
Geometry Template Library for STL-like 2D Operations
Lucanus Simonson

Intel Corporation
2200 Mission College Blvd.

Santa Clara, CA 95054-1549
1 (408) 765-8080

lucanus.j.simonson@intel.com

Gyuszi Suto
Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95054-1549

1 (408) 765-8080

gyuszi.suto@intel.com

ABSTRACT
There is a proliferation of geometric algorithms and data types
with no existing mechanism to unify geometric programming in
C++. The geometry template library (GTL) provides geometry
concepts and concept mapping through traits as well as algorithms
parameterized by conceptual geometric data type to provide a
unified library of fundamental geometric algorithms that is
interoperable with existing geometric data types without the need
for data copy conversion. Specific concepts and algorithms
provided in GTL focus on high performance/capacity 2D polygon
manipulation, especially polygon clipping. The application-
programming interface (API) for invoking algorithms is based on
overloading of generic free functions by concepts. Overloaded
generic operator syntax for polygon clipping Booleans (see Figure
1) and the supporting operator templates are provided to make the
API highly productive and abstract away the details of algorithms
from their usage. The library was implemented in Intel
Corporation to converge the programming of geometric
manipulations in C++ while providing best in class runtime and
memory performance for Booleans operations. This paper
discusses the specific needs of generic geometry programming
and how those needs are met by the concepts-based type system
that makes the generic API possible.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling – Curve, surface, solid and object representations.

General Terms
Algorithms, Performance, Design, Reliability, Standardization.

Keywords
C++ concepts, geometry, polygon clipping, data modeling, library
design.

1. INTRODUCTION
1.1 Problem Statement and Motivation
Traditional object-oriented design leads to type systems that

employ a common base class to integrate new types into an
existing system. This leads to monolithic software design with
shared dependencies on the base class, creating barriers of
incompatibility between different software systems when they
cannot share a common base class. Integrating library
functionality into such a software system typically requires
wrapping the library API with functions that perform implicit data
copy conversion or that data copy conversion be performed as an
explicit step before the library API can be used. This leads to
code and memory bloat in applications and to libraries that are
hard to use. The problem presents itself clearly in geometry. An
application will model objects that have a geometric nature as
well as application-specific attributes such as names, weights,
colors etc. These object models are geometric entities, but are
typically not syntactically compatible with a geometric library
unless there is code coupling through some base geometric class.
Often an unnecessary copy conversion of data model to geometric
object is required to satisfy syntactic requirements of a geometry
library API. For example, to use CGAL [8] library algorithms a
polygon that depends on CGAL header files must be declared and
data copied into it before that data can be passed into the
algorithm. Eliminating this artificial incompatibility and allowing
a geometry library’s API to be used directly and non-intrusively in
an application with its native object model is the design goal for
GTL’s interfaces. This allows application level programming
tasks to benefit from the thoughtful design of a productive and
intuitive set of library APIs.

1.2 C++ Concepts Address the Problem
Computational geometry is the ideal domain to apply C++
Concepts [10] based library design. At a conceptual level,
geometric objects are universally understood. Existing geometry
codes coming from different sources are not inter-compatible due
largely to syntactic rather than semantic differences. These
syntactic differences can be easily resolved by concept mapping
through C++ traits. However, there are minor semantic
differences that need to be comprehended in order to implement a
truly generic geometry concept.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Boostcon’09, May 3–8, 2009, Aspen, Colorado, USA.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

Figure 1. Booleans example: disjoint-union (a xor b) is c.

A generic geometry library must also parameterize the
numerical coordinate data type while at the same time providing
numerically robust arithmetic. Doing this requires more than
simply making the coordinate data type a template parameter
everywhere, but also looking up parameterized coordinate type
conversions, handling the differences between integer and floating
point programming, and making sparing use of high-precision
data types to allow robust calculations. The generic geometry
library must define a type system of concepts that includes a
coordinate concept and provide an API based upon it that is both
intuitive and productive to use yet maintainable and easily
extensible.

We will compare and contrast different proposed approaches
to generic geometry type systems in Section 2. Section 3 will
present the approach used in GTL to implement a geometry
concepts API and explain its advantages over other proposals.
Operator templates and the details of the operator based API for
polygon set operations (intersection, union, etc.) will be presented
in Section 4. In Section 5 we will present a generic sweep-line
algorithmic framework, explain the principles behind our
implementation of sweep-line and how they are reflected in the
requirements placed on its template parameters. Numerical issues
faced and solutions for numerical robustness problems
implemented in our library will be discussed in Section 6. A
performance comparison with several open source computational
geometry libraries will be presented in Section 7 and closing
remarks in Section 8.

2. Generic Geometry Approaches
There are several well known generic programming techniques
that are applicable to the design of a generic geometry library
API. The most important is C++ traits, which provides the
necessary abstraction between the interface of a geometry object
and its use in generic code. In combination with traits, other
generic programming techniques have been proposed in the
design of generic geometry libraries including: tag dispatching,
static asserts and substitution-failure-is-not-an-error (SFINAE)
template function overloading.

