GTL Geometry Template Library

-for stl-like polygon manipulation

Lucanus Simonson, Gyuszi Suto
Intel Corporation

Overview

Intel badly needed high performance algorithms
for planar polygon manipulation

— | implemented them

We have 2D Cartesian geometry

— Coordinate, Interval, Point, Rectangle, Polygon,
Polygon Set

— Library of concepts for each

Many generic functions that operate on
conceptual types

— API strives for symmetry, consistency and simplicity

Some pretty heavy weight algorithms under the
hood

3 man years and 30kloc

Introduction

Implemented goofy template argument inheritance type system and Manhattan geometry
features
Request for interest from boost in 2007

— Discussed the design on boost dev list

— Found out the design was bad and needed to be redone the boost way
Thank you Joel Guzman

Added 45 degree geometry features
After six months of work we got permission from Intel to release under boost license
— Discussed the code on the boost dev list
— Got a lot of feedback on specific design considerations
Rewrote the interfaces to be more generic by using tag dispatching
— Got more feedback on design considerations from boost, especially refinement
Re-rewrote the interfaces to be more generic still and based on SFINAE

Added arbitrary-angle geometry features

— Got feedback on arbitrary-angle algorithms and robustness considerations from boost
Thank you Fernando Cacciola

Ported new SFINAE interfaces to MSVC9
— Thank you Steven Watanabe

The library now looks more like Joel said it should back in 2007
— We may pursue formal review this year

Deployed library to internal users who are using it now to create the next generation of
silicon fabrication process technology and microprocessors

GTL Feature Set

Benchmark
Comparisons

Generic Sweep-line
Booleans Algorithm

Numerical
Robustness

Geometry Concepts
Type System

Booleans Operator ——
Syntax

4

Primary GTL Feature

* Boolean operations on sets of polygons

— Manhattan “ >
Manhattan
Boolean AND
— 45-degree

OR
— Arbitrary Angle (XOR)

Using Booleans

void clip and subtract(polygon set& d,
polygon a, polygon b, rectangle c) {
d = (a & c) - b;
}

Productive operator syntax

Clip polygon a against bounding box c,
then subtract polygon b, storing the result
In polygon set d

Takes longer to say than to type
No try/catch and no memory management

Details Of Booleans
* No preconditions placed on r’

input polygons f’ /

<\

Details Of Booleans

* No preconditions placed on

iInput polygons
— Open/closed semantic for last
vertex

-
<\

e

Details Of Booleans
* No preconditions placed on ? r’

input polygons f’ /

— Open/closed semantic for last
vertex

— Winding direction conventions not
enforced

Details Of Booleans
* No preconditions placed on r’

input polygons /
— Open/closed semantic for last

vertex

— Winding direction conventions not
enforced
— Input polygons may be

* self touching

Details Of Booleans
* No preconditions placed on r’

iInput polygons
— Open/closed semantic for last

vertex

— Winding direction conventions not
enforced
— Input polygons may be
* self touching
« self intersecting

Details Of Booleans
* No preconditions placed on r’

iInput polygons
— Open/closed semantic for last

vertex

— Winding direction conventions not
enforced
— Input polygons may be
* self touching
« self intersecting
« self overlapping

Details Of Booleans
* No preconditions placed on r’

iInput polygons
— Open/closed semantic for last

vertex

— Winding direction conventions not
enforced
— Input polygons may be
* self touching
« self intersecting
« self overlapping

— Correctly handles duplicate/co-
linear points

Details Of Booleans
* No preconditions placed on r’

input polygons /
— Open/closed semantic for last
vertex

— Winding direction conventions not
enforced
— Input polygons may be
* self touching
« self intersecting
« self overlapping

— Correctly handles duplicate/co-
linear points

— Correctly handles zero degree
angles and polygons that
degenerate to lines and points

Details Of Booleans

* No preconditions placed on
iInput polygons
— Open/closed semantic for last
vertex

— Winding direction conventions not
enforced
— Input polygons may be
* self touching
« self intersecting
« self overlapping

— Correctly handles duplicate/co-
linear points

— Correctly handles zero degree
angles and polygons that
degenerate to lines and points

— To produce a clean result

Details of 45-degree Booleans

0,5 55

* Preserve 45-
degree nature of
geometry at
output

* Handle off-grid 25,25
intersections by
inserting an edge
to approximate the
output region

0,0 50
16

Boolean Operation Output Modes

« Manhattan Booleans

— Polygons with lists of holes — Polygon O
— Keyhole holes to outer polygon With Holes
— Horizontal and vertical sliced
rectangle tiling
* 45-degree Booleans Eak Hole ="
— Polygon with lists of holes Fracturing
— Keyhole holes to outer polygon
— Vertical sliced trapezoid tiling
. Arbltrary-an.gle. Booleans el Horizontal\ =
— Polygon with lists of holes Slicing
— Keyhole holes to outer polygon
L] Vertical

Slicing

Polygon Buffering/Resizing/Offsetting

« Manhattan

— Uniform resizing
— Resizing by different amount in each of the four

directions

— Optionally leave corners unfilled

* 45-Degree

— Uniform resizing

— Preserve original topology or cut off acute angled
corners at resizing distance

— Snapping options for moving 45-degree edges

AN

=]

[~

AN

18

Many More Features

Rectangle query tree

Maximum enclosed rectangle in
Manhattan polygon

Connectivity Extraction
Property Merge/Map Overlay
Etc.

N

Small Arbitrary-angle Input Benchmark
Comparison

* Runtime for intersection operation 20

Small Arbitrary-angle Input Benchmark
Comparison

* gpc

0.09 -
o polyb

o
o
@™

acgal

o
\I
|

mgtl

o
»

s .
N

Seconds (linear scale)
o o o o o
o
(@)

o
@

A Y Boo 7 e
o 43 EBE e 7T l l l l
0 2000 4000 6000 8000 10000 12000 14000
Input + Output Vertices (linear scale)

* Runtime for intersection operation

21

Small Arbitrary-angle Input Benchmark

Comparison
* gpc .
0.09 -
° polyb
0.08 A
acgal
971 wa (Polyboolean
06 : Fails

s .
N

Seconds (linear scale)
o o o o o
o
(@)

o
@

A Y Boo 7 e
o 43 EBE e 7T l l l l
0 2000 4000 6000 8000 10000 12000 14000
Input + Output Vertices (linear scale)

* Runtime for intersection operation 2

Small Arbitrary-angle Input Benchmark
Comparison

* gpc

0.09 -
o polyb

o
o
@™

acgal

o
\I
|

mgtl

o
»

Seconds (linear scale)
O O o o o
o o
RN (@)

o
@

A Y Boo 7 e
o 43 EBE e 7T l l l l
0 2000 4000 6000 8000 10000 12000 14000
Input + Output Vertices (linear scale)

* Runtime for intersection operation 2

Small Arbitrary-angle Input Benchmark
Comparison

Polyboolean
can’t find the
polygon that
contains this
hole...

* Runtime for intersection operation

24

Large Scale Arbitrary-angle
Performance Comparison

One to two orders of
magnitude larger than
previous benchmark

Though fastest for small
inputs, GPC does not
scale well

gtlb excludes line
segment intersection

Core Boolean is n log n,
Intel micro-architecture
accelerates processing
of large vectorss

1000

* gpc
m gt
o gtb
100 A
D
©
©Q
“10
(=]
2
n
E=;
c
o
3 1- *
b
E.
D_1 T T T T T T T T 1
100000 1000000

Input + Output Vertices (log scale)

Manhattan Benchmarking

gtib gpon
gtion 175
gtl45 polyb
gtl
cgal cga

10 -

100X performance delta
between optimal gtl 90-
degree algorithm and
general algorithms

o ¢ B X+ 0O

gpc '
{‘]ng\jb /H/.,-Y- gthn

gtl 45-degree Boolean is
optimal

Core arbitrary angle
Boolean (gtlb) is optimal

0.1

gtl arbitrary angle
Boolean is slightly
suboptimal due to line
segment intersection

