//////////////////////////////////////////////////////////////////////////////// /// @brief test suite for arangodb::cache::PlainCache /// /// @file /// /// DISCLAIMER /// /// Copyright 2017 ArangoDB GmbH, Cologne, Germany /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, software /// distributed under the License is distributed on an "AS IS" BASIS, /// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. /// See the License for the specific language governing permissions and /// limitations under the License. /// /// Copyright holder is ArangoDB GmbH, Cologne, Germany /// /// @author Daniel H. Larkin /// @author Copyright 2017, ArangoDB GmbH, Cologne, Germany //////////////////////////////////////////////////////////////////////////////// #include "Cache/PlainCache.h" #include "Basics/Common.h" #include "Cache/Common.h" #include "Cache/Manager.h" #include "Random/RandomGenerator.h" #include "MockScheduler.h" #include "catch.hpp" #include #include #include #include using namespace arangodb; using namespace arangodb::cache; TEST_CASE("cache::PlainCache", "[cache][!hide][longRunning]") { SECTION("test basic cache creation") { auto postFn = [](std::function) -> bool { return false; }; Manager manager(postFn, 1024 * 1024); auto cache1 = manager.createCache(CacheType::Plain, false, 256 * 1024); REQUIRE(true); auto cache2 = manager.createCache(CacheType::Plain, false, 512 * 1024); REQUIRE(0 == cache1->usage()); REQUIRE(256 * 1024 >= cache1->size()); REQUIRE(0 == cache2->usage()); REQUIRE(512 * 1024 >= cache2->size()); manager.destroyCache(cache1); manager.destroyCache(cache2); } SECTION("check that insertion works as expected") { uint64_t cacheLimit = 256 * 1024; auto postFn = [](std::function) -> bool { return false; }; Manager manager(postFn, 4 * cacheLimit); auto cache = manager.createCache(CacheType::Plain, false, cacheLimit); for (uint64_t i = 0; i < 1024; i++) { CachedValue* value = CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t)); TRI_ASSERT(value != nullptr); auto status = cache->insert(value); if (status.ok()) { auto f = cache->find(&i, sizeof(uint64_t)); REQUIRE(f.found()); } else { delete value; } } for (uint64_t i = 0; i < 1024; i++) { uint64_t j = 2 * i; CachedValue* value = CachedValue::construct(&i, sizeof(uint64_t), &j, sizeof(uint64_t)); TRI_ASSERT(value != nullptr); auto status = cache->insert(value); if (status.ok()) { auto f = cache->find(&i, sizeof(uint64_t)); REQUIRE(f.found()); REQUIRE(0 == memcmp(f.value()->value(), &j, sizeof(uint64_t))); } else { delete value; } } for (uint64_t i = 1024; i < 256 * 1024; i++) { CachedValue* value = CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t)); TRI_ASSERT(value != nullptr); auto status = cache->insert(value); if (status.ok()) { auto f = cache->find(&i, sizeof(uint64_t)); REQUIRE(f.found()); } else { delete value; } } REQUIRE(cache->size() <= 256 * 1024); manager.destroyCache(cache); } SECTION("test that removal works as expected") { uint64_t cacheLimit = 256 * 1024; auto postFn = [](std::function) -> bool { return false; }; Manager manager(postFn, 4 * cacheLimit); auto cache = manager.createCache(CacheType::Plain, false, cacheLimit); for (uint64_t i = 0; i < 1024; i++) { CachedValue* value = CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t)); TRI_ASSERT(value != nullptr); auto status = cache->insert(value); if (status.ok()) { auto f = cache->find(&i, sizeof(uint64_t)); REQUIRE(f.found()); REQUIRE(f.value() != nullptr); REQUIRE(f.value()->sameKey(&i, sizeof(uint64_t))); } else { delete value; } } uint64_t inserted = 0; for (uint64_t j = 0; j < 1024; j++) { auto f = cache->find(&j, sizeof(uint64_t)); if (f.found()) { inserted++; REQUIRE(f.value() != nullptr); REQUIRE(f.value()->sameKey(&j, sizeof(uint64_t))); } } // test removal of bogus keys for (uint64_t i = 1024; i < 2048; i++) { auto status = cache->remove(&i, sizeof(uint64_t)); REQUIRE(status.ok()); // ensure existing keys not removed uint64_t found = 0; for (uint64_t j = 0; j < 1024; j++) { auto f = cache->find(&j, sizeof(uint64_t)); if (f.found()) { found++; REQUIRE(f.value() != nullptr); REQUIRE(f.value()->sameKey(&j, sizeof(uint64_t))); } } REQUIRE(inserted == found); } // remove actual keys for (uint64_t i = 0; i < 1024; i++) { auto status = cache->remove(&i, sizeof(uint64_t)); REQUIRE(status.ok()); auto f = cache->find(&i, sizeof(uint64_t)); REQUIRE(!f.found()); } manager.destroyCache(cache); } SECTION("verify that cache can indeed grow when it runs out of space") { uint64_t minimumUsage = 1024 * 1024; MockScheduler scheduler(4); auto postFn = [&scheduler](std::function fn) -> bool { scheduler.post(fn); return true; }; Manager manager(postFn, 1024 * 1024 * 1024); auto cache = manager.createCache(CacheType::Plain); for (uint64_t i = 0; i < 4 * 1024 * 1024; i++) { CachedValue* value = CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t)); TRI_ASSERT(value != nullptr); auto status = cache->insert(value); if (status.fail()) { delete value; } } CHECK(cache->usage() > minimumUsage); manager.destroyCache(cache); } SECTION("test behavior under mixed load") { RandomGenerator::initialize(RandomGenerator::RandomType::MERSENNE); MockScheduler scheduler(4); auto postFn = [&scheduler](std::function fn) -> bool { scheduler.post(fn); return true; }; Manager manager(postFn, 1024 * 1024 * 1024); size_t threadCount = 4; std::shared_ptr cache = manager.createCache(CacheType::Plain); uint64_t chunkSize = 16 * 1024 * 1024; uint64_t initialInserts = 4 * 1024 * 1024; uint64_t operationCount = 16 * 1024 * 1024; std::atomic hitCount(0); std::atomic missCount(0); auto worker = [&cache, initialInserts, operationCount, &hitCount, &missCount](uint64_t lower, uint64_t upper) -> void { // fill with some initial data for (uint64_t i = 0; i < initialInserts; i++) { uint64_t item = lower + i; CachedValue* value = CachedValue::construct(&item, sizeof(uint64_t), &item, sizeof(uint64_t)); TRI_ASSERT(value != nullptr); auto status = cache->insert(value); if (status.fail()) { delete value; } } // initialize valid range for keys that *might* be in cache uint64_t validLower = lower; uint64_t validUpper = lower + initialInserts - 1; // commence mixed workload for (uint64_t i = 0; i < operationCount; i++) { uint32_t r = RandomGenerator::interval(static_cast(99UL)); if (r >= 99) { // remove something if (validLower == validUpper) { continue; // removed too much } uint64_t item = validLower++; cache->remove(&item, sizeof(uint64_t)); } else if (r >= 95) { // insert something if (validUpper == upper) { continue; // already maxed out range } uint64_t item = ++validUpper; CachedValue* value = CachedValue::construct(&item, sizeof(uint64_t), &item, sizeof(uint64_t)); TRI_ASSERT(value != nullptr); auto status = cache->insert(value); if (status.fail()) { delete value; } } else { // lookup something uint64_t item = RandomGenerator::interval(static_cast(validLower), static_cast(validUpper)); Finding f = cache->find(&item, sizeof(uint64_t)); if (f.found()) { hitCount++; TRI_ASSERT(f.value() != nullptr); TRI_ASSERT(f.value()->sameKey(&item, sizeof(uint64_t))); } else { missCount++; TRI_ASSERT(f.value() == nullptr); } } } }; std::vector threads; // dispatch threads for (size_t i = 0; i < threadCount; i++) { uint64_t lower = i * chunkSize; uint64_t upper = ((i + 1) * chunkSize) - 1; threads.push_back(new std::thread(worker, lower, upper)); } // join threads for (auto t : threads) { t->join(); delete t; } manager.destroyCache(cache); RandomGenerator::shutdown(); } SECTION("test hit rate statistics reporting") { uint64_t cacheLimit = 256 * 1024; auto postFn = [](std::function) -> bool { return false; }; Manager manager(postFn, 4 * cacheLimit); auto cacheMiss = manager.createCache(CacheType::Plain, true, cacheLimit); auto cacheHit = manager.createCache(CacheType::Plain, true, cacheLimit); auto cacheMixed = manager.createCache(CacheType::Plain, true, cacheLimit); for (uint64_t i = 0; i < 1024; i++) { CachedValue* value = CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t)); TRI_ASSERT(value != nullptr); auto status = cacheHit->insert(value); if (status.fail()) { delete value; } value = CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t)); TRI_ASSERT(value != nullptr); status = cacheMiss->insert(value); if (status.fail()) { delete value; } value = CachedValue::construct(&i, sizeof(uint64_t), &i, sizeof(uint64_t)); TRI_ASSERT(value != nullptr); status = cacheMixed->insert(value); if (status.fail()) { delete value; } } for (uint64_t i = 0; i < 1024; i++) { auto f = cacheHit->find(&i, sizeof(uint64_t)); } { auto cacheStats = cacheHit->hitRates(); auto managerStats = manager.globalHitRates(); REQUIRE(cacheStats.first >= 40.0); REQUIRE(cacheStats.second >= 40.0); REQUIRE(managerStats.first >= 40.0); REQUIRE(managerStats.second >= 40.0); } for (uint64_t i = 1024; i < 2048; i++) { auto f = cacheMiss->find(&i, sizeof(uint64_t)); } { auto cacheStats = cacheMiss->hitRates(); auto managerStats = manager.globalHitRates(); REQUIRE(cacheStats.first == 0.0); REQUIRE(cacheStats.second == 0.0); REQUIRE(managerStats.first > 10.0); REQUIRE(managerStats.first < 60.0); REQUIRE(managerStats.second > 10.0); REQUIRE(managerStats.second < 60.0); } for (uint64_t i = 0; i < 1024; i++) { auto f = cacheMixed->find(&i, sizeof(uint64_t)); } for (uint64_t i = 1024; i < 2048; i++) { auto f = cacheMixed->find(&i, sizeof(uint64_t)); } { auto cacheStats = cacheMixed->hitRates(); auto managerStats = manager.globalHitRates(); REQUIRE(cacheStats.first > 10.0); REQUIRE(cacheStats.first < 60.0); REQUIRE(cacheStats.second > 10.0); REQUIRE(cacheStats.second < 60.0); REQUIRE(managerStats.first > 10.0); REQUIRE(managerStats.first < 60.0); REQUIRE(managerStats.second > 10.0); REQUIRE(managerStats.second < 60.0); } manager.destroyCache(cacheHit); manager.destroyCache(cacheMiss); manager.destroyCache(cacheMixed); } }