//////////////////////////////////////////////////////////////////////////////// /// @brief associative multi array implementation /// /// @file /// /// DISCLAIMER /// /// Copyright 2014 ArangoDB GmbH, Cologne, Germany /// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, software /// distributed under the License is distributed on an "AS IS" BASIS, /// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. /// See the License for the specific language governing permissions and /// limitations under the License. /// /// Copyright holder is ArangoDB GmbH, Cologne, Germany /// /// @author Dr. Frank Celler /// @author Martin Schoenert /// @author Copyright 2014, ArangoDB GmbH, Cologne, Germany /// @author Copyright 2006-2013, triAGENS GmbH, Cologne, Germany //////////////////////////////////////////////////////////////////////////////// #include "associative-multi.h" #include "Basics/prime-numbers.h" // ----------------------------------------------------------------------------- // --SECTION-- ASSOCIATIVE POINTERS // ----------------------------------------------------------------------------- // ----------------------------------------------------------------------------- // --SECTION-- private defines // ----------------------------------------------------------------------------- //////////////////////////////////////////////////////////////////////////////// /// @brief initial number of elements of a container //////////////////////////////////////////////////////////////////////////////// #define INITIAL_SIZE (64) //////////////////////////////////////////////////////////////////////////////// /// @brief forward declaration //////////////////////////////////////////////////////////////////////////////// static int ResizeMultiPointer (TRI_multi_pointer_t* array, size_t size); // ----------------------------------------------------------------------------- // --SECTION-- constructors and destructors // ----------------------------------------------------------------------------- //////////////////////////////////////////////////////////////////////////////// /// @brief initialises an array //////////////////////////////////////////////////////////////////////////////// int TRI_InitMultiPointer (TRI_multi_pointer_t* array, TRI_memory_zone_t* zone, uint64_t (*hashKey) (TRI_multi_pointer_t*, void const*), uint64_t (*hashElement) (TRI_multi_pointer_t*, void const*, bool), bool (*isEqualKeyElement) (TRI_multi_pointer_t*, void const*, void const*), bool (*isEqualElementElement) (TRI_multi_pointer_t*, void const*, void const*, bool)) { array->hashKey = hashKey; array->hashElement = hashElement; array->isEqualKeyElement = isEqualKeyElement; array->isEqualElementElement = isEqualElementElement; array->_memoryZone = zone; array->_nrUsed = 0; array->_nrAlloc = 0; if (nullptr == (array->_table_alloc = static_cast(TRI_Allocate(zone, sizeof(TRI_multi_pointer_entry_t) * INITIAL_SIZE + 64, true)))) { return TRI_ERROR_OUT_OF_MEMORY; } array->_table = (TRI_multi_pointer_entry_t*) TRI_Align64(array->_table_alloc); array->_nrAlloc = INITIAL_SIZE; #ifdef TRI_INTERNAL_STATS array->_nrFinds = 0; array->_nrAdds = 0; array->_nrRems = 0; array->_nrResizes = 0; array->_nrProbes = 0; array->_nrProbesF = 0; array->_nrProbesD = 0; #endif return TRI_ERROR_NO_ERROR; } //////////////////////////////////////////////////////////////////////////////// /// @brief destroys an array, but does not free the pointer //////////////////////////////////////////////////////////////////////////////// void TRI_DestroyMultiPointer (TRI_multi_pointer_t* array) { if (array->_table != nullptr) { TRI_Free(array->_memoryZone, array->_table_alloc); } } //////////////////////////////////////////////////////////////////////////////// /// @brief destroys an array and frees the pointer //////////////////////////////////////////////////////////////////////////////// void TRI_FreeMultiPointer (TRI_memory_zone_t* zone, TRI_multi_pointer_t* array) { TRI_DestroyMultiPointer(array); TRI_Free(zone, array); } // ----------------------------------------------------------------------------- // --SECTION-- private functions // ----------------------------------------------------------------------------- #if 0 // Activate for additional debugging: #define TRI_CHECK_MULTI_POINTER_HASH 1 #endif #ifdef TRI_CHECK_MULTI_POINTER_HASH bool TRI_CheckMultiPointerHash (TRI_multi_pointer_t* array, bool checkCount, bool checkPositions) { uint64_t i, ii, j, k; bool ok = true; uint64_t count = 0; for (i = 0;i < array->_nrAlloc;i++) { if (array->_table[i].ptr != nullptr) { count++; if (array->_table[i].prev != TRI_MULTI_POINTER_INVALID_INDEX) { if (array->_table[array->_table[i].prev].next != i) { printf("Alarm prev %llu\n",(unsigned long long) i); ok = false; } } if (array->_table[i].next != TRI_MULTI_POINTER_INVALID_INDEX) { if (array->_table[array->_table[i].next].prev != i) { printf("Alarm next %llu\n",(unsigned long long) i); ok = false; } } ii = i; j = array->_table[ii].next; while (j != TRI_MULTI_POINTER_INVALID_INDEX) { if (j == i) { printf("Alarm cycle %llu\n",(unsigned long long) i); ok = false; break; } ii = j; j = array->_table[ii].next; } } } if (checkCount && count != array->_nrUsed) { printf("Alarm nrUsed wrong %llu != %llu!\n", (unsigned long long) array->_nrUsed, (unsigned long long) count); ok = false; } if (checkPositions) { for (i = 0;i < array->_nrAlloc;i++) { if (array->_table[i].ptr != nullptr) { uint64_t hash; if (array->_table[i].prev == TRI_MULTI_POINTER_INVALID_INDEX) { // We are the first in a linked list. hash = array->hashElement(array, array->_table[i].ptr,true); j = hash % array->_nrAlloc; for (k = j; k != i; ) { if (array->_table[k].ptr == nullptr || (array->_table[k].prev == TRI_MULTI_POINTER_INVALID_INDEX && array->isEqualElementElement(array, array->_table[i].ptr, array->_table[k].ptr, true))) { ok = false; printf("Alarm pos bykey: %llu\n", (unsigned long long) i); } k = TRI_IncModU64(k, array->_nrAlloc); } } else { // We are not the first in a linked list. hash = array->hashElement(array, array->_table[i].ptr, false); j = hash % array->_nrAlloc; for (k = j; k != i; ) { if (array->_table[k].ptr == nullptr || array->isEqualElementElement(array, array->_table[i].ptr, array->_table[k].ptr, false)) { ok = false; printf("Alarm unique: %llu, %llu\n", (unsigned long long) k, (unsigned long long) i); } k = TRI_IncModU64(k, array->_nrAlloc); } } } } } if (! ok) { printf("Something is wrong!"); } return ok; } #endif //////////////////////////////////////////////////////////////////////////////// /// @brief find an element or its place using the element hash function //////////////////////////////////////////////////////////////////////////////// static inline uint64_t FindElementPlace (TRI_multi_pointer_t* array, void const* element, bool checkEquality) { // This either finds a place to store element or an entry in the table // that is equal to element. If checkEquality is set to false, the caller // guarantees that there is no entry that compares equal to element // in the table, which saves a lot of element comparisons. This function // always returns a pointer into the table, which is either empty or // points to an entry that compares equal to element. uint64_t hash; uint64_t i; hash = array->hashElement(array, element, false); i = hash % array->_nrAlloc; while (array->_table[i].ptr != nullptr && (! checkEquality || ! array->isEqualElementElement(array, element, array->_table[i].ptr, false))) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbes++; #endif } return i; } //////////////////////////////////////////////////////////////////////////////// /// @brief find an element or its place by key or element identity //////////////////////////////////////////////////////////////////////////////// static uint64_t LookupByElement (TRI_multi_pointer_t* array, void const* element) { // This performs a complete lookup for an element. It returns a slot // number. This slot is either empty or contains an element that // compares equal to element. uint64_t hash; uint64_t i; // compute the hash hash = array->hashElement(array, element, true); i = hash % array->_nrAlloc; // Now find the first slot with an entry with the same key that is the // start of a linked list, or a free slot: while (array->_table[i].ptr != nullptr && (array->_table[i].prev != TRI_MULTI_POINTER_INVALID_INDEX || ! array->isEqualElementElement(array, element, array->_table[i].ptr, true))) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbes++; #endif } if (array->_table[i].ptr != nullptr) { // It might be right here! if (array->isEqualElementElement(array, element, array->_table[i].ptr, false)) { return i; } // Now we have to look for it in its hash position: uint64_t j = FindElementPlace(array, element, true); // We have either found an equal element or nothing: return j; } // If we get here, no element with the same key is in the array, so // we will not be able to find it anywhere! return i; } //////////////////////////////////////////////////////////////////////////////// /// @brief helper to decide whether something is between to places //////////////////////////////////////////////////////////////////////////////// static inline bool IsBetween (uint64_t from, uint64_t x, uint64_t to) { // returns whether or not x is behind from and before or equal to // to in the cyclic order. If x is equal to from, then the result is // always false. If from is equal to to, then the result is always // true. return (from < to) ? (from < x && x <= to) : (x > from || x <= to); } //////////////////////////////////////////////////////////////////////////////// /// @brief helper to invalidate a slot //////////////////////////////////////////////////////////////////////////////// static inline void InvalidateEntry (TRI_multi_pointer_t* array, uint64_t i) { array->_table[i].ptr = nullptr; array->_table[i].next = TRI_MULTI_POINTER_INVALID_INDEX; array->_table[i].prev = TRI_MULTI_POINTER_INVALID_INDEX; } //////////////////////////////////////////////////////////////////////////////// /// @brief helper to move an entry from one slot to another //////////////////////////////////////////////////////////////////////////////// static inline void MoveEntry (TRI_multi_pointer_t* array, uint64_t from, uint64_t to) { // Moves an entry, adjusts the linked lists, but does not take care // for the hole. to must be unused. from can be any element in a // linked list. array->_table[to] = array->_table[from]; if (array->_table[to].prev != TRI_MULTI_POINTER_INVALID_INDEX) { array->_table[array->_table[to].prev].next = to; } if (array->_table[to].next != TRI_MULTI_POINTER_INVALID_INDEX) { array->_table[array->_table[to].next].prev = to; } InvalidateEntry(array, from); } //////////////////////////////////////////////////////////////////////////////// /// @brief helper to heal a hole where we deleted something //////////////////////////////////////////////////////////////////////////////// static void HealHole (TRI_multi_pointer_t* array, uint64_t i) { uint64_t j = TRI_IncModU64(i, array->_nrAlloc); while (array->_table[j].ptr != nullptr) { // Find out where this element ought to be: // If it is the start of one of the linked lists, we need to hash // by key, otherwise, we hash by the full identity of the element: uint64_t hash = array->hashElement(array, array->_table[j].ptr, array->_table[j].prev == TRI_MULTI_POINTER_INVALID_INDEX); uint64_t k = hash % array->_nrAlloc; if (! IsBetween(i, k, j)) { // we have to move j to i: MoveEntry(array, j, i); i = j; // Now heal this hole at j, j will be incremented right away } j = TRI_IncModU64(j, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbesD++; #endif } } // ----------------------------------------------------------------------------- // --SECTION-- public functions // ----------------------------------------------------------------------------- //////////////////////////////////////////////////////////////////////////////// /// @brief return the memory used by the index //////////////////////////////////////////////////////////////////////////////// size_t TRI_MemoryUsageMultiPointer (TRI_multi_pointer_t const* array) { return (size_t) array->_nrAlloc * sizeof(TRI_multi_pointer_entry_t) + 64; } //////////////////////////////////////////////////////////////////////////////// /// @brief adds a key/element to the array //////////////////////////////////////////////////////////////////////////////// void* TRI_InsertElementMultiPointer (TRI_multi_pointer_t* array, void* element, bool const overwrite, bool const checkEquality) { // if the checkEquality flag is not set, we do not check for element // equality we use this flag to speed up initial insertion into the // index, i.e. when the index is built for a