Seconds (log scale)

0.01

CGAL is optimal, but has
a high constant factor

GPC and PolyBoolean
both scale sub-optimally 0.001

Optimal is: 100000 200000 300000

near linear O(n log n) Input + Output Verticies (log scale)
runtime

Benchmarking Conclusions about GTL

GTL arbitrary-angle Booleans is near optimal

Performance of GTL arbitrary-angle Booleans is
middle-of-road for small inputs

Performance of GTL arbitrary-angle Booleans is
best in class for large inputs

Performance of GTL could be improved by up
to 10X with further work on the arbitrary-angle
Booleans

If you have 45-degree or Manhattan polygons
gtl provides 50X and 100X performance
advantage over cgal 27

Observations on GPC, CGAL and
PolyBoolean

We found at least two different bugs in PolyBoolean
We found one bug in CGAL

GPC and PolyBoolean have very difficult to use C-style
APls

GPC and PolyBoolean cannot merge multiple overlapping
polygons in one step

GPC and PolyBoolean both have O(n'°log n) line segment
intersection algorithms (sort all edges that intersect sweep-
line at every x)

PolyBoolean has O(n * m * k) algorithm to determine which
polygons contain which holes (n polygons, m holes, k points
per polygon), which is O(n”2) in the worst case

CGAL requires that overlapping polygons be merged before
being an input to a Boolean, but can do that itself 28

Observations About Preconditions

CGAL throws an “Precondition Violated” exception if an
input polygon is self intersecting/overlapping or has
“closed” semantic at last vertex

PolyBoolean returns a “bad input polygon” error code if
an input polygon is self intersecting/overlapping has zero
area or is a hole with no enclosing polygon

Both PolyBoolean and CGAL inform the user the input is
bad when a bug in their algorithms leads to a fatal error

GPC produces garbage output when input polygons are
self intersecting/overlapping

GTL has no preconditions and produces correct output in
all cases

29

Generic Sweep-line Algorithm

Sweep-line algorithms for polygon
clipping is a tradition that goes back to
1979

Sweep-line is the best known method for
line segment intersection

GTL implements different sweep lines for
Manhattan, 45-degree and general case

GTL Booleans sweep-lines are
parameterized to allow them to perform
multiple operations

30

Better Booleans through Calculus

* We use the same algorithm for Manhattan, 45-
degree and general polygon Booleans

dx dy ‘
* We will explain how it works in the Manhattan
case first, then how we generalize it

i

X=—00 y=—00

31

Boolean Polygon Model

* We define a polygon as a two dimensional

Boolean function

— Function evaluates to true inside the polygon
— Function evaluates to false outside the polygon

true

inside_polygon = f(x, y)

false

32

Math With Polygon Model

« Because the Polygon is now modeled mathematically...
« We can manipulate it with calculus

« The derivative with respect to x of the polygon function is the change in
polygon count as we cross its vertical edges

* In one dimension the polygon looks like a step function at its vertical edges
» Derivative of a step function is an impulse with area of one

« Summing changes in polygon count from left to right (scanline) performs an
integration over the df/dx to produce the original polygon

fix,y1) 0 1 0

df(x, y1)/dx 1 dx =

1
changing_polygon count = df(x, y)/dx

33

The Great Thing About Math

* |f it works once, it will work a second time

 The derivative with respect to y of the d/dx of polygon function f is the
change in the change in polygon count with respect to x as we enter
and leave its vertical edges in the y dimension

* Inthe y dimension d f/dx (vertical edges) looks like a step function
» Derivative of a step function is an impulse with area of one

« Summing changes in y of changes in x from low to high y integrates
the function and produces changes in x (edges) that can be integrated
left to right to produce polygons

df ‘(x1, y)/dy

f(x1,y) O 1
‘1 j j N dxdy =

A
change_of_change = df(x, y)/dxdy Z

1D Boolean OR Operation Example

We want a data model for polygons that can provide the input for sweep-
line and be constructed from n polygon verticies in O(n log n) time

If you want to sum two piece-wise linear functions (continuous)

— you can take the derivative of each (discreet)

— combine their derivatives in linear time by merging (sum any overlapping
values)

— and then integrate by summing from low to high (in linear time)

The math is what allows the boolean algorithm to achieve optimal time
complexity

— All we do is sort vertices, but you have to carry the dxdy values along with them
so that the meaning of the vertices is retained

+ => +‘ =] = L= _

35

2D, Two Layer Boolean XOR Example

HXOR = []

« XOR an L shape with a rectangle

36

XOR Example

° P 4

Decompose
—¥

0, O

* Preprocess input pol

O.u40 Osp
_» Decompose O .P 4
Oo,1 00,41
o +1 o -1 M |
erge Input o..0
“? Vertices 1,07 +1,0
o, O
:: : 1 + 00,41 00,1

O410 0.0

1

ygons into a merged,

sorted sequence of change on y of change
on x of polygon intersection count

 Decomposition is linear, sort is n log n,

merge is linear

37

XOR Example

0,0

« Sweep-line data structure initialized to a
single interval from -infinity to +infinity with
intersection count of zero for each input
layer

38

XOR Example

0,0 3_1’0 O+1,0 OUtpUt
O 4
00,1 Og,+1
1,0
O-1,OO+1,0
1,0
Og,+1 0,1
D41,0 O
0,0 o

 Intersect first input interval of intersection count change
on x against sweep-line data structure of intersection

count intervals
 Intersection count changes from zero to one on layer1
on that interval

« 0 xor 0 =false, 1 xor O = true, output a left edge because
Boolean logic changed from false to true

39

XOR Example

0,0

1,0 2

1 ’1 ’ +1
20,41 00,1
1,0 Cu0 C.10 p

0,0

* Intersect second input interval against sweep-
iIne data structure

* Intersection count changes from zero to one for
ayer2 on that interval

* 1 xor 0 =true, 1 xor 1 = false, so output a right
edge because Boolean logic has changed from
true to false

40

XOR Example

0,0
O10 ©Cap Output

1,0 2

O 0,1 Oo,+1
0.1 -1,1

3-1,OO+1,0
1,1 00,41 00,1 1
1,0 O41,0 O.0 "

opn

0,0

 |Intersect third input interval against sweep-line
data structure

* Intersection count changes from one to zero for
layer1 on that interval

« 1 xor 0 = false, 0 xor 1 = false, so no output

41

XOR Example

0,0

Oa0 P40 Output
1 0 0 -1 +1
2 0,1 Oo,41
0,1 &
O-1,OO+1,0
1,1 Oo,41 Oo,-1 +
1,0 Cu0 C.10 p

0,0

* Intersect fourth input interval against sweep-line

data structure

* Intersection count changes from one to zero for
layer1 on one interval

* 1 xor 0 =true, 0 xor O = false, so output a right
edge because Boolean logic has changed from
true to false

42

XOR Example

0,0

O40 Oup Output
0 -1 +1
Oo,1 Oo,+1
1
0,1 O.1,0°4+1,0
ol
Oo,+1 Oo,1 He -
O+1 ,0 o '1!0)
-1 +2
0 0 -1 ,0 o +1 b -1
b

Intersect fifth input interval against sweep-line data
structure

Intersection count changes from one to zero for layer
on two intervals

1 xor 0 = true, 0 xor 0 = false, so output a right edge for
the first interval

1 xor 1 = false, 0 xor 1 = true, so output a left edge for
the second interval

43

XOR Example

0,0

0,0

* Intersect sixth input interval against sweep-line
data structure

* Intersection count changes from one to zero for
layer2 on one interval

* 0 xor 1 =true, 0 xor O = false, so output a right
edge

44

XOR Example

Input
" P gutput Polygon

o) _1E
-1
+1|Sweep-line Polygon —
Formation
E +1 0 -1
-1

> BT
« Sweep-line Polygon Formation produces
output polygon
* Could be done in the same pass as the xor

* Leaving it in the derivative form allows
direct input to a subsequent Boolean

45

Generalizing The Algorithm

winding direction

We want the derivative of this vertex%/ﬁ
We apply d/dx and d/dy 1

To get a result in terms of 9:< 0

We sweep the 0 from low to hig_ﬂ: <>
As we integrate wrt. y: { 0

And finally integrate wrt. X: o

To which we assign counter clockwise
winding and output partial polygon: """

PSRN
N

46

The Algorithm Requires No

Preconditions
* The great thing about
math is that it's
general

* Every special case is
just another instance
of the general case

* Every case that
breaks other
algorithms is handled
implicitly and correctly

Taking Things One Step Further

* The Booleans algorithm is parameterized

* N layer operations are implemented with a
single pass of the same algorithm

 |s used to provide connectivity extraction /
spatial map join and property merge / map
overlay

N

Robustness

« Strategies employed by GTL are provably
robust for all cases

— 100% robust--not just “works for all the cases
we’ve tried”

A firm guarantee of 100% numerical
robustness is a very comforting feature

* PolyBoolean fails to find polygons that
enclose some holes because its point-in-
polygon calculation is not numerically
robust

49

Robust Predicate Primitives

a
Slope / a<b?

Comparison b
T implemented
in terms of
a<b?
Point On Above /a/b Y
or Below Segment a>b?
implemented
implemented in terms of
in terms of
% /a'/\
o :
b a X b~ \b/ ainb?
Line Segments Point in Polygon
Intersect

50

Robust Comparison of Slope

Segment 1: (x11,y11) to (x12, y12)
Segment 2: (x21,y21) to (x22, y22) % <t
Slope1: (y12 - y11) / (x12 - x11) b

Slope2: (y22 - y21) | (x22 - x21)
Slope1 < Slope2 iff (y12 - y11)(x22 - x21) < (x12 - x11)(y22 - y21)

» Cross multiplication avoids integer
truncation of division

* Requires 65 bits for signed 32 bit integer
coordinates
— Use long double, multi-precision, SSE quad

word, or unsigned 64 bit integer with sign
computed separately 51

Robust Comparison Of Point and
Line Segment

a<b?
Point On Above /a./b a == b?

or Below Segment a>b?

« Make a 2"d segment from one end of the
segment to the point

« Compare slopes A

52

Robust Line Segment Intersection
Check

o

« Compute whether the two ends of each
segment are on, above or below the other
segment

* Both points of one segment on the same
side of the other means no intersection

53

Robust Point In Polygon Predicate

G

* For all edges which contain the x value of
the point within their x interval

— Accumulate the sum of such edges the point
IS above

* The point is inside if the sum is odd

54

Robust Calculation of Slope Intercept

i

* Apply GMP multi-precision rational and compute
exact result

 To compare two slope intercepts

//Segment 1: (x11,yll) to (x12, yl2)
//Segment 2: (x21,y21) to (x22, y22)
vyl < y2 iff

(x22 - x21)((x - x11)(yl2 - y1ll) + yv11(x12 - x 11)) <
(x12 - x11)((x - x21)(y22 - y21) + y21(x22 - x 21))

(requires 97 bits of precision)

55

Robust Calculation of Line Segment
Intersection Point

£

* Apply GMP multi-precision rational and

compute exact result.

