Geometry Template Library for STL-like 2D Operations

Lucanus Simonson
Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95054-1549
1 (408) 765-8080

lucanus.j.simonson@intel.com

ABSTRACT

There is a proliferation of geometric algorithmsdatata types
with no existing mechanism to unify geometric pasgming in
C++. The geometry template library (GTL) providgsometry
concepts and concept mapping through traits asasedlgorithms
parameterized by conceptual geometric data typertwide a
unified library of fundamental geometric algorithnibat is
interoperable with existing geometric data typethauit the need
for data copy conversion. Specific concepts andorghms
provided in GTL focus on high performance/capag2idypolygon
manipulation, especially polygon clipping. The kgation-
programming interface (API) for invoking algorithnssbased on
overloading of generic free functions by concep@serloaded
generic operator syntax for polygon clipping Boole#ésee Figure
1) and the supporting operator templates are peovid make the
API highly productive and abstract away the detaflalgorithms
from their usage. The library was implemented intell
Corporation to converge the programming of geometri
manipulations in C++ while providing best in classitime and
memory performance for Booleans operations. Thiapep
discusses the specific needs of generic geometsgramming
and how those needs are met by the concepts-bgsedystem
that makes the generic API possible.

Categories and Subject Descriptors
1.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling —Curve, surface, solid and object representations.

General Terms
Algorithms, Performance, Design, Reliability, Stardization.

Keywords
C++ concepts, geometry, polygon clipping, data rindelibrary
design.

1. INTRODUCTION

1.1 Problem Statement and Motivation
Traditional object-oriented design leads to typesteyps that

Permission to make digital or hard copies of alpart of this work for

personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation os finst page. To copy
otherwise, or republish, to post on servers oreistribute to lists,

requires prior specific permission and/or a fee.

Boostcon’09 May 3-8, 2009, Aspen, Colorado, USA.

Copyright 2009 ACM 1-58113-000-0/00/0004...$5.00.

Gyuszi Suto

Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95054-1549
1 (408) 765-8080

gyuszi.suto@intel.com

a b
Figure 1. Booleans example: disjoint-union (a xor Jis c.

employ a common base class to integrate new typ&s an
existing system. This leads to monolithic softwdesign with
shared dependencies on the base class, creatimgrbaof
incompatibility between different software systemvhen they
cannot share a common base class. Integratingaryibr
functionality into such a software system typicaligquires
wrapping the library API with functions that peroimplicit data
copy conversion or that data copy conversion béopaed as an
explicit step before the library APl can be usethis leads to
code and memory bloat in applications and to liemathat are
hard to use. The problem presents itself clearlygometry. An
application will model objects that have a georncetrature as
well as application-specific attributes such as esmmweights,
colors etc. These object models are geometridiestibut are
typically not syntactically compatible with a gedme library
unless there is code coupling through some baseejeio class.
Often an unnecessary copy conversion of data ntodgtometric
object is required to satisfy syntactic requirersenita geometry
library API. For example, to use CGAL [8] libragygorithms a
polygon that depends on CGAL header files mustdmtaded and
data copied into it before that data can be padsstd the
algorithm. Eliminating this artificial incompatiity and allowing
a geometry library’s API to be used directly andhiatrusively in
an application with its native object model is thesign goal for
GTL’s interfaces. This allows application levelogramming
tasks to benefit from the thoughtful design of adurctive and
intuitive set of library APls.

1.2 C++ Concepts Address the Problem
Computational geometry is the ideal domain to apfiy+
Concepts [10] based library design. At a concdpteeel,
geometric objects are universally understood. tiExjsgeometry
codes coming from different sources are not intemygatible due
largely to syntactic rather than semantic diffeemc These
syntactic differences can be easily resolved bycepnmapping
through C++ traits. However, there are minor sdiban
differences that need to be comprehended in ocdienplement a
truly generic geometry concept.

A generic geometry library must also parameterihe t
numerical coordinate data type while at the same tproviding
numerically robust arithmetic. Doing this require®re than
simply making the coordinate data type a templaeapeter
everywhere, but also looking up parameterized doatd type
conversions, handling the differences between értagd floating
point programming, and making sparing use of higéeigion
data types to allow robust calculations. The gengeometry
library must define a type system of concepts ihatudes a
coordinate concept and provide an API based uptraitis both
intuitive and productive to use yet maintainabled agasily
extensible.

We will compare and contrast different proposedraaghes
to generic geometry type systems in Section 2. ti@Ged& will
present the approach used in GTL to implement angéy
concepts APl and explain its advantages over opneposals.
Operator templates and the details of the opetzsed API for
polygon set operations (intersection, union, etdl)be presented
in Section 4. In Section 5 we will present a ganeweep-line
algorithmic framework, explain the principles bahinour
implementation of sweep-line and how they are ctdié in the
requirements placed on its template parametersnekioal issues
faced and solutions for numerical robustness proble
implemented in our library will be discussed in &t 6. A
performance comparison with several open sourceputational
geometry libraries will be presented in Section ridl alosing
remarks in Section 8.

2. Generic Geometry Approaches

There are several well known generic programmirghrigues
that are applicable to the design of a generic gdgnlibrary
APIl. The most important is C++ traits, which prbe$ the
necessary abstraction between the interface obaey object
and its use in generic code. In combination wititd, other
generic programming techniques have been proposethé
design of generic geometry libraries including: tigpatching,
static asserts and substitution-failure-is-not-amore (SFINAE)
template function overloading.