collection and we know // for sure no duplicate elements will be inserted uint64_t hash; uint64_t i, j; void* old; #ifdef TRI_CHECK_MULTI_POINTER_HASH TRI_CheckMultiPointerHash(array, true, true); #endif // if we were adding and the table is more than half full, extend it if (array->_nrAlloc < 2 * array->_nrUsed) { ResizeMultiPointer(array, (size_t) (2 * array->_nrAlloc + 1)); } #ifdef TRI_INTERNAL_STATS // update statistics array->_nrAdds++; #endif // compute the hash by the key only first hash = array->hashElement(array, element, true); i = hash % array->_nrAlloc; // If this slot is free, just use it: if (nullptr == array->_table[i].ptr) { array->_table[i].ptr = element; array->_table[i].next = TRI_MULTI_POINTER_INVALID_INDEX; array->_table[i].prev = TRI_MULTI_POINTER_INVALID_INDEX; array->_nrUsed++; #ifdef TRI_CHECK_MULTI_POINTER_HASH TRI_CheckMultiPointerHash(array, true, true); #endif return nullptr; } // Now find the first slot with an entry with the same key that is the // start of a linked list, or a free slot: while (array->_table[i].ptr != nullptr && (! array->isEqualElementElement(array, element, array->_table[i].ptr,true) || array->_table[i].prev != TRI_MULTI_POINTER_INVALID_INDEX)) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS // update statistics array->_ProbesA++; #endif } // If this is free, we are the first with this key: if (nullptr == array->_table[i].ptr) { array->_table[i].ptr = element; array->_table[i].next = TRI_MULTI_POINTER_INVALID_INDEX; array->_table[i].prev = TRI_MULTI_POINTER_INVALID_INDEX; array->_nrUsed++; #ifdef TRI_CHECK_MULTI_POINTER_HASH TRI_CheckMultiPointerHash(array, true, true); #endif return nullptr; } // Otherwise, entry i points to the beginning of the linked list of which // we want to make element a member. Perhaps an equal element is right here: if (checkEquality && array->isEqualElementElement(array, element, array->_table[i].ptr, false)) { old = array->_table[i].ptr; if (overwrite) { array->_table[i].ptr = element; } #ifdef TRI_CHECK_MULTI_POINTER_HASH TRI_CheckMultiPointerHash(array, true, true); #endif return old; } // Now find a new home for element in this linked list: j = FindElementPlace(array, element, checkEquality); old = array->_table[j].ptr; // if we found an element, return if (old != nullptr) { if (overwrite) { array->_table[j].ptr = element; } #ifdef TRI_CHECK_MULTI_POINTER_HASH TRI_CheckMultiPointerHash(array, true, true); #endif return old; } // add a new element to the associative array and linked list (in pos 2): array->_table[j].ptr = element; array->_table[j].next = array->_table[i].next; array->_table[j].prev = i; array->_table[i].next = j; // Finally, we need to find the successor to patch it up: if (array->_table[j].next != TRI_MULTI_POINTER_INVALID_INDEX) { array->_table[array->_table[j].next].prev = j; } array->_nrUsed++; #ifdef TRI_CHECK_MULTI_POINTER_HASH TRI_CheckMultiPointerHash(array, true, true); #endif return nullptr; } //////////////////////////////////////////////////////////////////////////////// /// @brief lookups an element given a key //////////////////////////////////////////////////////////////////////////////// TRI_vector_pointer_t TRI_LookupByKeyMultiPointer (TRI_memory_zone_t* zone, TRI_multi_pointer_t* array, void const* key) { TRI_vector_pointer_t result; uint64_t hash; uint64_t i; // initialises the result vector TRI_InitVectorPointer(&result, zone); // compute the hash hash = array->hashKey(array, key); i = hash % array->_nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrFinds++; #endif // search the table while (array->_table[i].ptr != nullptr && (! array->isEqualKeyElement(array, key, array->_table[i].ptr) || array->_table[i].prev != TRI_MULTI_POINTER_INVALID_INDEX)) { i = TRI_IncModU64(i, array->_nrAlloc); #ifdef TRI_INTERNAL_STATS array->_nrProbesF++; #endif } if (array->_table[i].ptr != nullptr) { // We found the beginning of the linked list: // pre-initialize the result to save at least a few reallocs TRI_InitVectorPointer2(&result, zone, 4); do { TRI_PushBackVectorPointer(&result, array->_table[i].ptr); i = array->_table[i].next; } while (i != TRI_MULTI_POINTER_INVALID_INDEX); } // return whatever we found return result; } //////////////////////////////////////////////////////////////////////////////// /// @brief