//Segment 1: (x11,yll) to (x12, yl2)

dxl = x12 - x11; dyl = yl2 - yll;

//Segment 2: (x21,y21) to (x22, y22)

dx2 = x22 - x21; dy2 = y22 - y21;

x = (x11 * dyl * dx2 — x21 * dy2 * dx1 +
y21 * dx1 * dx2 - yll * dx1 * dx2) /
(dyl * dx2 - dy2 * dx1);

y = (yll *# dx1 * dy2 - y21 * dx2 * dyl +
x21 * dyl * dy2 - x11 * dyl * dy2) /
(dxl * dy2 - dx2 * dyl);

56

Robust Snapping of Non-Integer
Intersection Points to Grid

Truncate down and

to left N,

Causes Edges to

move slighty

Moving edges may
introduce artifacts

Non overlapping

edges may become — glgEsaite

parallel and overlap /

Intersection Clusters

\ \

* Multiple intersection points within the
same unit grid are merged

58

Intersections Creating Intersections

 When long edges

are moved by integer

truncation of pEsu.

1

Intersection point

* Very close geometry

may be intersected Sufficient to check the

« Intersect segments upper right grid for
with very close line segments
vertices

Acceptable vs. Unacceptable
Artifacts

* An artifact is unacceptable

— if it causes any line segments to intersect
other than at their end points

— if it causes a closed cycle in the input to
become open at the output

* Inserting vertices on line segments and
merging vertices are acceptable

* We insert vertices and merge vertices to
snap to integer grid robustly

60

What code that uses GTL looks like

void foo(list<CPolygon>& result,
const list<CPolygon>& a,
const list<CPolygon>& b) {
CBoundingBox domainExtent;
gtl::extents(domainExtent, a);
result += (b & domainExtent) "~ (a - 10);

}

Two lines of code in the example invoke five different GTL
algorithms

Arguments passed into functions are not GTL data types

The code is maximally concise, yet easy to read
Clip b to the bounding box of a, XOR that with a shrunk by
ten then merge into result

Details of memory management for intermediate results are
abstracted away from the use of algorithms

Such code is easy to write and easy to maintain
61

C++ Concepts-based Type System

« GTL allows application data types to be
arguments to its API

* You can check if your point type lies inside your

polygon type with a call to GTL contains()

passing in your point and your polygon
gtl::contains(my_polygon, my_point);

* This is accomplished by use of a C++ Concepts-
based statically polymorphic type system

* This is much more convenient than copying your
polygon into a GTL polygon data type first

62

C++ Traits

« GTL accesses your geometry types through type
traits that you must provide

* These traits map your implementation of a
geometry object to GTL's concept of how a such
geometry behaves

template <typename T>
struct point traits ({
typedef T::coordinate type coordinate type;
coordinate type get(const T& p, orientation 2d orient) {
return p.get(orient);
}
template <typename T>
struct point mutable traits {
void set(const T& p, orientation 2d orient,
coordinate type value) {
p.set(orient, value);
}
T construct(coordinate type x, coordinate type y) {
return T(x, V); } 63

C++ Concepts Overloading

« GTL functions that expect a polygon check whether the
iInput data type is registered as a polygon and will not
instantiate if the check fails

» A different gtl function with the same name can
instantiate if the data type turns out to be registered as a
rectangle, or a point

« The mechanism for doing this is called substitution
failure is not an error (SFINAE)

template <typename T> struct is_integer {};
template <>

struct is_integer<int> { typedef int type; }; fOO() WOUld be amblguousa

fom oty Loypenane 17 struet ds_fieat {); but both return types cannot
struct is_ float<float> { typedef float type; }; be |nStant|ated Wlth the same
E;-I;Ee)rl;rii z:igiziﬁizfiype foo(T input); type Fallure to InStantlate
E;-I;Ee)rl;rii i;igizzrsiTz>type foo(T input); the return type IS nOt a Syntax

error. o4

Concept Refinement

* A rectangle is a refinement of the concept of a polygon
— A rectangle narrows-down the definition of polygon to four
sided, 90-degree angles
A function that requires read only access to a polygon
can always work on a rectangle

— A polygon is a generalization of a rectangle

« A function that requires write-access to a polygon
cannot work on a rectangle

— A rectangle cannot store a polygon

struct polygon concept {};

struct rectangle concept {};

template <typename T>

struct is_a polygon concept{};

template <> struct is_a polygon concept<rectangle concept> ({
typedef gtl yes type; };

65

GTL Refinement Relationships

« GTL assign() function

— copies data between objects of
the same conceptual type

— copies data from a refinement
to a more general conceptual
type

— instantiates for each of the 49
legal combinations

— requires only one overload
definition per concept type

— each overload protected by
SFINAE concept check

Concept Abbreviation
coordinate_concept C
interval_concept 1
point_concept PT
point_3d_concept PT3D
rectangle_concept R
polygon_90_concept P90

polygon_90_with_holes_concept PWH90
polygon_45_concept P45
polygon_45_with_holes_concept PWH45
polygon_concept P
polygon_with_holes_concept PWH
polygon_90_set_concept PS90
polygon_45_set_concept PS45
polygon_set_concept PS
: I R * PS0 + P45 + P |

s N
. PR

Key:

N \\(~ A\ \\r - ~
PT PT3D \'F’WHQOA'PWH45*\‘ PWH

\ S\ L\ - .
| concept, — is refinement of \i PS90 J\ PS45 ﬂ\h PS

66

Concept Casting

* A Manhattan polygon is a refinement of a
general polygon

* Given a general polygon and the certainly
that it contains only Manhattan data
— GTL view_as<polygon 90 concept>() can

allow that polygon to be legally passed to
functions expecting a Manhattan polygon

This is useful when general objects are

used by applications to model several
specific kinds of data

67

Booleans Operator Syntax

 GTL overloads the C++ bit-wise logical
operators &|* and the subtraction operator -

* They perform Boolean AND, OR, XOR and
AND-NOT (SUBTRACT)

* They work with any polygons, rectangles,
vectors or lists of polygons or rectangles
and the GTL polygon-set data types

68

GTL Booleans Operator Templates

« C++ requires that operators return their result by
value

* The return value of a GTL Boolean operator
function call is an operator template

* The operator template stores references to the
arguments and defers the operation until the
result is requested

* |n this way the operation is performed after the
operator template is returned by the operator

function
69

Operator Templates

void clip and subtract(polygon set& d,
polygon a, polygon b, rectangle c) {
d = (a & c) - b;
}

 When chaining operator

templates they cache
references to each [polygon a } [rectangle c}
other and build an "~gperators

expression tree
When the final result is [b°p<p°'y9°” Ire"‘ta‘”g'@ po'ygon b

requested the operator-=
expression is evaluated

and the result is [b <bop<oo] ectandle> ool on%
produced Oop<Dbop=<polygon,rectangie~>,polyg
This avoids / operator=

unnecessary copying of
Intermediate results [polygon_set d} 70

MSVC SFINAE limitation

SFINAE works in MSVC for the simple cases
Order of template instantiation in MSVC
depends on type of template

— compile time constant vs. by type

Substitution failure of a nested template is an
error in MSVC

The only way to get reliable SFINAE behavior
out of MSVC is to use enable_if with compile
time logic expressions

It took two weeks of work to port the code
from EDG/gcc compatibility to MSVC 7"

EDG SFINAE Bug

An unnamed enum type cannot be referred to in the
template definition when instantiating a template on
that type

STL uses unnamed enum types with arithmetic
operators

Substituion of my generic operators for the unnamed
STL enum types should fail

A bug in older versions of EDG frontend produces a
syntax error instead of SFINAE if the template
references it in the definition

Currently fixed in the version of EGD used by the new
icc11 72

EDG Bug Workaround

* |f substitution of a nested template parameter
fails before EDG tries to instantiate the template
that would refer to the unnamed enum type no
syntax error is generated

 EDG supports nested SFINAE, of course

| provide an intermediate meta-function with
preprocessor macros in its definition that results
In nested SFINAE except when compiled by
MSVC to work around both bugs

template <typename T> struct gtl if {
#ifdef WIN32

typedef gtl no type;
#endif
}i
template <> struct gtl if<gtl yes> { typedef gtl yes type; };