2.1 Free Functions and Traits

The conventional way to implement a generic APIwgh
template functions declared within a namespace.is Bliows
arbitrary objects to be passed directly into temgpfanctions and
accessed through their associated traits. Thereoisever, one
problem with this approach when used for computatio
geometry. How to specify what kind of geometridityra given
template parameter represents? The simplest @oligito name
the function such that it is clear what kind of gery it expects.
This prevents generic function name collisions auwduments
what expectation is placed upon the template pasme
However, it leads to overly long function namesttipalarly if
two or more kinds of geometry are arguments ofretion. Such
generic functions do not lend themselves to gen@rgramming
at a higher level of abstraction. Consider ttenter(T)
function. If we name it variousiyectangle_center(T) for
the rectangle case amwlygon_center(T) for polygons we
cannot abstract away what kind of geometry we aading with
when working with their center points. As an exémnp generic
library function that computes the centroid of &eradtor range
over geometry objects using their center pointgtted by their

area would require two definitions that differ olbly the names of
functions that compute center and area. As wetaaddgle and

polygon-with-holes and circle to the generic lilgrethe drawback
of not being able to abstract away what kind ofrgewy is being

worked with in library code as well as user codedmees

painfully obvious.

2.2 Concepts and Static Assert

A static assert generates a syntax error whenegeneept check
fails. A boost geometry library proposal from Bdan Kohn [5]
employs boost::static_assert on top of generic free
functions and traits. This approach to C++ corneggten applied
to computational geometry improves the API prinyarlhy
producing more intelligible syntax errors when th®ng type is
passed into an API. It does not solve the prolbdémot being
able to abstract away the geometric concept itssthuse it still
relies on functions having different names for efiént concepts
to prevent function name collisions.

2.3 Tag Dispatching Based Concepts

A series of boost geometry library proposals froared®id Gehrels
and Bruno Lalande [2] have culminated into a tagpdiching
based API where a generic free function that loglxgag types
for the objects passed in to disambiguate othenidsatical

dispatch functions. These dispatch functions arapped in

structs to emulate partial specialization of dispafunctions by
specializing the struct. Partial specializationesfiplate functions
is not legal C++ syntax under the C++03 standard.

namespace dispatch {
template <typename TAG1, typename TAG2,
typename G1, typename G2>
struct distance {};
template <typename P1, typename P2>
struct distance<point_tag, point_tag, P1, P2>{
static typename distance_result<P1, P2>::type
calculate(const P1& p1, const P2& p2) {...};
h
template <typename P, typename L>
struct distance<point_tag,linestring_tag,P,L> {
template<typename S>
static typename distance_result<P1, P2>::itype
calculate(const P& point, const L& linestr);

template <typename G1, typename G2>
typename distance_result<G1, G2>::type
distance(const G1& g1, const G2& g2) {
return
dispatch::distance< tag<G1>::type,
tag<G2>:type, G1, G2>::calculate(gl, g2);
}

This approach solves the name collision problemallbws
one center() function, for example, to dispatch to different
implementations for various rectangle, circle, goly conceptual
types and abstract the concept away when workirily @bjects
that share the characteristic that they have a&cemtowever, it is
hard to generalize about concepts in a tag dispegiciAPI
because concept tags need to be explicit in théamdgion of
dispatch functions. For all combinations of taggst ttould satisfy
a generic function, a definition of a dispatch filme that accepts
those tags must be provided. [enter() this is merely one for
each concept, but for a function suchdagance() it is all pairs
and becomes cumbersome once the number of conicephe

system exceeds just a handful. The number of sligpatch Concept checking is performed by looking up thecemt
functions needed to implement an API explodes ihasather associated with a given object type by meta-fumctio
abstraction is not used, such as multi-stage dikpadnother way geometry_concept<T> and using that along with pertinent
to achieve that additional abstraction is inheg&asub-typing of concept refinement relationships through compiteetilogic to

tags, while SFINAE provides a third. produce a yes or no answer for whether a giventifumshould
instantiate for the arguments provided or result SRINAE
3. GTL's Approach to Generic Geometry behavior in the compiler. This allows generic filmes to be

overloaded in GTL. The two generic functiofu®() in the
example code below differ only by return type, tare not
ambiguous because their return types cannot bothdbentiated
for the same template argument type. While SFINgeBeric
function overloading is quite powerful and flexiptée compiler
support for it is currently inconsistent, requirisignificant effort

Empty conceptstruct s are defined for the purposes of meta-
programming in terms of concepts and are analogotesgs used
in tag dispatching. Sub-typing relationships befmveconcepts
(concept refinements) are implemented by speamizineta-
functions that query for such.

struct polygon_concept {}; and knowledge of compiler idiosyncrasies and tivaplications
struct rectangle_concept {}; in order to produce portable code.
template <typename T> - .
struct is_a_polygon_concept{}; template <typename T> struct is_integer {};
) template <>
template <> struct is_a_polygon_concept< struct is_integer<int> { typedef int type; };
rectangle_concept> { typedef gt_yes type; }; template <typename T> struct is_float {};
template <>

Even with concepts inherited from each other (fag t structis_float<float> { typedef float type; };

dispatching purposes, for instance) such meta-fumetwould template <typename T>

still be convenient for SFINAE checks because iithece typename is_int<T>::type foo(T input);
relationships are not easily detected at compifeti The use of template <typename T> _
boost::is_base_of could obviate the need for these meta- YPename is_float<T>:type foo(T input);

functions in GTL.

_ _ 3.1 Geometry Concepts Provided by GTL
Traits related to geometry concepts are broken doum GTL provides geometry concepts that are requiredsupport

mutable and read-_only traits_st_ruc_ts. A data tipg models a planar polygon manipulation. A summary of thesacepts can
concept must provide a specialization for that eptis read-only be found in Table 1.

traits or conform to the default traits definitioit. should also do

the same for the mutable traits if possible. Table 1. GTL Concepts
GTL interfaces follow a geometric programming sty&dled Concept Abbreviation
isotropy, where abstract ideas like orientation diréction are coordinate_concept C
program data. Direction is a parameter to functiails rather interval_concept |
than explicitly coded in function names and handhéth flow point_concept PT
control. The access functions in the traits ofcinpdata type point_3d_concept PT3D
therefore defines onget() function that accepts a parameter for rectangle_concept R
horizontal or vertical axis component rather thepasatex() and polygon_90_concept P90
y() access functions. polygon_90_with_holes_concept PWH90
lygon_45_concept P45
template <typename T> po ==
Sm,f:’t poimytpraits { polygon_45_with_holes_concept PWH45
typedef T::coordinate_type coordinate_type; polygon_concept P
coordinate_type get(const T& p, . polygon_with_holes_concept PWH
. orientation_2d orient) { return p.get(orient); polygon_90_set_concept PS90
template <typename T> poly?on_45_?et_conc?pt PPSS45
struct point_mutable_traits { polygon_set_concep
void set(const T& p, orientation_2d orient, | | y I R H P90 H P45 H P]
coordinate_type value) {
p.set(orient, value);
| C] | PT H PT3D] PWHO0PWH45 PWH]
T construct(coordinate_type X,
\ coordinate_type y) { return T(x, y); } Key: (] concept, »is refinementof § pson L psas S]

A data type that models a refinement of a concejt w Figure 2. GTL Concept Refinement Diagram
automatically have read only traits instantiatetfe more general

concept based upon the traits of the refinement daga type Concept refinement relationships in GTL are shown i
models. The programmer need only provide conceggppimg Figure 2, with concepts labeled by the abbreviatitinted in
traits for the exact concept their object modeld &nbecomes Table 1. GTL provides algorithms that have beetindped for
fully integrated into the generic type system. Manhattan and 45-degree VLSI layout data, and quscecific

to these restricted geometries are named with 8018n

A polygon set in our terminology is any object that
suitable for an argument to a polygon set operaiisiersection,
union, disjoint union, etc.) A vector of polygoissa natural and
convenient way to define such an object. Vectord bsts of
objects that model polygon and
automatically models of polygon sets concepts.sérican define
the traits for their polygon data type, register as a
polygon_concept type by specializingeometry_concept<T>
and immediately begin using vectors of those patggas

arguments to GTL APIs that expect objects that rhode
GTL also provides data structures for

polygon_set_concept
polygon set objects that store the internal repitasien suitable
for consumption by the Booleans algorithms.

3.2 Generic Functions Provided

It is very important to make use of the conceptineghent
definition of parent concept traits with child cept objects to
allow a complete and symmetric library of genetndtions to be
implemented in a manageable amount of code. O¢menic
functions defined for O(m) conceptual types caovalD(n * m)
function instantiations that all operate on didtimonceptual
types. A good example of this is tlssign() function that
copies the second argument to the first and isigeadin lieu of a
generic free assignment operator, which is notlI€ga syntax.
The assign()
where the second is the same conceptual type afirsheor a
refinement of the first conceptual type. GTL altowmwughly fifty,
functionally correct and semantically sensible taniations of
assign() that accept distinct pairs of conceptual typekere is,
however, only one SFINAE overload of the genericigis
function for each of thirteen conceptual types. MNmsensical
combination of concepts passed #esign() is allowed to
compile and the syntax error generated is simply fnction
assign that accepts the arguments...”

The assign()
stone of geometry data type conversions, but theary also
provides a great many other useful functions sushaeea,
perimeter, contains, distance, extents etc. Becaofs the
extensible design, it is very feasible to add newcfions and
concepts over time that work well with the existfmgctions and
concepts.

3.3 Bending the Rules with view_as

Sometimes use of GTL APIs with given types wouldillegal
because the of a conceptual type mismatch, yepitbgrammer
knows that some invariant is true at runtime theg tompiler
cannot know at compile time. For example, thablygon is a
rectangle, or degenerate. In such cases, the gmoger might
want to view an object of a given conceptual typédfat were a
refinement of that conceptual type. In such céseprogrammer
can concept-cast the object to the refined contgp with a
view_as function call. A call toview_as provides read only
access to the object through the traits associaittdthe object.
For example, some algorithms may be cheaper toyappl
concepts that place restrictions on the geometitp darough
refinement because they can safely assume centzniants. It is
much faster to compute whether a rectangle fullptaios a
polygon than it is to compute whether a polygoryfabntains a
polygon. Rather than construct a rectangle froengblygon we

rectangle concepts a

function alone turns GTL into a Rosetta-

can simply view the polygon as a rectangle if wewrthat to be
the case at runtime.

if(is_rectilinear(polygon) &&

size(polygon) == 4) {

/Ipolygon must be a rectangle

/luse cheaper O(n) algorithm

return contains(view_as<

rectangle_concept>(polygon), polygon2);

}else {

/luse O(n log n) Booleans-based algorithm

return contains(polygon, polygon2);

}

The ability to perform concept casting, conceptnezhent
and overload generic functions by concept type ligesin a
complete C++ concepts-based type system.

4. Booleans Operator Templates

The Booleans algorithms are the core algorithmipabdity

provided by GTL. An example of a Boolean XOR ojieraon

two polygons is shown in Figure 1. The geometmoepts and
concept based object model are focused on providEchanisms
for getting data in and out of the core Booleanshm format of
the user’s choosing. This enables the user tattjirmake use of
the API provided by GTL for invoking these algorith on their

function can be called on any pair of objects own data types. This novel ability to make usditmfary APIs

with application data types motivates us to proviie most
productive, intuitive, concise and readable API|gilhe. We
overload the C++ bit-wise Boolean arithmetic operst to
perform geometric Boolean operations because iihisediately
intuitive, maximally concise, highly readable andductive for
the user to apply.

4.1 Supported Operators

A Boolean operator function call is allowed by thwary for any
two objects that model a geometry concept for whicharea
function call makes sense. These include dperator& for
intersectionpperator| for union,operator® for disjoint-union
andoperator— for the and-not/subtract Boolean operation. Self-
assignment versions of these operators are provateléft hand
side objects that model the mutable polygon setepts, which
are suitable to store the result of a Boolean. Algpported for
such objects areperator+ /operator- when the right hand side
is a numeric for inflate/deflate, known as offsedtior buffering
operations. There is no complement operation tsecthe ability
to represent geometries of infinite extent is napeeted of
application geometry types. Nor is such an opemndtiuly needed
whenobject ” rectangle with a suitably large rectangle is
equivalent for practical purposes.