lookups an element given an element //////////////////////////////////////////////////////////////////////////////// void* TRI_LookupByElementMultiPointer (TRI_multi_pointer_t* array, void const* element) { uint64_t i; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrFinds++; #endif i = LookupByElement(array, element); return array->_table[i].ptr; } //////////////////////////////////////////////////////////////////////////////// /// @brief removes an element from the array //////////////////////////////////////////////////////////////////////////////// void* TRI_RemoveElementMultiPointer (TRI_multi_pointer_t* array, void const* element) { uint64_t i, j; void* old; #ifdef TRI_INTERNAL_STATS // update statistics array->_nrRems++; #endif #ifdef TRI_CHECK_MULTI_POINTER_HASH TRI_CheckMultiPointerHash(array, true, true); #endif i = LookupByElement(array, element); if (array->_table[i].ptr == nullptr) { return nullptr; } old = array->_table[i].ptr; // We have to delete entry i if (array->_table[i].prev == TRI_MULTI_POINTER_INVALID_INDEX) { // This is the first in its linked list. j = array->_table[i].next; if (j == TRI_MULTI_POINTER_INVALID_INDEX) { // The only one in its linked list, simply remove it and heal // the hole: InvalidateEntry(array, i); #ifdef TRI_CHECK_MULTI_POINTER_HASH TRI_CheckMultiPointerHash(array, false, false); #endif HealHole(array, i); } else { // There is at least one successor in position j. array->_table[j].prev = TRI_MULTI_POINTER_INVALID_INDEX; MoveEntry(array, j, i); #ifdef TRI_CHECK_MULTI_POINTER_HASH TRI_CheckMultiPointerHash(array, false, false); #endif HealHole(array, j); } } else { // This one is not the first in its linked list j = array->_table[i].prev; array->_table[j].next = array->_table[i].next; j = array->_table[i].next; if (j != TRI_MULTI_POINTER_INVALID_INDEX) { // We are not the last in the linked list. array->_table[j].prev = array->_table[i].prev; } InvalidateEntry(array, i); #ifdef TRI_CHECK_MULTI_POINTER_HASH TRI_CheckMultiPointerHash(array, false, false); #endif HealHole(array, i); } array->_nrUsed--; #ifdef TRI_CHECK_MULTI_POINTER_HASH TRI_CheckMultiPointerHash(array, true, true); #endif // return success return old; } //////////////////////////////////////////////////////////////////////////////// /// @brief resize the array, internal version taking the size as given //////////////////////////////////////////////////////////////////////////////// static int ResizeMultiPointer (TRI_multi_pointer_t* array, size_t size) { TRI_multi_pointer_entry_t* oldTable_alloc; TRI_multi_pointer_entry_t* oldTable; uint64_t oldAlloc; uint64_t j; oldTable_alloc = array->_table_alloc; oldTable = array->_table; oldAlloc = array->_nrAlloc; array->_nrAlloc = TRI_NearPrime((uint64_t) size); array->_table_alloc = static_cast(TRI_Allocate(array->_memoryZone, array->_nrAlloc * sizeof(TRI_multi_pointer_entry_t) + 64, true)); array->_table = (TRI_multi_pointer_entry_t*) TRI_Align64(array->_table_alloc); if (array->_table == nullptr) { array->_nrAlloc = oldAlloc; array->_table = oldTable; array->_table_alloc = oldTable_alloc; return TRI_ERROR_OUT_OF_MEMORY; } array->_nrUsed = 0; #ifdef TRI_INTERNAL_STATS array->_nrResizes++; #endif // table is already clear by allocate, copy old data for (j = 0; j < oldAlloc; j++) { if (oldTable[j].ptr != nullptr) { TRI_InsertElementMultiPointer(array, oldTable[j].ptr, true, false); } } TRI_Free(array->_memoryZone, oldTable_alloc); return TRI_ERROR_NO_ERROR; } //////////////////////////////////////////////////////////////////////////////// /// @brief resize the array, adds a reserve of a factor of 2 //////////////////////////////////////////////////////////////////////////////// int TRI_ResizeMultiPointer (TRI_multi_pointer_t* array, size_t size) { if (2*size+1 < array->_nrUsed) { return TRI_ERROR_BAD_PARAMETER; } return ResizeMultiPointer(array, 2*size+1); } // ----------------------------------------------------------------------------- // --SECTION-- END-OF-FILE // ----------------------------------------------------------------------------- // Local Variables: // mode: outline-minor // outline-regexp: "/// @brief\\|/// {@inheritDoc}\\|/// @page\\|// --SECTION--\\|/// @\\}" // End: