet1 != 0 || l->calp1 != 0 ? cbet1 * l->calp1 : 1;
|
|
norm2(&l->ssig1, &l->csig1); /* sig1 in (-pi, pi] */
|
|
/* norm2(somg1, comg1); -- don't need to normalize! */
|
|
|
|
l->k2 = sq(l->calp0) * g->ep2;
|
|
eps = l->k2 / (2 * (1 + sqrt(1 + l->k2)) + l->k2);
|
|
|
|
if (l->caps & CAP_C1) {
|
|
real s, c;
|
|
l->A1m1 = A1m1f(eps);
|
|
C1f(eps, l->C1a);
|
|
l->B11 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C1a, nC1);
|
|
s = sin(l->B11); c = cos(l->B11);
|
|
/* tau1 = sig1 + B11 */
|
|
l->stau1 = l->ssig1 * c + l->csig1 * s;
|
|
l->ctau1 = l->csig1 * c - l->ssig1 * s;
|
|
/* Not necessary because C1pa reverts C1a
|
|
* B11 = -SinCosSeries(TRUE, stau1, ctau1, C1pa, nC1p); */
|
|
}
|
|
|
|
if (l->caps & CAP_C1p)
|
|
C1pf(eps, l->C1pa);
|
|
|
|
if (l->caps & CAP_C2) {
|
|
l->A2m1 = A2m1f(eps);
|
|
C2f(eps, l->C2a);
|
|
l->B21 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C2a, nC2);
|
|
}
|
|
|
|
if (l->caps & CAP_C3) {
|
|
C3f(g, eps, l->C3a);
|
|
l->A3c = -l->f * l->salp0 * A3f(g, eps);
|
|
l->B31 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C3a, nC3-1);
|
|
}
|
|
|
|
if (l->caps & CAP_C4) {
|
|
C4f(g, eps, l->C4a);
|
|
/* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0) */
|
|
l->A4 = sq(l->a) * l->calp0 * l->salp0 * g->e2;
|
|
l->B41 = SinCosSeries(FALSE, l->ssig1, l->csig1, l->C4a, nC4);
|
|
}
|
|
|
|
l->a13 = l->s13 = NaN;
|
|
}
|
|
|
|
void geod_lineinit(struct geod_geodesicline* l,
|
|
const struct geod_geodesic* g,
|
|
real lat1, real lon1, real azi1, unsigned caps) {
|
|
real salp1, calp1;
|
|
azi1 = AngNormalize(azi1);
|
|
/* Guard against underflow in salp0 */
|
|
sincosdx(AngRound(azi1), &salp1, &calp1);
|
|
geod_lineinit_int(l, g, lat1, lon1, azi1, salp1, calp1, caps);
|
|
}
|
|
|
|
void geod_gendirectline(struct geod_geodesicline* l,
|
|
const struct geod_geodesic* g,
|
|
real lat1, real lon1, real azi1,
|
|
unsigned flags, real a12_s12,
|
|
unsigned caps) {
|
|
geod_lineinit(l, g, lat1, lon1, azi1, caps);
|
|
geod_gensetdistance(l, flags, a12_s12);
|
|
}
|
|
|
|
void geod_directline(struct geod_geodesicline* l,
|
|
const struct geod_geodesic* g,
|
|
real lat1, real lon1, real azi1,
|
|
real s12, unsigned caps) {
|
|
geod_gendirectline(l, g, lat1, lon1, azi1, GEOD_NOFLAGS, s12, caps);
|
|
}
|
|
|
|
real geod_genposition(const struct geod_geodesicline* l,
|
|
unsigned flags, real s12_a12,
|
|
real* plat2, real* plon2, real* pazi2,
|
|
real* ps12, real* pm12,
|
|
real* pM12, real* pM21,
|
|
real* pS12) {
|
|
real lat2 = 0, lon2 = 0, azi2 = 0, s12 = 0,
|
|
m12 = 0, M12 = 0, M21 = 0, S12 = 0;
|
|
/* Avoid warning about uninitialized B12. */
|
|
real sig12, ssig12, csig12, B12 = 0, AB1 = 0;
|
|
real omg12, lam12, lon12;
|
|
real ssig2, csig2, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2;
|
|
unsigned outmask =
|
|
(plat2 ? GEOD_LATITUDE : 0U) |
|
|
(plon2 ? GEOD_LONGITUDE : 0U) |
|
|
(pazi2 ? GEOD_AZIMUTH : 0U) |
|
|
(ps12 ? GEOD_DISTANCE : 0U) |
|
|
(pm12 ? GEOD_REDUCEDLENGTH : 0U) |
|
|
(pM12 || pM21 ? GEOD_GEODESICSCALE : 0U) |
|
|
(pS12 ? GEOD_AREA : 0U);
|
|
|
|
outmask &= l->caps & OUT_ALL;
|
|
if (!( TRUE /*Init()*/ &&
|
|
(flags & GEOD_ARCMODE || (l->caps & (GEOD_DISTANCE_IN & OUT_ALL))) ))
|
|
/* Uninitialized or impossible distance calculation requested */
|
|
return NaN;
|
|
|
|
if (flags & GEOD_ARCMODE) {
|
|
/* Interpret s12_a12 as spherical arc length */
|
|
sig12 = s12_a12 * degree;
|
|
sincosdx(s12_a12, &ssig12, &csig12);
|
|
} else {
|
|
/* Interpret s12_a12 as distance */
|
|
real
|
|
tau12 = s12_a12 / (l->b * (1 + l->A1m1)),
|
|
s = sin(tau12),
|
|
c = cos(tau12);
|
|
/* tau2 = tau1 + tau12 */
|
|
B12 = - SinCosSeries(TRUE,
|
|
l->stau1 * c + l->ctau1 * s,
|
|
l->ctau1 * c - l->stau1 * s,
|
|
l->C1pa, nC1p);
|
|
sig12 = tau12 - (B12 - l->B11);
|
|
ssig12 = sin(sig12); csig12 = cos(sig12);
|
|
if (fabs(l->f) > 0.01) {
|
|
/* Reverted distance series is inaccurate for |f| > 1/100, so correct
|
|
* sig12 with 1 Newton iteration. The following table shows the
|
|
* approximate maximum error for a = WGS_a() and various f relative to
|
|
* GeodesicExact.
|
|
* erri = the error in the inverse solution (nm)
|
|
* errd = the error in the direct solution (series only) (nm)
|
|
* errda = the error in the direct solution (series + 1 Newton) (nm)
|
|
*
|
|
* f erri errd errda
|
|
* -1/5 12e6 1.2e9 69e6
|
|
* -1/10 123e3 12e6 765e3
|
|
* -1/20 1110 108e3 7155
|
|
* -1/50 18.63 200.9 27.12
|
|
* -1/100 18.63 23.78 23.37
|
|
* -1/150 18.63 21.05 20.26
|
|
* 1/150 22.35 24.73 25.83
|
|
* 1/100 22.35 25.03 25.31
|
|
* 1/50 29.80 231.9 30.44
|
|
* 1/20 5376 146e3 10e3
|
|
* 1/10 829e3 22e6 1.5e6
|
|
* 1/5 157e6 3.8e9 280e6 */
|
|
real serr;
|
|
ssig2 = l->ssig1 * csig12 + l->csig1 * ssig12;
|
|
csig2 = l->csig1 * csig12 - l->ssig1 * ssig12;
|
|
B12 = SinCosSeries(TRUE, ssig2, csig2, l->C1a, nC1);
|
|
serr = (1 + l->A1m1) * (sig12 + (B12 - l->B11)) - s12_a12 / l->b;
|
|
sig12 = sig12 - serr / sqrt(1 + l->k2 * sq(ssig2));
|
|
ssig12 = sin(sig12); csig12 = cos(sig12);
|
|
/* Update B12 below */
|
|
}
|
|
}
|
|
|
|
/* sig2 = sig1 + sig12 */
|
|
ssig2 = l->ssig1 * csig12 + l->csig1 * ssig12;
|
|
csig2 = l->csig1 * csig12 - l->ssig1 * ssig12;
|
|
dn2 = sqrt(1 + l->k2 * sq(ssig2));
|
|
if (outmask & (GEOD_DISTANCE | GEOD_REDUCEDLENGTH | GEOD_GEODESICSCALE)) {
|
|
if (flags & GEOD_ARCMODE || fabs(l->f) > 0.01)
|
|
B12 = SinCosSeries(TRUE, ssig2, csig2, l->C1a, nC1);
|
|
AB1 = (1 + l->A1m1) * (B12 - l->B11);
|
|
}
|
|
/* sin(bet2) = cos(alp0) * sin(sig2) */
|
|
sbet2 = l->calp0 * ssig2;
|
|
/* Alt: cbet2 = hypot(csig2, salp0 * ssig2); */
|
|
cbet2 = hypotx(l->salp0, l->calp0 * csig2);
|
|
if (cbet2 == 0)
|
|
/* I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case */
|
|
cbet2 = csig2 = tiny;
|
|
/* tan(alp0) = cos(sig2)*tan(alp2) */
|
|
salp2 = l->salp0; calp2 = l->calp0 * csig2; /* No need to normalize */
|
|
|
|
if (outmask & GEOD_DISTANCE)
|
|
s12 = flags & GEOD_ARCMODE ?
|
|
l->b * ((1 + l->A1m1) * sig12 + AB1) :
|
|
s12_a12;
|
|
|
|
if (outmask & GEOD_LONGITUDE) {
|
|
real E = copysignx(1, l->salp0); /* east or west going? */
|
|
/* tan(omg2) = sin(alp0) * tan(sig2) */
|
|
somg2 = l->salp0 * ssig2; comg2 = csig2; /* No need to normalize */
|
|
/* omg12 = omg2 - omg1 */
|
|
omg12 = flags & GEOD_LONG_UNROLL
|
|
? E * (sig12
|
|
- (atan2( ssig2, csig2) - atan2( l->ssig1, l->csig1))
|
|
+ (atan2(E * somg2, comg2) - atan2(E * l->somg1, l->comg1)))
|
|
: atan2(somg2 * l->comg1 - comg2 * l->somg1,
|
|
comg2 * l->comg1 + somg2 * l->somg1);
|
|
lam12 = omg12 + l->A3c *
|
|
( sig12 + (SinCosSeries(TRUE, ssig2, csig2, l->C3a, nC3-1)
|
|
- l->B31));
|
|
lon12 = lam12 / degree;
|
|
lon2 = flags & GEOD_LONG_UNROLL ? l->lon1 + lon12 :
|
|
AngNormalize(AngNormalize(l->lon1) + AngNormalize(lon12));
|
|
}
|
|
|
|
if (outmask & GEOD_LATITUDE)
|
|
lat2 = atan2dx(sbet2, l->f1 * cbet2);
|
|
|
|
if (outmask & GEOD_AZIMUTH)
|
|
azi2 = atan2dx(salp2, calp2);
|
|
|
|
if (outmask & (GEOD_REDUCEDLENGTH | GEOD_GEODESICSCALE)) {
|
|
real
|
|
B22 = SinCosSeries(TRUE, ssig2, csig2, l->C2a, nC2),
|
|
AB2 = (1 + l->A2m1) * (B22 - l->B21),
|
|
J12 = (l->A1m1 - l->A2m1) * sig12 + (AB1 - AB2);
|
|
if (outmask & GEOD_REDUCEDLENGTH)
|
|
/* Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
|
|
* accurate cancellation in the case of coincident points. */
|
|
m12 = l->b * ((dn2 * (l->csig1 * ssig2) - l->dn1 * (l->ssig1 * csig2))
|
|
- l->csig1 * csig2 * J12);
|
|
if (outmask & GEOD_GEODESICSCALE) {
|
|
real t = l->k2 * (ssig2 - l->ssig1) * (ssig2 + l->ssig1) /
|
|
(l->dn1 + dn2);
|
|
M12 = csig12 + (t * ssig2 - csig2 * J12) * l->ssig1 / l->dn1;
|
|
M21 = csig12 - (t * l->ssig1 - l->csig1 * J12) * ssig2 / dn2;
|
|
}
|
|
}
|
|
|
|
if (outmask & GEOD_AREA) {
|
|
real
|
|
B42 = SinCosSeries(FALSE, ssig2, csig2, l->C4a, nC4);
|
|
real salp12, calp12;
|
|
if (l->calp0 == 0 || l->salp0 == 0) {
|
|
/* alp12 = alp2 - alp1, used in atan2 so no need to normalize */
|
|
salp12 = salp2 * l->calp1 - calp2 * l->salp1;
|
|
calp12 = calp2 * l->calp1 + salp2 * l->salp1;
|
|
} else {
|
|
/* tan(alp) = tan(alp0) * sec(sig)
|
|
* tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
|
|
* = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
|
|
* If csig12 > 0, write
|
|
* csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
|
|
* else
|
|
* csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
|
|
* No need to normalize */
|
|
salp12 = l->calp0 * l->salp0 *
|
|
(csig12 <= 0 ? l->csig1 * (1 - csig12) + ssig12 * l->ssig1 :
|
|
ssig12 * (l->csig1 * ssig12 / (1 + csig12) + l->ssig1));
|
|
calp12 = sq(l->salp0) + sq(l->calp0) * l->csig1 * csig2;
|
|
}
|
|
S12 = l->c2 * atan2(salp12, calp12) + l->A4 * (B42 - l->B41);
|
|
}
|
|
|
|
if (outmask & GEOD_LATITUDE)
|
|
*plat2 = lat2;
|
|
if (outmask & GEOD_LONGITUDE)
|
|
*plon2 = lon2;
|
|
if (outmask & GEOD_AZIMUTH)
|
|
*pazi2 = azi2;
|
|
if (outmask & GEOD_DISTANCE)
|
|
*ps12 = s12;
|
|
if (outmask & GEOD_REDUCEDLENGTH)
|
|
*pm12 = m12;
|
|
if (outmask & GEOD_GEODESICSCALE) {
|
|
if (pM12) *pM12 = M12;
|
|
if (pM21) *pM21 = M21;
|
|
}
|
|
if (outmask & GEOD_AREA)
|
|
*pS12 = S12;
|
|
|
|
return flags & GEOD_ARCMODE ? s12_a12 : sig12 / degree;
|
|
}
|
|
|
|
void geod_setdistance(struct geod_geodesicline* l, real s13) {
|
|
l->s13 = s13;
|
|
l->a13 = geod_genposition(l, GEOD_NOFLAGS, l->s13, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
static void geod_setarc(struct geod_geodesicline* l, real a13) {
|
|
l->a13 = a13; l->s13 = NaN;
|
|
geod_genposition(l, GEOD_ARCMODE, l->a13, 0, 0, 0, &l->s13, 0, 0, 0, 0);
|
|
}
|
|
|
|
void geod_gensetdistance(struct geod_geodesicline* l,
|
|
unsigned flags, real s13_a13) {
|
|
flags & GEOD_ARCMODE ?
|
|
geod_setarc(l, s13_a13) :
|
|
geod_setdistance(l, s13_a13);
|
|
}
|
|
|
|
void geod_position(const struct geod_geodesicline* l, real s12,
|
|
real* plat2, real* plon2, real* pazi2) {
|
|
geod_genposition(l, FALSE, s12, plat2, plon2, pazi2, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
real geod_gendirect(const struct geod_geodesic* g,
|
|
real lat1, real lon1, real azi1,
|
|
unsigned flags, real s12_a12,
|
|
real* plat2, real* plon2, real* pazi2,
|
|
real* ps12, real* pm12, real* pM12, real* pM21,
|
|
real* pS12) {
|
|
struct geod_geodesicline l;
|
|
unsigned outmask =
|
|
(plat2 ? GEOD_LATITUDE : 0U) |
|
|
(plon2 ? GEOD_LONGITUDE : 0U) |
|
|
(pazi2 ? GEOD_AZIMUTH : 0U) |
|
|
(ps12 ? GEOD_DISTANCE : 0U) |
|
|
(pm12 ? GEOD_REDUCEDLENGTH : 0U) |
|
|
(pM12 || pM21 ? GEOD_GEODESICSCALE : 0U) |
|
|
(pS12 ? GEOD_AREA : 0U);
|
|
|
|
geod_lineinit(&l, g, lat1, lon1, azi1,
|
|
/* Automatically supply GEOD_DISTANCE_IN if necessary */
|
|
outmask |
|
|
(flags & GEOD_ARCMODE ? GEOD_NONE : GEOD_DISTANCE_IN));
|
|
return geod_genposition(&l, flags, s12_a12,
|
|
plat2, plon2, pazi2, ps12, pm12, pM12, pM21, pS12);
|
|
}
|
|
|
|
void geod_direct(const struct geod_geodesic* g,
|
|
real lat1, real lon1, real azi1,
|
|
real s12,
|
|
real* plat2, real* plon2, real* pazi2) {
|
|
geod_gendirect(g, lat1, lon1, azi1, GEOD_NOFLAGS, s12, plat2, plon2, pazi2,
|
|
0, 0, 0, 0, 0);
|
|
}
|
|
|
|
static real geod_geninverse_int(const struct geod_geodesic* g,
|
|
real lat1, real lon1, real lat2, real lon2,
|
|
real* ps12,
|
|
real* psalp1, real* pcalp1,
|
|
real* psalp2, real* pcalp2,
|
|
real* pm12, real* pM12, real* pM21,
|
|
real* pS12) {
|
|
real s12 = 0, m12 = 0, M12 = 0, M21 = 0, S12 = 0;
|
|
real lon12, lon12s;
|
|
int latsign, lonsign, swapp;
|
|
real sbet1, cbet1, sbet2, cbet2, s12x = 0, m12x = 0;
|
|
real dn1, dn2, lam12, slam12, clam12;
|
|
real a12 = 0, sig12, calp1 = 0, salp1 = 0, calp2 = 0, salp2 = 0;
|
|
real Ca[nC];
|
|
boolx meridian;
|
|
/* somg12 > 1 marks that it needs to be calculated */
|
|
real omg12 = 0, somg12 = 2, comg12 = 0;
|
|
|
|
unsigned outmask =
|
|
(ps12 ? GEOD_DISTANCE : 0U) |
|
|
(pm12 ? GEOD_REDUCEDLENGTH : 0U) |
|
|
(pM12 || pM21 ? GEOD_GEODESICSCALE : 0U) |
|
|
(pS12 ? GEOD_AREA : 0U);
|
|
|
|
outmask &= OUT_ALL;
|
|
/* Compute longitude difference (AngDiff does this carefully). Result is
|
|
* in [-180, 180] but -180 is only for west-going geodesics. 180 is for
|
|
* east-going and meridional geodesics. */
|
|
lon12 = AngDiff(lon1, lon2, &lon12s);
|
|
/* Make longitude difference positive. */
|
|
lonsign = lon12 >= 0 ? 1 : -1;
|
|
/* If very close to being on the same half-meridian, then make it so. */
|
|
lon12 = lonsign * AngRound(lon12);
|
|
lon12s = AngRound((180 - lon12) - lonsign * lon12s);
|
|
lam12 = lon12 * degree;
|
|
if (lon12 > 90) {
|
|
sincosdx(lon12s, &slam12, &clam12);
|
|
clam12 = -clam12;
|
|
} else
|
|
sincosdx(lon12, &slam12, &clam12);
|
|
|
|
/* If really close to the equator, treat as on equator. */
|
|
lat1 = AngRound(LatFix(lat1));
|
|
lat2 = AngRound(LatFix(lat2));
|
|
/* Swap points so that point with higher (abs) latitude is point 1
|
|
* If one latitude is a nan, then it becomes lat1. */
|
|
swapp = fabs(lat1) < fabs(lat2) ? -1 : 1;
|
|
if (swapp < 0) {
|
|
lonsign *= -1;
|
|
swapx(&lat1, &lat2);
|
|
}
|
|
/* Make lat1 <= 0 */
|
|
latsign = lat1 < 0 ? 1 : -1;
|
|
lat1 *= latsign;
|
|
lat2 *= latsign;
|
|
/* Now we have
|
|
*
|
|
* 0 <= lon12 <= 180
|
|
* -90 <= lat1 <= 0
|
|
* lat1 <= lat2 <= -lat1
|
|
*
|
|
* longsign, swapp, latsign register the transformation to bring the
|
|
* coordinates to this canonical form. In all cases, 1 means no change was
|
|
* made. We make these transformations so that there are few cases to
|
|
* check, e.g., on verifying quadrants in atan2. In addition, this
|
|
* enforces some symmetries in the results returned. */
|
|
|
|
sincosdx(lat1, &sbet1, &cbet1); sbet1 *= g->f1;
|
|
/* Ensure cbet1 = +epsilon at poles */
|
|
norm2(&sbet1, &cbet1); cbet1 = maxx(tiny, cbet1);
|
|
|
|
sincosdx(lat2, &sbet2, &cbet2); sbet2 *= g->f1;
|
|
/* Ensure cbet2 = +epsilon at poles */
|
|
norm2(&sbet2, &cbet2); cbet2 = maxx(tiny, cbet2);
|
|
|
|
/* If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
|
|
* |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
|
|
* a better measure. This logic is used in assigning calp2 in Lambda12.
|
|
* Sometimes these quantities vanish and in that case we force bet2 = +/-
|
|
* bet1 exactly. An example where is is necessary is the inverse problem
|
|
* 48.522876735459 0 -48.52287673545898293 179.599720456223079643
|
|
* which failed with Visual Studio 10 (Release and Debug) */
|
|
|
|
if (cbet1 < -sbet1) {
|
|
if (cbet2 == cbet1)
|
|
sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
|
|
} else {
|
|
if (fabs(sbet2) == -sbet1)
|
|
cbet2 = cbet1;
|
|
}
|
|
|
|
dn1 = sqrt(1 + g->ep2 * sq(sbet1));
|
|
dn2 = sqrt(1 + g->ep2 * sq(sbet2));
|
|
|
|
meridian = lat1 == -90 || slam12 == 0;
|
|
|
|
if (meridian) {
|
|
|
|
/* Endpoints are on a single full meridian, so the geodesic might lie on
|
|
* a meridian. */
|
|
|
|
real ssig1, csig1, ssig2, csig2;
|
|
calp1 = clam12; salp1 = slam12; /* Head to the target longitude */
|
|
calp2 = 1; salp2 = 0; /* At the target we're heading north */
|
|
|
|
/* tan(bet) = tan(sig) * cos(alp) */
|
|
ssig1 = sbet1; csig1 = calp1 * cbet1;
|
|
ssig2 = sbet2; csig2 = calp2 * cbet2;
|
|
|
|
/* sig12 = sig2 - sig1 */
|
|
sig12 = atan2(maxx((real)(0), csig1 * ssig2 - ssig1 * csig2),
|
|
csig1 * csig2 + ssig1 * ssig2);
|
|
Lengths(g, g->n, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
|
|
cbet1, cbet2, &s12x, &m12x, 0,
|
|
outmask & GEOD_GEODESICSCALE ? &M12 : 0,
|
|
outmask & GEOD_GEODESICSCALE ? &M21 : 0,
|
|
Ca);
|
|
/* Add the check for sig12 since zero length geodesics might yield m12 <
|
|
* 0. Test case was
|
|
*
|
|
* echo 20.001 0 20.001 0 | GeodSolve -i
|
|
*
|
|
* In fact, we will have sig12 > pi/2 for meridional geodesic which is
|
|
* not a shortest path. */
|
|
if (sig12 < 1 || m12x >= 0) {
|
|
/* Need at least 2, to handle 90 0 90 180 */
|
|
if (sig12 < 3 * tiny)
|
|
sig12 = m12x = s12x = 0;
|
|
m12x *= g->b;
|
|
s12x *= g->b;
|
|
a12 = sig12 / degree;
|
|
} else
|
|
/* m12 < 0, i.e., prolate and too close to anti-podal */
|
|
meridian = FALSE;
|
|
}
|
|
|
|
if (!meridian &&
|
|
sbet1 == 0 && /* and sbet2 == 0 */
|
|
/* Mimic the way Lambda12 works with calp1 = 0 */
|
|
(g->f <= 0 || lon12s >= g->f * 180)) {
|
|
|
|
/* Geodesic runs along equator */
|
|
calp1 = calp2 = 0; salp1 = salp2 = 1;
|
|
s12x = g->a * lam12;
|
|
sig12 = omg12 = lam12 / g->f1;
|
|
m12x = g->b * sin(sig12);
|
|
if (outmask & GEOD_GEODESICSCALE)
|
|
M12 = M21 = cos(sig12);
|
|
a12 = lon12 / g->f1;
|
|
|
|
} else if (!meridian) {
|
|
|
|
/* Now point1 and point2 belong within a hemisphere bounded by a
|
|
* meridian and geodesic is neither meridional or equatorial. */
|
|
|
|
/* Figure a starting point for Newton's method */
|
|
real dnm = 0;
|
|
sig12 = InverseStart(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
|
|
lam12, slam12, clam12,
|
|
&salp1, &calp1, &salp2, &calp2, &dnm,
|
|
Ca);
|
|
|
|
if (sig12 >= 0) {
|
|
/* Short lines (InverseStart sets salp2, calp2, dnm) */
|
|
s12x = sig12 * g->b * dnm;
|
|
m12x = sq(dnm) * g->b * sin(sig12 / dnm);
|
|
if (outmask & GEOD_GEODESICSCALE)
|
|
M12 = M21 = cos(sig12 / dnm);
|
|
a12 = sig12 / degree;
|
|
omg12 = lam12 / (g->f1 * dnm);
|
|
} else {
|
|
|
|
/* Newton's method. This is a straightforward solution of f(alp1) =
|
|
* lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one
|
|
* root in the interval (0, pi) and its derivative is positive at the
|
|
* root. Thus f(alp) is positive for alp > alp1 and negative for alp <
|
|
* alp1. During the course of the iteration, a range (alp1a, alp1b) is
|
|
* maintained which brackets the root and with each evaluation of
|
|
* f(alp) the range is shrunk, if possible. Newton's method is
|
|
* restarted whenever the derivative of f is negative (because the new
|
|
* value of alp1 is then further from the solution) or if the new
|
|
* estimate of alp1 lies outside (0,pi); in this case, the new starting
|
|
* guess is taken to be (alp1a + alp1b) / 2. */
|
|
real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0, domg12 = 0;
|
|
unsigned numit = 0;
|
|
/* Bracketing range */
|
|
real salp1a = tiny, calp1a = 1, salp1b = tiny, calp1b = -1;
|
|
boolx tripn, tripb;
|
|
for (tripn = FALSE, tripb = FALSE; numit < maxit2; ++numit) {
|
|
/* the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
|
|
* WGS84 and random input: mean = 2.85, sd = 0.60 */
|
|
real dv = 0,
|
|
v = Lambda12(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
|
|
slam12, clam12,
|
|
&salp2, &calp2, &sig12, &ssig1, &csig1, &ssig2, &csig2,
|
|
&eps, &domg12, numit < maxit1, &dv, Ca);
|
|
/* 2 * tol0 is approximately 1 ulp for a number in [0, pi]. */
|
|
/* Reversed test to allow escape with NaNs */
|
|
if (tripb || !(fabs(v) >= (tripn ? 8 : 1) * tol0)) break;
|
|
/* Update bracketing values */
|
|
if (v > 0 && (numit > maxit1 || calp1/salp1 > calp1b/salp1b))
|
|
{ salp1b = salp1; calp1b = calp1; }
|
|
else if (v < 0 && (numit > maxit1 || calp1/salp1 < calp1a/salp1a))
|
|
{ salp1a = salp1; calp1a = calp1; }
|
|
if (numit < maxit1 && dv > 0) {
|
|
real
|
|
dalp1 = -v/dv;
|
|
real
|
|
sdalp1 = sin(dalp1), cdalp1 = cos(dalp1),
|
|
nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
|
|
if (nsalp1 > 0 && fabs(dalp1) < pi) {
|
|
calp1 = calp1 * cdalp1 - salp1 * sdalp1;
|
|
salp1 = nsalp1;
|
|
norm2(&salp1, &calp1);
|
|
/* In some regimes we don't get quadratic convergence because
|
|
* slope -> 0. So use convergence conditions based on epsilon
|
|
* instead of sqrt(epsilon). */
|
|
tripn = fabs(v) <= 16 * tol0;
|
|
continue;
|
|
}
|
|
}
|
|
/* Either dv was not positive or updated value was outside legal
|
|
* range. Use the midpoint of the bracket as the next estimate.