4.2 Operator Templates Definition

To avoid the unnecessary copying of potentiallygéardata
structures as the return value of an operator fomaall that must
return its result by value, the return value of GBbolean
operators is an operator template. The operatoplete caches
references to the operator arguments and allostdeage for the
result of the operation, which remains empty iflitiaallowing

the copy of the operator template to be lightweighien it is
returned by value. The operator template lazilyfggens the
Boolean operation, storing the output only wheastfiequested.

Operator templates are expected to be temporaties wperators
are chained. For instan¢e + b) - ¢ produces an operator
template as the result af+ b , passes that intaperator- and
another operator template is returnedopgrator- . Only later
when the result of thabperator- is requested will both the
Booleans be performed as the operator templatesrsieely
perform lazy evaluation of the expression. Becdhsauser is not
expected to refer to the operator templates by, typeinstead use
them only as temporaries, there is little dangethef arguments
going out of scope before the expression is evadlat

4.3 Exemplary User Code
The combination of operator templates with the Qbhcepts
based type system leads to the ability to writevgplary user code
using the library. For instance, in an applicatibat defines its
own CBoundingBox andCPolyon, the following GTL based
code snippet becomes possible:
void foo(list<CPolygon>& result,
const list<CPolygon>& a,
const list<CPolygon>& b) {
CBoundingBox domainExtent;
gtl::extents(domainExtent, a);
result += (b & domainExtent) » (a - 10);
}

The application of five GTL library algorithms is@mplished in
only two lines of code while the design intent loé tode is clear
and easy to read. This is with application rathen library data
types and no performance is sacrificed for datg ¢ogsatisfy the
syntactic requirements of library interfaces or thperator
semantics of C++ that require return by value. sTabstracts
away the low-level details of the algorithms arldws the user to
program at a higher level of abstraction while te same time
preserving the optimality of the code produced.

5. Generic Sweep-line for Booleans

A common way to implement Booleans is to first inget
polygon edges with an algorithm such as Bentleyn@tin [1].
After line segment intersection, new vertices ammmmonly
introduced on edges where intersections were ifithtalong
with crosslinks that stitch the input polygons tibge into a graph
data structure. The graph data structure is thmretsed and a
rules-based algorithm ensures that interior edgesat traversed.
Traversing exterior edges yields closed polygori] [This
traditional algorithm has several problems. Thepbr data
structure is expensive to construct, expensive tresand
expensive to traverse. When the graph is travetsedutput
polygons the winding direction can be used to idfietiles, but
no information stored within the graph helps tooasste those
holes to the outer polygons, requiring that addalccomputation
be performed if that information is needed. Thgodathm leads
to complex implementations of rule logic becausedfuires that
degeneracy be handled explicitly with logic, makihghallenging
to achieve a reliable implementation of the aldonit

A much better approach to Booleans is the apptinatf
sweep-line to identify interior edges. GTL prowsda generic
sweep-line algorithm framework that is used to enpént line
segment intersection, Booleans and related algositsuch as
physical connectivity extraction.

5.1 Better Booleans through Calculus

Our Booleans algorithm differs from the traditioreproaches
found in the literature. The algorithm most clgselsembles [11]
in that it can perform polygon clipping and linegseent
intersection with a single pass of sweep-line. olr problem
formulation we model a polygon as a mathematicattion of
two variables x and y such that for all x/y pointside the
polygon the function returns one, and for all psioutside the
polygon the function returns zero. This view opalygon is
useful because it allows us to reason about theblgmo
mathematically.

If we consider a mathematical function of two vhhés, we
can apply the partial derivative with respect teheaf those
variables, which provides the points at which thection value
changes and the directions and magnitudes in wiiicls
changing. Because our geometry is piece-wisetitiea reduces
the two dimensional definition of the polygon fuoect to a
collection of zero dimensional quantities at itstiees that are
directed impulses with magnitude of positive orateg one.

dx dy Y

Figure 3. Derivative of a polygon

Integrating with respect to x and y allows us toorestruct
the two dimensional polygon function from these ozer
dimensional derivative quantities.

o0 OO
F
??1
ao
.
X=—00 y:—OO *

Figure 4. Integrating polygon-derivative reproducespolygon

This integration with respect to x and y in mathtoad
terms is analogous to programmatically sweepingnfieft to
right and from bottom to top along the sweep-linad a
accumulating partial sums. Because the polygoasp@cewise
linear this summation is discreet rather than caus and is
therefore computationally simple. What this mathgoal model
for calculus of polygons allows us to do is sup@ase multiple
overlapping polygons by decomposing them into wedbjects
that carry data about direction and magnitude ahge along the
edges that project out of those vertices. Becthese vertices are
zero-dimensional quantities they can be superimpsgaply by
placing them together in a collection, triviallyrsog them in the
order they are to be scanned and summing any #vat the same
point in common. When scanned, their magnitudessammed
(integrated) onto intervals of the sweep-line dgttacture. The
sweep-line data structure should ideally be a irtege that

provides amortized log(n) lookup, insertion and ogai of these
sums, keyed by the lower bound of the interval ¢itof course
changes as the sweep-line moves.) Each such ahterv the

sweep-line data structure stores the count of theber of

polygons the sweep-line is currently intersectingng that

interval. Notably, the definition allows for cosnio be negative.
A union operation is performed by retaining all esldor which

the count above is greater than zero and the doeiotv is less
than or equal to zero or visa-versa. Vertical sdge a special
case because they are parallel to our sweep-lineatsueasily
handled by summing them from bottom to top as weymss
along the sweep-line.

S S
1 e
1—»2:1 <1 T 17—];]‘2’1 . ie 'l
1 s?’l 1 .?—1
i | L gl
2,
?1
Lol e e . N
1 .&:’1
L. N

d e f

Figure 5. Sequence of Boolean OR (union) operation

The sequence of steps to perform a Boolean OR rflnio

operation on two polygons is shown in Figure 5.e TWo input
polygons are shown overlapping in Figure 5 a. Tleeg
decomposed into their derivative points as showfrigure 5 b.
Line segment intersection points are inserted as/shin Figure 5
c. These intersection points carry no derivatie¢adquantities
because no change in direction of edges takes ptdnéersection
points. The result of a pass of sweep-line to remmterior
points through integration and output updated diirre
quantities is shown in Figure 5 d. Note that ithie same data-
format as the input shown in Figure 5 b and is &at fthe
derivative of the output polygons. This facilitatéhe chaining
together of multiple Booleans operations withoué theed to
convert to and from polygons in between. Note tira point in
Figure 5 d. has no derivative vector quantitiesgagsl to it. That
point is collinear with the previous and next paimtthe output
polygon and therefore doesn'’t represent a changkréction of
edges. It is retained because preserving thedgpaif collinear
points in the output is a requirement for some rimgshlgorithms
that their input polygons be “linearly consistentSuch collinear
points can be trivially discarded if undesired. fidal pass of
sweep-line can either integrate the output polyderivative from
Figure 5 d to form polygons with holes as showifrigure 5 e or
keyhole out the holes to the outer shells as showvigure 5 f. It
is possible to perform line segment intersectiorigrior point
removal and form output polygons in a single pdssaeep-line.
We break it down into separate steps for conveeiendhe
computation required for interior point removal, daging of
derivative quantities and formation of output pagg increases

the computational complexity of sweep-line basedegalized
line segment intersection such as that described bgy only a
constant factor whether performed as a single paseparated
into multiple passes. The algorithm presented fertherefore
optimal because it is well known that polygon cipis bounded
by the complexity of line segment intersectioncas be trivially
proven because line segment intersection couldripemented
with our polygon-clipping algorithm.

The output polygons can contain holes, and the tinpu

polygons can likewise contain holes. Moreover,dhgput holes
can be associated to their outer shells as adédltieta available
in the output or geometrically by keyholing. Thatmut can
easily be obtained as the non-overlapping
decomposition of polygons sliced along the sweee-tirientation
similar to [11]. All of these polygonal forms otifput are legal
inputs to the algorithm, and it is closed both &e polygon

domain as well as the polygon derivative domain mirgathat it

consumes its own output. The other advantageisfallyorithm

over the traditional previous polygon clipping aifoms is that it
correctly handles all degeneracy in inputs imgiaitith the same
logic path that handles the normal case. Our #lgorreduces
the complex logic of categorizing states to simplghmetic

applied while scanning. It is robust to negativdygon counts
(holes outside of shells), high order overlapsntérisections and
edges, co-linear and duplicate points, zero leregibes, zero
degree angles and self-intersecting/self-overlappiolygons, all
by simply applying the same calculus of summingivagive

values that are easily computed by inspecting eaclygon

vertex. To our knowledge this polygon-derivativeaimodeling
and algorithm for polygon clipping has not appeanedpast

literature and is novel.

5.2 Generic Booleans Algorithmic Framework

The scanning of geometry for a Boolean in GTL pen®

integration with respect to x and y of changes donnts of the
number of polygons from left-to-right/bottom-to-tog he sweep-
line data structure stores the current count of nibenber of
polygons that overlap intervals of the sweep-livée employ the
stl map for our sweep-line data structure usingréla technique
as described in [9] to implement a comparison fondhat

depends upon the position of the sweep-line. Thmidata type
stored as the value of the map element is a tempkatameter of
the sweep-line algorithm. It is required to be ald, and
generally conform to the integral behaviors. Ateger is a valid
data type for the count and is used to implememryBoolean
operations. A pair of integers can be used to émgint binary
Boolean operations such as intersection. A magpaferty value
to count can be used to perform sweep-line on duitrary

number of input geometry “layers” in a single pas®ther

template parameters include an output functor, wWutgata
structure and of course the coordinate data type.

template <typename coordinate_type>
struct boolean_op {
template <typename count, typename output_f>
struct sweep_line {
template <output_c, input_i>
void scan(output_c& o, input_i b, input_i e);

};'

trapezoid

The generic algorithm takes care of all the detaifs
intersecting polygon edges and summing counts whéeoutput
functor, count data type and output data struatorgrol what is
done with that information. In this way, the algom can be
adapted to perform multiple operations with miniraffbrt. The
seven simple Booleans supported by GTL employ dutmctors
that differ only in the logic they apply to the eduwlata type.

[lintersect

count[0] > 0 && count[1] > O;
/lunion

count[0] > 0 || count[1] > 0;
/Iself-union

count>0

/[disjoint-union

(count[0] > 0) ~ (count[1] > 0)
/Isubtract

(count[0] > 0) && !(count[1] > 0)
/Iself-intersect

(count > 1)

IIself-xor

(count % 2)

If the logic applied by these output functors t@ tbount
results in true on one side of an edge and falsthemther then
that edge is exterior and appended to the outpatsteucture. If
partial polygons are stored as part of the coute d&ructure in
the sweep-line tree then the output functor carsitoot output
polygons.

e oo ~
a b

C

Figure 6. Connectivity Extraction and Property Merge

Also implemented with the generic Booleans framéwame
property merge and connectivity extraction. Byngsa map of
property to polygon count as the data type forcitnents stored on
the sweep-line and appropriate output functor antpud data
structure the connectivity graph of n nodes of gohal inputs
can be computed in a single pass of the algorithrprovide a
solution to the spatial overlay join problem. Axample of the
output of this algorithm for the geometry in Fig@ea. is shown
in Figure 6 b. Similarly, the geometry of all un@combinations
of overlap between n polygonal inputs can be coeguand
output by the property merge output functor to g rafipolygon
sets keyed by sets of property values. An exawiptiee output of
property merge for the geometry in Figure 6 ahiswn in Figure
6 c. The property merge algorithm is a generatmabf two
input Boolean operations to n inputs to solve thayer map
overlay problem. The generic algorithm can belgaglapted to
implement other sweep-line based algorithms inclgdiomain
specific algorithm such as capacitance estimation.

5.3 Offsetting/Buffering Operations

In addition to Booleans, GTL also provides the télfis to offset
polygons by “inflating” or “deflating” them by a ggn resizing
value. Polygons grow to encompass all points withe resizing
distance of their original geometry. If the resgidistance is

negative, polygons shrink. This implies that ciatuarcs be
inserted at protruding corners when a polygon &zesl. Such
circular arcs are segmented to make the outpugpobl. Other
options for handling such corners include inseringingle edge
instead of an arc, simply maintaining the origimabology or
leaving the corner region unfilled. The resizingemtions are
accomplished by a union operation on the origirdygons with
a collection of trapezoids constructed from thelges of width
equal to the resizing distance and with polygonshatcorners
generated based on the two adjacent edge trapezéidexample
of the shapes created from the input 45-degree gepim Figure
7 a is shown in Figure 7 b and the result of thmmurhetween
those shapes and the original to create the oggumnetry of an
inflate operation is shown in Figure 7 c. Defleeccomplished
by substituting subtraction for union.

S N | S

a b C

Figure 7. Resize Example: inflate of polygon with dle

6. Numerical Robustness

There are three problems in integer arithmetic thmaist be
overcome to implement generalized line segmentsatgion for
polygon clipping. These are integer overflow, ggetruncation
of fractional results and integer snapping of isgetion points.
Overflow and truncation of fractional results makesputing the
result of very innocent looking algebraic expressicall but
impossible with built-in integer types. The commoractice of
resorting to floating point arithmetic in these esss clearly not
suitable because the error it introduces is evere pmblematic.

Intersection points must be snapped to the intggdrat the
output of the algorithm. However, snapping theilséction point
causes a small lateral movement of the line seghiei#t inserted
on. This movement can cause a line segment tg toathe other
side of a vertex than was at the case in the inpwgducing new
intersections. If these new intersections haveyabbeen reached
by the forward progress of the line segment inttise sweep-
line, they might be handled naturally by the altori, however, it
is just as likely they are introduced prior to therent position of
the sweep-line and the algorithm will not have dpportunity to
handle them during its forward progress.

A choice about how to handle spurious intersecpoints
introduced by intersection point snapping must keden It is
impossible to both output the idealized “correatpdlogy of
intersected line segments and at the same timeubdtply
intersected line segments with their end pointsheninteger grid
with the property that no two line segments intersexcept at
their end points. The invariant that output liregsents not
intersect except at their end points is cruciablbge this invariant
is a requirement of algorithms that would consuime output.
Topologically, the important consideration for pgdw clipping is
that the output edges describe closed figures. latifg this
invariant would, at best, cause polygons to be pgeal” during
subsequent execution and, at worst, result in imeifbehavior.

It is obvious that merging of vertices and the itisa of new
vertices are both topological changes that preseg@roperty of
the network that all closed cycles remain closedlhese
topological changes are allowed to occur as thdtre$ snapping
intersection points because we choose to enfocattariant that
no line segments at the output intersect excefpiestt end points.

6.1 Solving Overflow and Truncation

Overflow is easy to handle if the appropriate dbtpes are
available. Thirty-two bit can be promoted to siktyr and sixty-
four bit can be promoted to multi-precision integétowever, in
generic code it becomes impossible to be explimitud when to
cast and what to cast to. The same algorithm ntigtapplied on
several different coordinate data types when itistEad with
different template parameters. We provide indigxtess to the
appropriate data types through coordinate traits;oardinate
concept and a meta-functiohigh_precision_type<T> The
coordinate traits allow the lookup of what dataetyp use for
area, difference, Euclidean distance, etc. Thedioate concept
is used to provide algorithms that apply these tigtas correctly
to ease the burden of common operations such aputong the
absolute distance between two coordinate valuesorie-
dimensional space. The high precision type is wgeete built-in
data types would not be sufficient. It defaultsldag double,
which is the highest precision built-in data typeut still
potentially insufficient. By specializing for aexific coordinate
data type such as integer, a multi-precision raficGuch as the
gmp mpq type [3] can be specified. This can beedautside the
GTL library itself, making it easy to integrateditse encumbered
numerical data types with GTL and its boost licendout the
need for the GTL code itself to depend on licenseumbered
header files.

Handling integer truncation of fractional resulesmde done
either by applying the high-precision type (prefdyaa multi-
precision rational) or by algebraic manipulationndinimize the
need for division and other operations that maylpee factional
results. Some examples of this are distance cdasgparslope
comparison and intersection point computations. ehVh
comparing the distances between two points it tsnesessary to
apply the square root operation because that fumctis
monotonic. When comparing slopes we use the qgrosduct as a
substitute for the naive implementation. This dsalivision and
produces reliable results when performed with ietedata types
of sufficient precision. Comparing intersectionomtinates can
also use the cross product to avoid division bexaumsnputing
the intersection point of two line segments canalgebraically
manipulated to require only a single division opiera per
coordinate, which is performed last.

/ISegment 1: (x11,y11) to (x12, y12)

/ISegment 2: (x21,y21) to (x22, y22)

X = (x11 * dyl * dx2 — x21 * dy2 * dx1 +
y21 * dx1 * dx2 - y11 * dx1 * dx2) /
(dyl * dx2 - dy2 * dx1);

y =(yll *dx1 * dy2 - y21 * dx2 * dyl +
x21 *dyl * dy2 - x11 * dyl * dy2) /
(dx1 * dy2 - dx2 * dy1);

6.2 Solving Spurious Intersections

Non-integer intersection points need to be snappdtie integer
grid in the output. We snap each intersection tpimirthe integer
grid at the time it is identified. We do this king the floor of

the fractional value. Integer truncation is platfcdependent, but
frequently snaps toward zero, which is undesirddgeause it is
not uniformly consistent. Because the integer gridniform, the

distance a point can be snapped by taking the fiobounded to
a 1x1 unit integer grid region. Our current aofo differs from

the similar approach described by John Hobby [4]that he

rounds to the nearest integer.

Because the distance a segment can move is bouided,
predictable. That means that we can predict trstandée a
segment might move due to a future intersectiomeard handle
any problems that would cause pro-actively in tRecation of
line segment intersection. There are two typesntdrsection
artifacts created by snapping. The first is caustén a line
segment moves laterally and crosses a vertex,ra@airgiersection
with edges that would not otherwise be intersectBoe second is
when an output line sub-segment is lengthened bpping and
its end point crosses a stationary line segmehe second case is
functionally equivalent to the first since it do#smatter whether
a point moves to cross an edge or an edge mowassse a point.
Both can be handled by the same strategy so welld on the
case of the line segment moving in the descriptibour strategy.
That strategy relies upon the following lemma: atifacts take
place only when a vertex lies within a distanceadine segment
bounded by the max distance an intersection poarnt be
snapped. This lemma can be trivially proven beedhe distance
that segments can move is bounded and it is oblyicmpossible
for two non-intersecting line segments to croshesber without
one first crossing an end-point of the other. Mwegz, since the
direction of snapping is known to be always dowrdyérfollows
that a vertex can only be crossed by a line segifghat line
segment intersects the 1x1 integer unit grid bdk Wiat vertex in
its lower left corner. In these cases, we intdridee line segment
with those vertices pro-actively such that if aufet intersection
causes the line segment to move, the output togo&amnot
contain spurious intersection artifacts due to theint. Because
the vertex is intersected and not other edges,dditianal line
segment intersections need be introduced and nmagation of
intersection artifacts through the network can tplece. This
method in known as snap-rounding and has been waischssed
in the literature. [4]

Given an algorithm that finds intersections betwéiere
segments, it is easy to find intersections with Ixteger grid
boxes at segment end-points and snapped-interseotimts by
modeling them as several tiny line segments calleddget. Any
line segment that intersects the unit grid box imilersect at least
one of the segments of the widget shown in Figure 8

0,1 1,1

0,0 1,0
Figure 8. Example: Vertex/Segment Intersection Widgt

Importantly, intersection events are detected lyallyorithm
based on only the input line segments geometrynaveér that of

the intersected line segments it has produced. er@tbe,
numerical error could propagate forward in casaadircreased
severity to reach arbitrarily large magnitudes. suth were the
case, no assurance of numerical robustness coutéasenably
made.

If the snapping direction is uniform it can be agad so that
vertices snap forward in the scanning directionowilhg
evaluation of the widget to be performed by the esameep-line
that finds the intersections. This is our intentio However,
currently our arbitrary angle polygon Booleans gpal much
simpler line segment intersection algorithm impleted to
validate the sweep-line version of robust line segm
intersection, which is still a work in progresst cbmpares all
pairs of line segments that overlap in their x dimate range and
all vertices and snapped intersection points witsegments that
overlap with the x coordinate of those pointshds O(n"2) worst
case runtime complexity, but in the common casaé expected

runtime of O(/?) and, in practice, performs nearly as well as the

expected O(n log n) runtime of the optimal algarithmaking its
use for even quite large input data sets highlgtjpral.

The combination of handling overflow and applyirgional
data types to overcome truncation errors with ttretegy for
mitigating errors introduced by intersection pagnapping allows
100% robust integer line segment intersection. &lgorithm
approximates output intersection points to withire enteger unit
in X and y and may intersect line segments witmisothat lie
within one integer unit in x and y. This approxtegmthe ideal
“correct” output to the extent practical with inezgcoordinates.
The algorithm could be enhanced to round to closgsger grid
point when snapping intersections and make intérgesegments
to nearby vertices predicated upon whether it ldiecomes
necessary to do so. As a practical matter, howetra@se
measures would result in very little benefit to wecy. That
benefit, and more, can be more easily obtainedchiing up the
input and applying higher precision integer arittime if
necessary, which is easily accomplished using GTL.

7. Experimental Results

We benchmarked our own GTL polygon clipping Bookan
algorithm against the GPC [7], PolyBoolean [6] adGAL [8]
polygon clippers. We benchmarked the three GTlorélgms,
Manhattan, 45-degree, and general Booleans agalhshree.
These benchmarks were performed on a two-packagere8 3.0
GHz Xenon with 32 GB of RAM, 32 KB of L1 cache aGdviB
L2 cache. Hyper-threading was disabled. Nonéefalgorithms
tested were threaded and all ran in the same @oced/e
compiled the benchmark executable using gcc 4.212 @3 and
finline-limit=400 optimization flags.

Inputs consisted of small arbitrary triangles, tébily
distributed over square domains of progressivetyeasing size.
Runtimes measured were the wall-clock executiore tioh the
intersection operation on geometry contained wittvim such
domains. The overlapping triangles in each donieid to be
merged first with GTL to make them legal inputs fbe other
three libraries’ Boolean operations. For the Mat#ma (axis-
aligned rectilinear) benchmark we used small abjtrectangles
instead of triangles.

Results of our benchmarking are shown in Figurek09nd
11. Note that in Figure 11 the last two data miffibr
PolyBoolean are absent. PolyBoolean suffered fuoexplained
crashes as well as erroneously returning an ewde due to a
bug in its computation of whether a hole is corgdiwithin a
polygon. This prevented PolyBoolean from succelysfu
processing large data sets. CGAL had a similablpro that
prevented it from processing data sets larger thase in Figure
11. We conclude that this is a bug in CGAL becausth GTL
and GPC were always successful in processing the palygons.
This issue with GCAL was observed regardless ofclvtiernel
was employed.

1000

* gpc

= g .
o’
o gtb .
100 "
= 2%
e 9P
s -
s - -
%10 . ="
g -'.
= . w’ _ a2
8 e gtl=n
c
S L Is .
8! PR
Ll
- @
g'(lb=nO

0.1 T
100000 1000000
Input + Output Vertices (log scale)

Figure 9. GPC/GTL Scalability Comparison

.
gtlb s gpcn
gtloo =
gtl45
atl

cgal

10 A

ocermx+ao

—_ gpc
[}

oy polyb

[s]

v

o

S L dtb o908

2 04 RS

c U — "o

S me T)R gtdsn' ™

I R

@ e T goo
001 X —

0.001

" 100000 200000 300000
Input + Output Verticies (log scale)

Figure 10. Rectilinear Scalability Comparison

* gpe

0.09 -
o polyb
0.08 1

acgal

0.07 -

n gt at

0.06
0.05

0.04

Seconds (linear scale)

0.03 x e
0.02

0.01
oleiid i ELLILA ; ‘ ‘
0 2000 4000 6000 8000 10000 12000 14000
Input + Output Vertices (linear scale)

Fiaure 11. Small Scale Performance Comparist

All libraries performed roughly within the range 2X faster
to 2X slower than GTL for the small inputs shownFigure 11.
We feel that such small constant factor variat®nat significant
since it could likely be remedied by profile-guidpdrformance
tuning of implementation details. We did not apgimpirical
complexity measurement on the data sets in the r@ene
Performance plot because non-linearity in micrdiéecture
performance as memory footprints start to exceectddhe size
renders such analysis on very small input sizelgyfau

While successful at processing all inputs, the GB@ry's
runtime scaled sub-optimally for large inputs, as e seen in
Figure 10. The empirical runtime complexity of GRRGm that
plot is r*%, which can be clearly seen in its steep slopdivel#o
GTL. We were unable to measure CGAL or PolyBooliearthis
benchmark because of the bugs that effectivelygmid them
from processing inputs larger than those shown iguré 11.
Also in Figure 9 we show the portion of GTL runtigigent in the
core Boolean sweep as gtlb. Note that the run&TL is
dominated by the currently suboptimal line segnietersection,
which we plan on eventually rectifying by integrati line
segment intersection into the core Boolean sweep e@bnstant
factor overhead.

All libraries were successful in processing largels
Manhattan polygon inputs. There is a 100X varigbiin
runtimes, however, as can be seen in Figure 162 Manhattan
Booleans algorithm in GTL is labeled gt/90 in thgufe, and the
45-degree Booleans algorithm is labeled gtl45. eNbat the 45-
degree algorithm is optimal, computing line segmiatérsection
in the same sweep as the Boolean operation, arfdrmesrwithin
a small constant factor of the similar 90-degremiahm. Again,
we show the portion of the general Booleans algoritabeled
gtlb. We believe that when upgraded with optiniaé Isegment
intersection the general Booleans algorithm coddqgom closer
to the gtlb curve than the current performance ctvhis labeled
gtl. GPC and PolyBoolean both turn in suboptim&l runtime
scaling in this benchmark. CGAL appears to benogitifor this
benchmark, scaling at a near lined®n Frequently we have
observed O(n log n) algorithms will have an empiriscaling
factor of less than one for input ranges that aoelest in size, as
we see in both log-log plots for gtlb as well as §d90. This is
because the micro-architecture has advanced fesasuweh as
speculative memory pre-fetch that become more teffeas input
vector sizes grow. However, it clearly demonsg et empirical
scaling observations must be interpreted cautiowkign drawing
conclusions about algorithmic complexity and optitga Our
review of GPC and PolyBoolean code lead us to belibat their
line segment intersection algorithms should perfamaround
nJog n on the test data we generated. Our conaiusiat they
are suboptimal is not based upon empirical dataealo

8. Conclusion

Our C++ Concepts based API for planar polygon maatpns
makes these powerful algorithms readily accessibépplications
developers. Improvements in our Booleans algoritdver prior
work frees users of that API from the hassles a@baenodating
library restrictions and conventions imposed upomput
geometries, while the C++ Concepts based API ftees from
syntactic restrictions on how the algorithms may dpplied.

Because our library compares favorably with simdpen-source
libraries, in terms of both performance and featse¢, while
providing a superior APl based upon generic prognarg
techniques, we feel that it is a good candidateafmeptance into
boost and plan to pursue review this year.

9. ACKNOWLEDGMENTS

Our thanks to Fernando Cacciola for technical guigaand
editorial review and to Intel for supporting ournko

10. REFERENCES

[1] Bentley, J.L., Ottmann, T.A. Algorithms for repoigi and
counting geometric intersectiodlEEE Transactions on
Computers, 9(C-28), 643-647.

[2] Gehrels, B., Lalande, B. Generic Geometry Libragg9.
Retrieved February 17 2009, from boost:
https://svn.boost.org/svn/boost/sandbox/ggl

[3] GMP Gnu Multi-Precision Library, 2009. Retrieved gust
9, 2008, from gmplib.org: http://gmplib.org

[4] Hobby, J. Practical segment intersection with @mtecision
output. Technical Report 93/2-27, Bell Laboratofiascent
Technologies), 1993.

[5] Kohn, B. Generative Geometry Library, 2008. Re&July
22, 2008, from boost:
http://lwww.boostpro.com/vault/index.php?action=dtwverf
ile&filename=generative_geometry_algorithms.zip&uditor
y=Math - Geometry&

[6] Leonov, M. PolyBoolean, 2009. Retrieved March 182,
from Complex A5 Co. Ltd.: http://www.complex-
a5.ru/polyboolean/index.html

[7] Murta, A. GPC General Polygon Clipper library, 2009
Retrieved March 15, 2009, from The University of
Manchester: http://www.cs.man.ac.uk/~toby/alanysaife/

[8] Pion, S. CGAL 3.3.1, 2007. Retrieved October TIM&
from CGAL: http://www.cgal.org

[9] Ruud, B. Building a Mutable Set, 2003. Retrievedéha3,
2009, from Dr. Dobb’s Portal:
http://www.ddj.com/cpp/184401664

[10] Dos Reis, G. and Stroustrup, B. 2006. Specifying C+
concepts. IrConference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
LanguagegCharleston, South Carolina, USA, January 11 -
13, 2006). POPL '06. ACM, New York, NY, 295-308. BO
http://doi.acm.org/10.1145/1111037.1111064

[11] Vatti, B. R. 1992. A generic solution to polygoiipgling.
Commun. ACMB5, 7 (Jul. 1992), 56-63. DOI=
http://doi.acm.org/10.1145/129902.129906

[12] Weiler, K. 1980. Polygon comparison using a graph
representation. IRroceedings of the 7th Annual Conference
on Computer Graphics and interactive Technig(&ssattle,
Washington, United States, July 14 - 18, 1980).GGRBPH
'80. ACM, New York, NY, 10-18. DOI=
http://doi.acm.org/10.1145/800250.8074