|
|
* This mechanism is not needed for the WGS84 ellipsoid, but it does
|
|
* catch problems with more eccentric ellipsoids. Its efficacy is
|
|
* such for the WGS84 test set with the starting guess set to alp1 =
|
|
* 90deg:
|
|
* the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
|
|
* WGS84 and random input: mean = 4.74, sd = 0.99 */
|
|
salp1 = (salp1a + salp1b)/2;
|
|
calp1 = (calp1a + calp1b)/2;
|
|
norm2(&salp1, &calp1);
|
|
tripn = FALSE;
|
|
tripb = (fabs(salp1a - salp1) + (calp1a - calp1) < tolb ||
|
|
fabs(salp1 - salp1b) + (calp1 - calp1b) < tolb);
|
|
}
|
|
Lengths(g, eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
|
|
cbet1, cbet2, &s12x, &m12x, 0,
|
|
outmask & GEOD_GEODESICSCALE ? &M12 : 0,
|
|
outmask & GEOD_GEODESICSCALE ? &M21 : 0, Ca);
|
|
m12x *= g->b;
|
|
s12x *= g->b;
|
|
a12 = sig12 / degree;
|
|
if (outmask & GEOD_AREA) {
|
|
/* omg12 = lam12 - domg12 */
|
|
real sdomg12 = sin(domg12), cdomg12 = cos(domg12);
|
|
somg12 = slam12 * cdomg12 - clam12 * sdomg12;
|
|
comg12 = clam12 * cdomg12 + slam12 * sdomg12;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (outmask & GEOD_DISTANCE)
|
|
s12 = 0 + s12x; /* Convert -0 to 0 */
|
|
|
|
if (outmask & GEOD_REDUCEDLENGTH)
|
|
m12 = 0 + m12x; /* Convert -0 to 0 */
|
|
|
|
if (outmask & GEOD_AREA) {
|
|
real
|
|
/* From Lambda12: sin(alp1) * cos(bet1) = sin(alp0) */
|
|
salp0 = salp1 * cbet1,
|
|
calp0 = hypotx(calp1, salp1 * sbet1); /* calp0 > 0 */
|
|
real alp12;
|
|
if (calp0 != 0 && salp0 != 0) {
|
|
real
|
|
/* From Lambda12: tan(bet) = tan(sig) * cos(alp) */
|
|
ssig1 = sbet1, csig1 = calp1 * cbet1,
|
|
ssig2 = sbet2, csig2 = calp2 * cbet2,
|
|
k2 = sq(calp0) * g->ep2,
|
|
eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2),
|
|
/* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0). */
|
|
A4 = sq(g->a) * calp0 * salp0 * g->e2;
|
|
real B41, B42;
|
|
norm2(&ssig1, &csig1);
|
|
norm2(&ssig2, &csig2);
|
|
C4f(g, eps, Ca);
|
|
B41 = SinCosSeries(FALSE, ssig1, csig1, Ca, nC4);
|
|
B42 = SinCosSeries(FALSE, ssig2, csig2, Ca, nC4);
|
|
S12 = A4 * (B42 - B41);
|
|
} else
|
|
/* Avoid problems with indeterminate sig1, sig2 on equator */
|
|
S12 = 0;
|
|
|
|
if (!meridian && somg12 > 1) {
|
|
somg12 = sin(omg12); comg12 = cos(omg12);
|
|
}
|
|
|
|
if (!meridian &&
|
|
/* omg12 < 3/4 * pi */
|
|
comg12 > -(real)(0.7071) && /* Long difference not too big */
|
|
sbet2 - sbet1 < (real)(1.75)) { /* Lat difference not too big */
|
|
/* Use tan(Gamma/2) = tan(omg12/2)
|
|
* * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
|
|
* with tan(x/2) = sin(x)/(1+cos(x)) */
|
|
real
|
|
domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2;
|
|
alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
|
|
domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) );
|
|
} else {
|
|
/* alp12 = alp2 - alp1, used in atan2 so no need to normalize */
|
|
real
|
|
salp12 = salp2 * calp1 - calp2 * salp1,
|
|
calp12 = calp2 * calp1 + salp2 * salp1;
|
|
/* The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
|
|
* salp12 = -0 and alp12 = -180. However this depends on the sign
|
|
* being attached to 0 correctly. The following ensures the correct
|
|
* behavior. */
|
|
if (salp12 == 0 && calp12 < 0) {
|
|
salp12 = tiny * calp1;
|
|
calp12 = -1;
|
|
}
|
|
alp12 = atan2(salp12, calp12);
|
|
}
|
|
S12 += g->c2 * alp12;
|
|
S12 *= swapp * lonsign * latsign;
|
|
/* Convert -0 to 0 */
|
|
S12 += 0;
|
|
}
|
|
|
|
/* Convert calp, salp to azimuth accounting for lonsign, swapp, latsign. */
|
|
if (swapp < 0) {
|
|
swapx(&salp1, &salp2);
|
|
swapx(&calp1, &calp2);
|
|
if (outmask & GEOD_GEODESICSCALE)
|
|
swapx(&M12, &M21);
|
|
}
|
|
|
|
salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
|
|
salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
|
|
|
|
if (psalp1) *psalp1 = salp1;
|
|
if (pcalp1) *pcalp1 = calp1;
|
|
if (psalp2) *psalp2 = salp2;
|
|
if (pcalp2) *pcalp2 = calp2;
|
|
|
|
if (outmask & GEOD_DISTANCE)
|
|
*ps12 = s12;
|
|
if (outmask & GEOD_REDUCEDLENGTH)
|
|
*pm12 = m12;
|
|
if (outmask & GEOD_GEODESICSCALE) {
|
|
if (pM12) *pM12 = M12;
|
|
if (pM21) *pM21 = M21;
|
|
}
|
|
if (outmask & GEOD_AREA)
|
|
*pS12 = S12;
|
|
|
|
/* Returned value in [0, 180] */
|
|
return a12;
|
|
}
|
|
|
|
real geod_geninverse(const struct geod_geodesic* g,
|
|
real lat1, real lon1, real lat2, real lon2,
|
|
real* ps12, real* pazi1, real* pazi2,
|
|
real* pm12, real* pM12, real* pM21, real* pS12) {
|
|
real salp1, calp1, salp2, calp2,
|
|
a12 = geod_geninverse_int(g, lat1, lon1, lat2, lon2, ps12,
|
|
&salp1, &calp1, &salp2, &calp2,
|
|
pm12, pM12, pM21, pS12);
|
|
if (pazi1) *pazi1 = atan2dx(salp1, calp1);
|
|
if (pazi2) *pazi2 = atan2dx(salp2, calp2);
|
|
return a12;
|
|
}
|
|
|
|
void geod_inverseline(struct geod_geodesicline* l,
|
|
const struct geod_geodesic* g,
|
|
real lat1, real lon1, real lat2, real lon2,
|
|
unsigned caps) {
|
|
real salp1, calp1,
|
|
a12 = geod_geninverse_int(g, lat1, lon1, lat2, lon2, 0,
|
|
&salp1, &calp1, 0, 0,
|
|
0, 0, 0, 0),
|
|
azi1 = atan2dx(salp1, calp1);
|
|
caps = caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE;
|
|
/* Ensure that a12 can be converted to a distance */
|
|
if (caps & (OUT_ALL & GEOD_DISTANCE_IN)) caps |= GEOD_DISTANCE;
|
|
geod_lineinit_int(l, g, lat1, lon1, azi1, salp1, calp1, caps);
|
|
geod_setarc(l, a12);
|
|
}
|
|
|
|
void geod_inverse(const struct geod_geodesic* g,
|
|
real lat1, real lon1, real lat2, real lon2,
|
|
real* ps12, real* pazi1, real* pazi2) {
|
|
geod_geninverse(g, lat1, lon1, lat2, lon2, ps12, pazi1, pazi2, 0, 0, 0, 0);
|
|
}
|
|
|
|
real SinCosSeries(boolx sinp, real sinx, real cosx, const real c[], int n) {
|
|
/* Evaluate
|
|
* y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) :
|
|
* sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
|
|
* using Clenshaw summation. N.B. c[0] is unused for sin series
|
|
* Approx operation count = (n + 5) mult and (2 * n + 2) add */
|
|
real ar, y0, y1;
|
|
c += (n + sinp); /* Point to one beyond last element */
|
|
ar = 2 * (cosx - sinx) * (cosx + sinx); /* 2 * cos(2 * x) */
|
|
y0 = n & 1 ? *--c : 0; y1 = 0; /* accumulators for sum */
|
|
/* Now n is even */
|
|
n /= 2;
|
|
while (n--) {
|
|
/* Unroll loop x 2, so accumulators return to their original role */
|
|
y1 = ar * y0 - y1 + *--c;
|
|
y0 = ar * y1 - y0 + *--c;
|
|
}
|
|
return sinp
|
|
? 2 * sinx * cosx * y0 /* sin(2 * x) * y0 */
|
|
: cosx * (y0 - y1); /* cos(x) * (y0 - y1) */
|
|
}
|
|
|
|
void Lengths(const struct geod_geodesic* g,
|
|
real eps, real sig12,
|
|
real ssig1, real csig1, real dn1,
|
|
real ssig2, real csig2, real dn2,
|
|
real cbet1, real cbet2,
|
|
real* ps12b, real* pm12b, real* pm0,
|
|
real* pM12, real* pM21,
|
|
/* Scratch area of the right size */
|
|
real Ca[]) {
|
|
real m0 = 0, J12 = 0, A1 = 0, A2 = 0;
|
|
real Cb[nC];
|
|
|
|
/* Return m12b = (reduced length)/b; also calculate s12b = distance/b,
|
|
* and m0 = coefficient of secular term in expression for reduced length. */
|
|
boolx redlp = pm12b || pm0 || pM12 || pM21;
|
|
if (ps12b || redlp) {
|
|
A1 = A1m1f(eps);
|
|
C1f(eps, Ca);
|
|
if (redlp) {
|
|
A2 = A2m1f(eps);
|
|
C2f(eps, Cb);
|
|
m0 = A1 - A2;
|
|
A2 = 1 + A2;
|
|
}
|
|
A1 = 1 + A1;
|
|
}
|
|
if (ps12b) {
|
|
real B1 = SinCosSeries(TRUE, ssig2, csig2, Ca, nC1) -
|
|
SinCosSeries(TRUE, ssig1, csig1, Ca, nC1);
|
|
/* Missing a factor of b */
|
|
*ps12b = A1 * (sig12 + B1);
|
|
if (redlp) {
|
|
real B2 = SinCosSeries(TRUE, ssig2, csig2, Cb, nC2) -
|
|
SinCosSeries(TRUE, ssig1, csig1, Cb, nC2);
|
|
J12 = m0 * sig12 + (A1 * B1 - A2 * B2);
|
|
}
|
|
} else if (redlp) {
|
|
/* Assume here that nC1 >= nC2 */
|
|
int l;
|
|
for (l = 1; l <= nC2; ++l)
|
|
Cb[l] = A1 * Ca[l] - A2 * Cb[l];
|
|
J12 = m0 * sig12 + (SinCosSeries(TRUE, ssig2, csig2, Cb, nC2) -
|
|
SinCosSeries(TRUE, ssig1, csig1, Cb, nC2));
|
|
}
|
|
if (pm0) *pm0 = m0;
|
|
if (pm12b)
|
|
/* Missing a factor of b.
|
|
* Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
|
|
* accurate cancellation in the case of coincident points. */
|
|
*pm12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
|
|
csig1 * csig2 * J12;
|
|
if (pM12 || pM21) {
|
|
real csig12 = csig1 * csig2 + ssig1 * ssig2;
|
|
real t = g->ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
|
|
if (pM12)
|
|
*pM12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
|
|
if (pM21)
|
|
*pM21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
|
|
}
|
|
}
|
|
|
|
real Astroid(real x, real y) {
|
|
/* Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
|
|
* This solution is adapted from Geocentric::Reverse. */
|
|
real k;
|
|
real
|
|
p = sq(x),
|
|
q = sq(y),
|
|
r = (p + q - 1) / 6;
|
|
if ( !(q == 0 && r <= 0) ) {
|
|
real
|
|
/* Avoid possible division by zero when r = 0 by multiplying equations
|
|
* for s and t by r^3 and r, resp. */
|
|
S = p * q / 4, /* S = r^3 * s */
|
|
r2 = sq(r),
|
|
r3 = r * r2,
|
|
/* The discriminant of the quadratic equation for T3. This is zero on
|
|
* the evolute curve p^(1/3)+q^(1/3) = 1 */
|
|
disc = S * (S + 2 * r3);
|
|
real u = r;
|
|
real v, uv, w;
|
|
if (disc >= 0) {
|
|
real T3 = S + r3, T;
|
|
/* Pick the sign on the sqrt to maximize abs(T3). This minimizes loss
|
|
* of precision due to cancellation. The result is unchanged because
|
|
* of the way the T is used in definition of u. */
|
|
T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); /* T3 = (r * t)^3 */
|
|
/* N.B. cbrtx always returns the real root. cbrtx(-8) = -2. */
|
|
T = cbrtx(T3); /* T = r * t */
|
|
/* T can be zero; but then r2 / T -> 0. */
|
|
u += T + (T != 0 ? r2 / T : 0);
|
|
} else {
|
|
/* T is complex, but the way u is defined the result is real. */
|
|
real ang = atan2(sqrt(-disc), -(S + r3));
|
|
/* There are three possible cube roots. We choose the root which
|
|
* avoids cancellation. Note that disc < 0 implies that r < 0. */
|
|
u += 2 * r * cos(ang / 3);
|
|
}
|
|
v = sqrt(sq(u) + q); /* guaranteed positive */
|
|
/* Avoid loss of accuracy when u < 0. */
|
|
uv = u < 0 ? q / (v - u) : u + v; /* u+v, guaranteed positive */
|
|
w = (uv - q) / (2 * v); /* positive? */
|
|
/* Rearrange expression for k to avoid loss of accuracy due to
|
|
* subtraction. Division by 0 not possible because uv > 0, w >= 0. */
|
|
k = uv / (sqrt(uv + sq(w)) + w); /* guaranteed positive */
|
|
} else { /* q == 0 && r <= 0 */
|
|
/* y = 0 with |x| <= 1. Handle this case directly.
|
|
* for y small, positive root is k = abs(y)/sqrt(1-x^2) */
|
|
k = 0;
|
|
}
|
|
return k;
|
|
}
|
|
|
|
real InverseStart(const struct geod_geodesic* g,
|
|
real sbet1, real cbet1, real dn1,
|
|
real sbet2, real cbet2, real dn2,
|
|
real lam12, real slam12, real clam12,
|
|
real* psalp1, real* pcalp1,
|
|
/* Only updated if return val >= 0 */
|
|
real* psalp2, real* pcalp2,
|
|
/* Only updated for short lines */
|
|
real* pdnm,
|
|
/* Scratch area of the right size */
|
|
real Ca[]) {
|
|
real salp1 = 0, calp1 = 0, salp2 = 0, calp2 = 0, dnm = 0;
|
|
|
|
/* Return a starting point for Newton's method in salp1 and calp1 (function
|
|
* value is -1). If Newton's method doesn't need to be used, return also
|
|
* salp2 and calp2 and function value is sig12. */
|
|
real
|
|
sig12 = -1, /* Return value */
|
|
/* bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0] */
|
|
sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
|
|
cbet12 = cbet2 * cbet1 + sbet2 * sbet1;
|
|
real sbet12a;
|
|
boolx shortline = cbet12 >= 0 && sbet12 < (real)(0.5) &&
|
|
cbet2 * lam12 < (real)(0.5);
|
|
real somg12, comg12, ssig12, csig12;
|
|
#if defined(__GNUC__) && __GNUC__ == 4 && \
|
|
(__GNUC_MINOR__ < 6 || defined(__MINGW32__))
|
|
/* Volatile declaration needed to fix inverse cases
|
|
* 88.202499451857 0 -88.202499451857 179.981022032992859592
|
|
* 89.262080389218 0 -89.262080389218 179.992207982775375662
|
|
* 89.333123580033 0 -89.333123580032997687 179.99295812360148422
|
|
* which otherwise fail with g++ 4.4.4 x86 -O3 (Linux)
|
|
* and g++ 4.4.0 (mingw) and g++ 4.6.1 (tdm mingw). */
|
|
{
|
|
volatile real xx1 = sbet2 * cbet1;
|
|
volatile real xx2 = cbet2 * sbet1;
|
|
sbet12a = xx1 + xx2;
|
|
}
|
|
#else
|
|
sbet12a = sbet2 * cbet1 + cbet2 * sbet1;
|
|
#endif
|
|
if (shortline) {
|
|
real sbetm2 = sq(sbet1 + sbet2), omg12;
|
|
/* sin((bet1+bet2)/2)^2
|
|
* = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2) */
|
|
sbetm2 /= sbetm2 + sq(cbet1 + cbet2);
|
|
dnm = sqrt(1 + g->ep2 * sbetm2);
|
|
omg12 = lam12 / (g->f1 * dnm);
|
|
somg12 = sin(omg12); comg12 = cos(omg12);
|
|
} else {
|
|
somg12 = slam12; comg12 = clam12;
|
|
}
|
|
|
|
salp1 = cbet2 * somg12;
|
|
calp1 = comg12 >= 0 ?
|
|
sbet12 + cbet2 * sbet1 * sq(somg12) / (1 + comg12) :
|
|
sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12);
|
|
|
|
ssig12 = hypotx(salp1, calp1);
|
|
csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
|
|
|
|
if (shortline && ssig12 < g->etol2) {
|
|
/* really short lines */
|
|
salp2 = cbet1 * somg12;
|
|
calp2 = sbet12 - cbet1 * sbet2 *
|
|
(comg12 >= 0 ? sq(somg12) / (1 + comg12) : 1 - comg12);
|
|
norm2(&salp2, &calp2);
|
|
/* Set return value */
|
|
sig12 = atan2(ssig12, csig12);
|
|
} else if (fabs(g->n) > (real)(0.1) || /* No astroid calc if too eccentric */
|
|
csig12 >= 0 ||
|
|
ssig12 >= 6 * fabs(g->n) * pi * sq(cbet1)) {
|
|
/* Nothing to do, zeroth order spherical approximation is OK */
|
|
} else {
|
|
/* Scale lam12 and bet2 to x, y coordinate system where antipodal point
|
|
* is at origin and singular point is at y = 0, x = -1. */
|
|
real y, lamscale, betscale;
|
|
/* Volatile declaration needed to fix inverse case
|
|
* 56.320923501171 0 -56.320923501171 179.664747671772880215
|
|
* which otherwise fails with g++ 4.4.4 x86 -O3 */
|
|
volatile real x;
|
|
real lam12x = atan2(-slam12, -clam12); /* lam12 - pi */
|
|
if (g->f >= 0) { /* In fact f == 0 does not get here */
|
|
/* x = dlong, y = dlat */
|
|
{
|
|
real
|
|
k2 = sq(sbet1) * g->ep2,
|
|
eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
|
|
lamscale = g->f * cbet1 * A3f(g, eps) * pi;
|
|
}
|
|
betscale = lamscale * cbet1;
|
|
|
|
x = lam12x / lamscale;
|
|
y = sbet12a / betscale;
|
|
} else { /* f < 0 */
|
|
/* x = dlat, y = dlong */
|
|
real
|
|
cbet12a = cbet2 * cbet1 - sbet2 * sbet1,
|
|
bet12a = atan2(sbet12a, cbet12a);
|
|
real m12b, m0;
|
|
/* In the case of lon12 = 180, this repeats a calculation made in
|
|
* Inverse. */
|
|
Lengths(g, g->n, pi + bet12a,
|
|
sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
|
|
cbet1, cbet2, 0, &m12b, &m0, 0, 0, Ca);
|
|
x = -1 + m12b / (cbet1 * cbet2 * m0 * pi);
|
|
betscale = x < -(real)(0.01) ? sbet12a / x :
|
|
-g->f * sq(cbet1) * pi;
|
|
lamscale = betscale / cbet1;
|
|
y = lam12x / lamscale;
|
|
}
|
|
|
|
if (y > -tol1 && x > -1 - xthresh) {
|
|
/* strip near cut */
|
|
if (g->f >= 0) {
|
|
salp1 = minx((real)(1), -(real)(x)); calp1 = - sqrt(1 - sq(salp1));
|
|
} else {
|
|
calp1 = maxx((real)(x > -tol1 ? 0 : -1), (real)(x));
|
|
salp1 = sqrt(1 - sq(calp1));
|
|
}
|
|
} else {
|
|
/* Estimate alp1, by solving the astroid problem.
|
|
*
|
|
* Could estimate alpha1 = theta + pi/2, directly, i.e.,
|
|
* calp1 = y/k; salp1 = -x/(1+k); for f >= 0
|
|
* calp1 = x/(1+k); salp1 = -y/k; for f < 0 (need to check)
|
|
*
|
|
* However, it's better to estimate omg12 from astroid and use
|
|
* spherical formula to compute alp1. This reduces the mean number of
|
|
* Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
|
|
* (min 0 max 5). The changes in the number of iterations are as
|
|
* follows:
|
|
*
|
|
* change percent
|
|
* 1 5
|
|
* 0 78
|
|
* -1 16
|
|
* -2 0.6
|
|
* -3 0.04
|
|
* -4 0.002
|
|
*
|
|
* The histogram of iterations is (m = number of iterations estimating
|
|
* alp1 directly, n = number of iterations estimating via omg12, total
|
|
* number of trials = 148605):
|
|
*
|
|
* iter m n
|
|
* 0 148 186
|
|
* 1 13046 13845
|
|
* 2 93315 102225
|
|
* 3 36189 32341
|
|
* 4 5396 7
|
|
* 5 455 1
|
|
* 6 56 0
|
|
*
|
|
* Because omg12 is near pi, estimate work with omg12a = pi - omg12 */
|
|
real k = Astroid(x, y);
|
|
real
|
|
omg12a = lamscale * ( g->f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
|
|
somg12 = sin(omg12a); comg12 = -cos(omg12a);
|
|
/* Update spherical estimate of alp1 using omg12 instead of lam12 */
|
|
salp1 = cbet2 * somg12;
|
|
calp1 = sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12);
|
|
}
|
|
}
|
|
/* Sanity check on starting guess. Backwards check allows NaN through. */
|
|
if (!(salp1 <= 0))
|
|
norm2(&salp1, &calp1);
|
|
else {
|
|
salp1 = 1; calp1 = 0;
|
|
}
|
|
|
|
*psalp1 = salp1;
|
|
*pcalp1 = calp1;
|
|
if (shortline)
|
|
*pdnm = dnm;
|
|
if (sig12 >= 0) {
|
|
*psalp2 = salp2;
|
|
*pcalp2 = calp2;
|
|
}
|
|
return sig12;
|
|
}
|
|
|
|
real Lambda12(const struct geod_geodesic* g,
|
|
real sbet1, real cbet1, real dn1,
|
|
real sbet2, real cbet2, real dn2,
|
|
real salp1, real calp1,
|
|
real slam120, real clam120,
|
|
real* psalp2, real* pcalp2,
|
|
real* psig12,
|
|
real* pssig1, real* pcsig1,
|
|
real* pssig2, real* pcsig2,
|
|
real* peps,
|
|
real* pdomg12,
|
|
boolx diffp, real* pdlam12,
|
|
/* Scratch area of the right size */
|
|
real Ca[]) {
|
|
real salp2 = 0, calp2 = 0, sig12 = 0,
|
|
ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0,
|
|
domg12 = 0, dlam12 = 0;
|
|
real salp0, calp0;
|
|
real somg1, comg1, somg2, comg2, somg12, comg12, lam12;
|
|
real B312, eta, k2;
|
|
|
|
if (sbet1 == 0 && calp1 == 0)
|
|
/* Break degeneracy of equatorial line. This case has already been
|
|
* handled. */
|
|
calp1 = -tiny;
|
|
|
|
/* sin(alp1) * cos(bet1) = sin(alp0) */
|
|
salp0 = salp1 * cbet1;
|
|
calp0 = hypotx(calp1, salp1 * sbet1); /* calp0 > 0 */
|
|
|
|
/* tan(bet1) = tan(sig1) * cos(alp1)
|
|
* tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1) */
|
|
ssig1 = sbet1; somg1 = salp0 * sbet1;
|
|
csig1 = comg1 = calp1 * cbet1;
|
|
norm2(&ssig1, &csig1);
|
|
/* norm2(&somg1, &comg1); -- don't need to normalize! */
|
|
|
|
/* Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful
|
|
* about this case, since this can yield singularities in the Newton
|
|
* iteration.
|
|
* sin(alp2) * cos(bet2) = sin(alp0) */
|
|
salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1;
|
|
/* calp2 = sqrt(1 - sq(salp2))
|
|
* = sqrt(sq(calp0) - sq(sbet2)) / cbet2
|
|
* and subst for calp0 and rearrange to give (choose positive sqrt
|
|
* to give alp2 in [0, pi/2]). */
|
|
calp2 = cbet2 != cbet1 || fabs(sbet2) != -sbet1 ?
|
|
sqrt(sq(calp1 * cbet1) +
|
|
(cbet1 < -sbet1 ?
|
|
(cbet2 - cbet1) * (cbet1 + cbet2) :
|
|
(sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 :
|
|
fabs(calp1);
|
|
/* tan(bet2) = tan(sig2) * cos(alp2)
|
|
* tan(omg2) = sin(alp0) * tan(sig2). */
|
|
ssig2 = sbet2; somg2 = salp0 * sbet2;
|
|
csig2 = comg2 = calp2 * cbet2;
|
|
norm2(&ssig2, &csig2);
|
|
/* norm2(&somg2, &comg2); -- don't need to normalize! */
|
|
|
|
/* sig12 = sig2 - sig1, limit to [0, pi] */
|
|
sig12 = atan2(maxx((real)(0), csig1 * ssig2 - ssig1 * csig2),
|
|
csig1 * csig2 + ssig1 * ssig2);
|
|
|
|
/* omg12 = omg2 - omg1, limit to [0, pi] */
|
|
somg12 = maxx((real)(0), comg1 * somg2 - somg1 * comg2);
|
|
comg12 = comg1 * comg2 + somg1 * somg2;
|
|
/* eta = omg12 - lam120 */
|
|
eta = atan2(somg12 * clam120 - comg12 * slam120,
|
|
comg12 * clam120 + somg12 * slam120);
|
|
k2 = sq(calp0) * g->ep2;
|
|
eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
|
|
C3f(g, eps, Ca);
|
|
B312 = (SinCosSeries(TRUE, ssig2, csig2, Ca, nC3-1) -
|
|
SinCosSeries(TRUE, ssig1, csig1, Ca, nC3-1));
|
|
domg12 = -g->f * A3f(g, eps) * salp0 * (sig12 + B312);
|
|
lam12 = eta + domg12;
|
|
|
|
if (diffp) {
|
|
if (calp2 == 0)
|
|
dlam12 = - 2 * g->f1 * dn1 / sbet1;
|
|
else {
|
|
Lengths(g, eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
|
|
cbet1, cbet2, 0, &dlam12, 0, 0, 0, Ca);
|
|
dlam12 *= g->f1 / (calp2 * cbet2);
|
|
}
|
|
}
|
|
|
|
*psalp2 = salp2;
|
|
*pcalp2 = calp2;
|
|
*psig12 = sig12;
|
|
*pssig1 = ssig1;
|
|
*pcsig1 = csig1;
|
|
*pssig2 = ssig2;
|
|
*pcsig2 = csig2;
|
|
*peps = eps;
|
|
*pdomg12 = domg12;
|
|
if (diffp)
|
|
*pdlam12 = dlam12;
|
|
|
|
return lam12;
|
|
}
|
|
|
|
real A3f(const struct geod_geodesic* g, real eps) {
|
|
/* Evaluate A3 */
|
|
return polyval(nA3 - 1, g->A3x, eps);
|
|
}
|
|
|
|
void C3f(const struct geod_geodesic* g, real eps, real c[]) {
|
|
/* Evaluate C3 coeffs
|
|
* Elements c[1] through c[nC3 - 1] are set */
|
|
real mult = 1;
|
|
int o = 0, l;
|
|
for (l = 1; l < nC3; ++l) { /* l is index of C3[l] */
|
|
int m = nC3 - l - 1; /* order of polynomial in eps */
|
|
mult *= eps;
|
|
c[l] = mult * polyval(m, g->C3x + o, eps);
|
|
o += m + 1;
|
|
}
|
|
}
|
|
|
|
void C4f(const struct geod_geodesic* g, real eps, real c[]) {
|
|
/* Evaluate C4 coeffs
|
|
* Elements c[0] through c[nC4 - 1] are set */
|
|
real mult = 1;
|
|
int o = 0, l;
|
|
for (l = 0; l < nC4; ++l) { /* l is index of C4[l] */
|
|
int m = nC4 - l - 1; /* order of polynomial in eps */
|
|
c[l] = mult * polyval(m, g->C4x + o, eps);
|
|
o += m + 1;
|
|
mult *= eps;
|
|
}
|
|
}
|
|
|
|
/* The scale factor A1-1 = mean value of (d/dsigma)I1 - 1 */
|
|
real A1m1f(real eps) {
|
|
static const real coeff[] = {
|
|
/* (1-eps)*A1-1, polynomial in eps2 of order 3 */
|
|
1, 4, 64, 0, 256,
|
|
};
|
|
int m = nA1/2;
|
|
real t = polyval(m, coeff, sq(eps)) / coeff[m + 1];
|
|
return (t + eps) / (1 - eps);
|
|
}
|
|
|
|
/* The coefficients C1[l] in the Fourier expansion of B1 */
|
|
void C1f(real eps, real c[]) {
|
|
static const real coeff[] = {
|
|
/* C1[1]/eps^1, polynomial in eps2 of order 2 */
|
|
-1, 6, -16, 32,
|
|
/* C1[2]/eps^2, polynomial in eps2 of order 2 */
|
|
-9, 64, -128, 2048,
|
|
/* C1[3]/eps^3, polynomial in eps2 of order 1 */
|
|
9, -16, 768,
|
|
/* C1[4]/eps^4, polynomial in eps2 of order 1 */
|
|
3, -5, 512,
|
|
/* C1[5]/eps^5, polynomial in eps2 of order 0 */
|
|
-7, 1280,
|
|
/* C1[6]/eps^6, polynomial in eps2 of order 0 */
|
|
-7, 2048,
|
|
};
|
|
real
|
|
eps2 = sq(eps),
|
|
d = eps;
|
|
int o = 0, l;
|
|
for (l = 1; l <= nC1; ++l) { /* l is index of C1p[l] */
|
|
int m = (nC1 - l) / 2; /* order of polynomial in eps^2 */
|
|
c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
|
|
o += m + 2;
|
|
d *= eps;
|
|
}
|
|
}
|
|
|
|
/* The coefficients C1p[l] in the Fourier expansion of B1p */
|
|
void C1pf(real eps, real c[]) {
|
|
static const real coeff[] = {
|
|
/* C1p[1]/eps^1, polynomial in eps2 of order 2 */
|
|
205, -432, 768, 1536,
|
|
/* C1p[2]/eps^2, polynomial in eps2 of order 2 */
|
|
4005, -4736, 3840, 12288,
|
|
/* C1p[3]/eps^3, polynomial in eps2 of order 1 */
|
|
-225, 116, 384,
|
|
/* C1p[4]/eps^4, polynomial in eps2 of order 1 */
|
|
-7173, 2695, 7680,
|
|
/* C1p[5]/eps^5, polynomial in eps2 of order 0 */
|
|
3467, 7680,
|
|
/* C1p[6]/eps^6, polynomial in eps2 of order 0 */
|
|
38081, 61440,
|
|
};
|
|
real
|
|
eps2 = sq(eps),
|
|
d = eps;
|
|
int o = 0, l;
|
|
for (l = 1; l <= nC1p; ++l) { /* l is index of C1p[l] */
|
|
int m = (nC1p - l) / 2; /* order of polynomial in eps^2 */
|
|
c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
|
|
o += m + 2;
|
|
d *= eps;
|
|
}
|
|
}
|
|
|
|
/* The scale factor A2-1 = mean value of (d/dsigma)I2 - 1 */
|
|
real A2m1f(real eps) {
|
|
static const real coeff[] = {
|
|
/* (eps+1)*A2-1, polynomial in eps2 of order 3 */
|
|
-11, -28, -192, 0, 256,
|
|
};
|
|
int m = nA2/2;
|
|
real t = polyval(m, coeff, sq(eps)) / coeff[m + 1];
|
|
return (t - eps) / (1 + eps);
|
|
}
|
|
|
|
/* The coefficients C2[l] in the Fourier expansion of B2 */
|
|
void C2f(real eps, real c[]) {
|
|
static const real coeff[] = {
|
|
/* C2[1]/eps^1, polynomial in eps2 of order 2 */
|
|
1, 2, 16, 32,
|
|
/* C2[2]/eps^2, polynomial in eps2 of order 2 */
|
|
35, 64, 384, 2048,
|
|
/* C2[3]/eps^3, polynomial in eps2 of order 1 */
|
|
15, 80, 768,
|
|
/* C2[4]/eps^4, polynomial in eps2 of order 1 */
|
|
7, 35, 512,
|
|
/* C2[5]/eps^5, polynomial in eps2 of order 0 */
|
|
63, 1280,
|
|
/* C2[6]/eps^6, polynomial in eps2 of order 0 */
|
|
77, 2048,
|
|
};
|
|
real
|
|
eps2 = sq(eps),
|
|
d = eps;
|
|
int o = 0, l;
|
|
for (l = 1; l <= nC2; ++l) { /* l is index of C2[l] */
|
|
int m = (nC2 - l) / 2; /* order of polynomial in eps^2 */
|
|
c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
|
|
o += m + 2;
|
|
d *= eps;
|
|
}
|
|
}
|
|
|
|
/* The scale factor A3 = mean value of (d/dsigma)I3 */
|
|
void A3coeff(struct geod_geodesic* g) {
|
|
static const real coeff[] = {
|
|
/* A3, coeff of eps^5, polynomial in n of order 0 */
|
|
-3, 128,
|
|
/* A3, coeff of eps^4, polynomial in n of order 1 */
|
|
-2, -3, 64,
|
|
/* A3, coeff of eps^3, polynomial in n of order 2 */
|
|
-1, -3, -1, 16,
|
|
/* A3, coeff of eps^2, polynomial in n of order 2 */
|
|
3, -1, -2, 8,
|
|
/* A3, coeff of eps^1, polynomial in n of order 1 */
|
|
1, -1, 2,
|
|
/* A3, coeff of eps^0, polynomial in n of order 0 */
|
|
1, 1,
|
|
};
|
|
int o = 0, k = 0, j;
|
|
for (j = nA3 - 1; j >= 0; --j) { /* coeff of eps^j */
|
|
int m = nA3 - j - 1 < j ? nA3 - j - 1 : j; /* order of polynomial in n */
|
|
g->A3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
|
|
o += m + 2;
|
|
}
|
|
}
|
|
|
|
/* The coefficients C3[l] in the Fourier expansion of B3 */
|
|
void C3coeff(struct geod_geodesic* g) {
|
|
static const real coeff[] = {
|
|
/* C3[1], coeff of eps^5, polynomial in n of order 0 */
|
|
3, 128,
|
|
/* C3[1], coeff of eps^4, polynomial in n of order 1 */
|
|
2, 5, 128,
|
|
/* C3[1], coeff of eps^3, polynomial in n of order 2 */
|
|
-1, 3, 3, 64,
|
|
/* C3[1], coeff of eps^2, polynomial in n of order 2 */
|
|
-1, 0, 1, 8,
|
|
/* C3[1], coeff of eps^1, polynomial in n of order 1 */
|
|
-1, 1, 4,
|
|
/* C3[2], coeff of eps^5, polynomial in n of order 0 */
|
|
5, 256,
|
|
/* C3[2], coeff of eps^4, polynomial in n of order 1 */
|
|
1, 3, 128,
|
|
/* C3[2], coeff of eps^3, polynomial in n of order 2 */
|
|
-3, -2, 3, 64,
|
|
/* C3[2], coeff of eps^2, polynomial in n of order 2 */
|
|
1, -3, 2, 32,
|
|
/* C3[3], coeff of eps^5, polynomial in n of order 0 */
|
|
7, 512,
|
|
/* C3[3], coeff of eps^4, polynomial in n of order 1 */
|
|
-10, 9, 384,
|
|
/* C3[3], coeff of eps^3, polynomial in n of order 2 */
|
|
5, -9, 5, 192,
|
|
/* C3[4], coeff of eps^5, polynomial in n of order 0 */
|
|
7, 512,
|
|
/* C3[4], coeff of eps^4, polynomial in n of order 1 */
|
|
-14, 7, 512,
|
|
/* C3[5], coeff of eps^5, polynomial in n of order 0 */
|
|
21, 2560,
|
|
};
|
|
int o = 0, k = 0, l, j;
|
|
for (l = 1; l < nC3; ++l) { /* l is index of C3[l] */
|
|
for (j = nC3 - 1; j >= l; --j) { /* coeff of eps^j */
|
|
int m = nC3 - j - 1 < j ? nC3 - j - 1 : j; /* order of polynomial in n */
|
|
g->C3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
|
|
o += m + 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The coefficients C4[l] in the Fourier expansion of I4 */
|
|
void C4coeff(struct geod_geodesic* g) {
|
|
static const real coeff[] = {
|
|
/* C4[0], coeff of eps^5, polynomial in n of order 0 */
|
|
97, 15015,
|
|
/* C4[0], coeff of eps^4, polynomial in n of order 1 */
|
|
1088, 156, 45045,
|
|
/* C4[0], coeff of eps^3, polynomial in n of order 2 */
|
|
-224, -4784, 1573, 45045,
|
|
/* C4[0], coeff of eps^2, polynomial in n of order 3 */
|
|
-10656, 14144, -4576, -858, 45045,
|
|
/* C4[0], coeff of eps^1, polynomial in n of order 4 */
|
|
64, 624, -4576, 6864, -3003, 15015,
|
|
/* C4[0], coeff of eps^0, polynomial in n of order 5 */
|
|
100, 208, 572, 3432, -12012, 30030, 45045,
|
|
/* C4[1], coeff of eps^5, polynomial in n of order 0 */
|
|
1, 9009,
|
|
/* C4[1], coeff of eps^4, polynomial in n of order 1 */
|
|
-2944, 468, 135135,
|
|
/* C4[1], coeff of eps^3, polynomial in n of order 2 */
|
|
5792, 1040, -1287, 135135,
|
|
/* C4[1], coeff of eps^2, polynomial in n of order 3 */
|
|
5952, -11648, 9152, -2574, 135135,
|
|
/* C4[1], coeff of eps^1, polynomial in n of order 4 */
|
|
-64, -624, 4576, -6864, 3003, 135135,
|
|
/* C4[2], coeff of eps^5, polynomial in n of order 0 */
|
|
8, 10725,
|
|
/* C4[2], coeff of eps^4, polynomial in n of order 1 */
|
|
1856, -936, 225225,
|
|
/* C4[2], coeff of eps^3, polynomial in n of order 2 */
|
|
-8448, 4992, -1144, 225225,
|
|
/* C4[2], coeff of eps^2, polynomial in n of order 3 */
|
|
-1440, 4160, -4576, 1716, 225225,
|
|
/* C4[3], coeff of eps^5, polynomial in n of order 0 */
|
|
-136, 63063,
|
|
/* C4[3], coeff of eps^4, polynomial in n of order 1 */
|
|
1024, -208, 105105,
|
|
/* C4[3], coeff of eps^3, polynomial in n of order 2 */
|
|
3584, -3328, 1144, 315315,
|
|
/* C4[4], coeff of eps^5, polynomial in n of order 0 */
|
|
-128, 135135,
|
|
/* C4[4], coeff of eps^4, polynomial in n of order 1 */
|
|
-2560, 832, 405405,
|
|
/* C4[5], coeff of eps^5, polynomial in n of order 0 */
|
|
128, 99099,
|
|
};
|
|
int o = 0, k = 0, l, j;
|
|
for (l = 0; l < nC4; ++l) { /* l is index of C4[l] */
|
|
for (j = nC4 - 1; j >= l; --j) { /* coeff of eps^j */
|
|
int m = nC4 - j - 1; /* order of polynomial in n */
|
|
g->C4x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
|
|
o += m + 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
int transit(real lon1, real lon2) {
|
|
real lon12;
|
|
/* Return 1 or -1 if crossing prime meridian in east or west direction.
|
|
* Otherwise return zero. */
|
|
/* Compute lon12 the same way as Geodesic::Inverse. */
|
|
lon1 = AngNormalize(lon1);
|
|
lon2 = AngNormalize(lon2);
|
|
lon12 = AngDiff(lon1, lon2, 0);
|
|
return lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 :
|
|
(lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0);
|
|
}
|
|
|
|
int transitdirect(real lon1, real lon2) {
|
|
#if HAVE_C99_MATH
|
|
lon1 = remainder(lon1, (real)(720));
|
|
lon2 = remainder(lon2, (real)(720));
|
|
return ( (lon2 >= 0 && lon2 < 360 ? 0 : 1) -
|
|
(lon1 >= 0 && lon1 < 360 ? 0 : 1) );
|
|
#else
|
|
lon1 = fmod(lon1, (real)(720));
|
|
lon2 = fmod(lon2, (real)(720));
|
|
return ( ((lon2 >= 0 && lon2 < 360) || lon2 < -360 ? 0 : 1) -
|
|
((lon1 >= 0 && lon1 < 360) || lon1 < -360 ? 0 : 1) );
|
|
#endif
|
|
}
|
|
|
|
void accini(real s[]) {
|
|
/* Initialize an accumulator; this is an array with two elements. */
|
|
s[0] = s[1] = 0;
|
|
}
|
|
|
|
void acccopy(const real s[], real t[]) {
|
|
/* Copy an accumulator; t = s. */
|
|
t[0] = s[0]; t[1] = s[1];
|
|
}
|
|
|
|
void accadd(real s[], real y) {
|
|
/* Add y to an accumulator. */
|
|
real u, z = sumx(y, s[1], &u);
|
|
s[0] = sumx(z, s[0], &s[1]);
|
|
if (s[0] == 0)
|
|
s[0] = u;
|
|
else
|
|
s[1] = s[1] + u;
|
|
}
|
|
|
|
real accsum(const real s[], real y) {
|
|
/* Return accumulator + y (but don't add to accumulator). */
|
|
real t[2];
|
|
acccopy(s, t);
|
|
accadd(t, y);
|
|
return t[0];
|
|
}
|
|
|
|
void accneg(real s[]) {
|
|
/* Negate an accumulator. */
|
|
s[0] = -s[0]; s[1] = -s[1];
|
|
}
|
|
|
|
void geod_polygon_init(struct geod_polygon* p, boolx polylinep) {
|
|
p->polyline = (polylinep != 0);
|
|
geod_polygon_clear(p);
|
|
}
|
|
|
|
void geod_polygon_clear(struct geod_polygon* p) {
|
|
p->lat0 = p->lon0 = p->lat = p->lon = NaN;
|
|
accini(p->P);
|
|
accini(p->A);
|
|
p->num = p->crossings = 0;
|
|
}
|
|
|
|
void geod_polygon_addpoint(const struct geod_geodesic* g,
|
|
struct geod_polygon* p,
|
|
real lat, real lon) {
|
|
lon = AngNormalize(lon);
|
|
if (p->num == 0) {
|
|
p->lat0 = p->lat = lat;
|
|
p->lon0 = p->lon = lon;
|
|
} else {
|
|
real s12, S12 = 0; /* Initialize S12 to stop Visual Studio warning */
|
|
geod_geninverse(g, p->lat, p->lon, lat, lon,
|
|
&s12, 0, 0, 0, 0, 0, p->polyline ? 0 : &S12);
|
|
accadd(p->P, s12);
|
|
if (!p->polyline) {
|
|
accadd(p->A, S12);
|
|
p->crossings += transit(p->lon, lon);
|
|
}
|
|
p->lat = lat; p->lon = lon;
|
|
}
|
|
++p->num;
|
|
}
|
|
|
|
void geod_polygon_addedge(const struct geod_geodesic* g,
|
|
struct geod_polygon* p,
|
|
real azi, real s) {
|
|
if (p->num) { /* Do nothing is num is zero */
|
|
real lat, lon, S12 = 0; /* Initialize S12 to stop Visual Studio warning */
|
|
geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s,
|
|
&lat, &lon, 0,
|
|
0, 0, 0, 0, p->polyline ? 0 : &S12);
|
|
accadd(p->P, s);
|
|
if (!p->polyline) {
|
|
accadd(p->A, S12);
|
|
p->crossings += transitdirect(p->lon, lon);
|
|
}
|
|
p->lat = lat; p->lon = lon;
|
|
++p->num;
|
|
}
|
|
}
|
|
|
|
unsigned geod_polygon_compute(const struct geod_geodesic* g,
|
|
const struct geod_polygon* p,
|
|
boolx reverse, boolx sign,
|
|
real* pA, real* pP) {
|
|
real s12, S12, t[2], area0;
|
|
int crossings;
|
|
if (p->num < 2) {
|
|
if (pP) *pP = 0;
|
|
if (!p->polyline && pA) *pA = 0;
|
|
return p->num;
|
|
}
|
|
if (p->polyline) {
|
|
if (pP) *pP = p->P[0];
|
|
return p->num;
|
|
}
|
|
geod_geninverse(g, p->lat, p->lon, p->lat0, p->lon0,
|
|
&s12, 0, 0, 0, 0, 0, &S12);
|
|
if (pP) *pP = accsum(p->P, s12);
|
|
acccopy(p->A, t);
|
|
accadd(t, S12);
|
|
crossings = p->crossings + transit(p->lon, p->lon0);
|
|
area0 = 4 * pi * g->c2;
|
|
if (crossings & 1)
|
|
accadd(t, (t[0] < 0 ? 1 : -1) * area0/2);
|
|
/* area is with the clockwise sense. If !reverse convert to
|
|
* counter-clockwise convention. */
|
|
if (!reverse)
|
|
accneg(t);
|
|
/* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */
|
|
if (sign) {
|
|
if (t[0] > area0/2)
|
|
accadd(t, -area0);
|
|
else if (t[0] <= -area0/2)
|
|
accadd(t, +area0);
|
|
} else {
|
|
if (t[0] >= area0)
|
|
accadd(t, -area0);
|
|
else if (t[0] < 0)
|
|
accadd(t, +area0);
|
|
}
|
|
if (pA) *pA = 0 + t[0];
|
|
return p->num;
|
|
}
|
|
|
|
unsigned geod_polygon_testpoint(const struct geod_geodesic* g,
|
|
const struct geod_polygon* p,
|
|
real lat, real lon,
|
|
boolx reverse, boolx sign,
|
|
real* pA, real* pP) {
|
|
real perimeter, tempsum, area0;
|
|
int crossings, i;
|
|
unsigned num = p->num + 1;
|
|
if (num == 1) {
|
|
if (pP) *pP = 0;
|
|
if (!p->polyline && pA) *pA = 0;
|
|
return num;
|
|
}
|
|
perimeter = p->P[0];
|
|
tempsum = p->polyline ? 0 : p->A[0];
|
|
crossings = p->crossings;
|
|
for (i = 0; i < (p->polyline ? 1 : 2); ++i) {
|
|
real s12, S12 = 0; /* Initialize S12 to stop Visual Studio warning */
|
|
geod_geninverse(g,
|
|
i == 0 ? p->lat : lat, i == 0 ? p->lon : lon,
|
|
i != 0 ? p->lat0 : lat, i != 0 ? p->lon0 : lon,
|
|
&s12, 0, 0, 0, 0, 0, p->polyline ? 0 : &S12);
|
|
perimeter += s12;
|
|
if (!p->polyline) {
|
|
tempsum += S12;
|
|
crossings += transit(i == 0 ? p->lon : lon,
|
|
i != 0 ? p->lon0 : lon);
|
|
}
|
|
}
|
|
|
|
if (pP) *pP = perimeter;
|
|
if (p->polyline)
|
|
return num;
|
|
|
|
area0 = 4 * pi * g->c2;
|
|
if (crossings & 1)
|
|
tempsum += (tempsum < 0 ? 1 : -1) * area0/2;
|
|
/* area is with the clockwise sense. If !reverse convert to
|
|
* counter-clockwise convention. */
|
|
if (!reverse)
|
|
tempsum *= -1;
|
|
/* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */
|
|
if (sign) {
|
|
if (tempsum > area0/2)
|
|
tempsum -= area0;
|
|
else if (tempsum <= -area0/2)
|
|
tempsum += area0;
|
|
} else {
|
|
if (tempsum >= area0)
|
|
tempsum -= area0;
|
|
else if (tempsum < 0)
|
|
tempsum += area0;
|
|
}
|
|
if (pA) *pA = 0 + tempsum;
|
|
return num;
|
|
}
|
|
|
|
unsigned geod_polygon_testedge(const struct geod_geodesic* g,
|
|
const struct geod_polygon* p,
|
|
real azi, real s,
|
|
boolx reverse, boolx sign,
|
|
real* pA, real* pP) {
|
|
real perimeter, tempsum, area0;
|
|
int crossings;
|
|
unsigned num = p->num + 1;
|
|
if (num == 1) { /* we don't have a starting point! */
|
|
if (pP) *pP = NaN;
|
|
if (!p->polyline && pA) *pA = NaN;
|
|
return 0;
|
|
}
|
|
perimeter = p->P[0] + s;
|
|
if (p->polyline) {
|
|
if (pP) *pP = perimeter;
|
|
return num;
|
|
}
|
|
|
|
tempsum = p->A[0];
|
|
crossings = p->crossings;
|
|
{
|
|
real lat, lon, s12, S12;
|
|
geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s,
|
|
&lat, &lon, 0,
|
|
0, 0, 0, 0, &S12);
|
|
tempsum += S12;
|
|
crossings += transitdirect(p->lon, lon);
|
|
geod_geninverse(g, lat, lon, p->lat0, p->lon0,
|
|
&s12, 0, 0, 0, 0, 0, &S12);
|
|
perimeter += s12;
|
|
tempsum += S12;
|
|
crossings += transit(lon, p->lon0);
|
|
}
|
|
|
|
area0 = 4 * pi * g->c2;
|
|
if (crossings & 1)
|
|
tempsum += (tempsum < 0 ? 1 : -1) * area0/2;
|
|
/* area is with the clockwise sense. If !reverse convert to
|
|
* counter-clockwise convention. */
|
|
if (!reverse)
|
|
tempsum *= -1;
|
|
/* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */
|
|
if (sign) {
|
|
if (tempsum > area0/2)
|
|
tempsum -= area0;
|
|
else if (tempsum <= -area0/2)
|
|
tempsum += area0;
|
|
} else {
|
|
if (tempsum >= area0)
|
|
tempsum -= area0;
|
|
else if (tempsum < 0)
|
|
tempsum += area0;
|
|
}
|
|
if (pP) *pP = perimeter;
|
|
if (pA) *pA = 0 + tempsum;
|
|
return num;
|
|
}
|
|
|
|
void geod_polygonarea(const struct geod_geodesic* g,
|
|
real lats[], real lons[], int n,
|
|
real* pA, real* pP) {
|
|
int i;
|
|
struct geod_polygon p;
|
|
geod_polygon_init(&p, FALSE);
|
|
for (i = 0; i < n; ++i)
|
|
geod_polygon_addpoint(g, &p, lats[i], lons[i]);
|
|
geod_polygon_compute(g, &p, FALSE, TRUE, pA, pP);
|
|
}
|
|
|
|
/** @endcond */
|