2.1 Free Functions and Traits
The conventional way to implement a generic API is with
template functions declared within a namespace. This allows
arbitrary objects to be passed directly into template functions and
accessed through their associated traits. There is, however, one
problem with this approach when used for computational
geometry. How to specify what kind of geometric entity a given
template parameter represents? The simplest solution is to name
the function such that it is clear what kind of geometry it expects.
This prevents generic function name collisions and documents
what expectation is placed upon the template parameter.
However, it leads to overly long function names, particularly if
two or more kinds of geometry are arguments of a function. Such
generic functions do not lend themselves to generic programming
at a higher level of abstraction. Consider the center(T)
function. If we name it variously rectangle_center(T) for
the rectangle case and polygon_center(T) for polygons we
cannot abstract away what kind of geometry we are dealing with
when working with their center points. As an example, a generic
library function that computes the centroid of an iterator range
over geometry objects using their center points weighted by their

area would require two definitions that differ only by the names of
functions that compute center and area. As we add triangle and
polygon-with-holes and circle to the generic library, the drawback
of not being able to abstract away what kind of geometry is being
worked with in library code as well as user code becomes
painfully obvious.

2.2 Concepts and Static Assert
A static assert generates a syntax error whenever a concept check
fails. A boost geometry library proposal from Brandon Kohn [5]
employs boost::static_assert on top of generic free
functions and traits. This approach to C++ concepts when applied
to computational geometry improves the API primarily by
producing more intelligible syntax errors when the wrong type is
passed into an API. It does not solve the problem of not being
able to abstract away the geometric concept itself because it still
relies on functions having different names for different concepts
to prevent function name collisions.

2.3 Tag Dispatching Based Concepts
A series of boost geometry library proposals from Barend Gehrels
and Bruno Lalande [2] have culminated into a tag dispatching
based API where a generic free function that looks up tag types
for the objects passed in to disambiguate otherwise identical
dispatch functions. These dispatch functions are wrapped in
structs to emulate partial specialization of dispatch functions by
specializing the struct. Partial specialization of template functions
is not legal C++ syntax under the C++03 standard.

This approach solves the name collision problem. It allows
one center() function, for example, to dispatch to different
implementations for various rectangle, circle, polygon conceptual
types and abstract the concept away when working with objects
that share the characteristic that they have a center. However, it is
hard to generalize about concepts in a tag dispatching API
because concept tags need to be explicit in the declaration of
dispatch functions. For all combinations of tags that could satisfy
a generic function, a definition of a dispatch function that accepts
those tags must be provided. For center() this is merely one for
each concept, but for a function such as distance() it is all pairs
and becomes cumbersome once the number of concepts in the

namespace dispatch {
 template <typename TAG1, typename TAG2,
 typename G1, typename G2>
 struct distance {};

 template <typename P1, typename P2>
 struct distance<point_tag, point_tag, P1, P2> {
 static typename distance_result<P1, P2>::type
 calculate(const P1& p1, const P2& p2) {…};
 };

 template <typename P, typename L>
 struct distance<point_tag,linestring_tag,P,L> {
 template<typename S>
 static typename distance_result<P1, P2>::type
 calculate(const P& point, const L& linestr);
}

template <typename G1, typename G2>
typename distance_result<G1, G2>::type
distance(const G1& g1, const G2& g2) {
 return
 dispatch::distance< tag<G1>::type,
 tag<G2>::type, G1, G2>::calculate(g1, g2);
}

system exceeds just a handful. The number of such dispatch
functions needed to implement an API explodes if some other
abstraction is not used, such as multi-stage dispatch. Another way
to achieve that additional abstraction is inheritance sub-typing of
tags, while SFINAE provides a third.

3. GTL’s Approach to Generic Geometry
Empty concept struct s are defined for the purposes of meta-
programming in terms of concepts and are analogous to tags used
in tag dispatching. Sub-typing relationships between concepts
(concept refinements) are implemented by specializing meta-
functions that query for such.

Even with concepts inherited from each other (for tag

dispatching purposes, for instance) such meta-functions would
still be convenient for SFINAE checks because inheritance
relationships are not easily detected at compile time. The use of
boost::is_base_of could obviate the need for these meta-
functions in GTL.

Traits related to geometry concepts are broken down into
mutable and read-only traits structs. A data type that models a
concept must provide a specialization for that concept’s read-only
traits or conform to the default traits definition. It should also do
the same for the mutable traits if possible.

GTL interfaces follow a geometric programming style called
isotropy, where abstract ideas like orientation and direction are
program data. Direction is a parameter to function calls rather
than explicitly coded in function names and handled with flow
control. The access functions in the traits of a point data type
therefore defines one get() function that accepts a parameter for
horizontal or vertical axis component rather than separate x() and
y() access functions.

A data type that models a refinement of a concept will
automatically have read only traits instantiate for the more general
concept based upon the traits of the refinement that data type
models. The programmer need only provide concept mapping
traits for the exact concept their object models and it becomes
fully integrated into the generic type system.

Concept checking is performed by looking up the concept
associated with a given object type by meta-function
geometry_concept<T> and using that along with pertinent
concept refinement relationships through compile time logic to
produce a yes or no answer for whether a given function should
instantiate for the arguments provided or result in SFINAE
behavior in the compiler. This allows generic functions to be
overloaded in GTL. The two generic functions foo() in the
example code below differ only by return type, but are not
ambiguous because their return types cannot both be instantiated
for the same template argument type. While SFINAE generic
function overloading is quite powerful and flexible, the compiler
support for it is currently inconsistent, requiring significant effort
and knowledge of compiler idiosyncrasies and their implications
in order to produce portable code.

3.1 Geometry Concepts Provided by GTL
GTL provides geometry concepts that are required to support
planar polygon manipulation. A summary of these concepts can
be found in Table 1.

Table 1. GTL Concepts

Concept Abbreviation
coordinate_concept C

interval_concept I
point_concept PT

point_3d_concept PT3D
rectangle_concept R

polygon_90_concept P90
polygon_90_with_holes_concept PWH90

polygon_45_concept P45
polygon_45_with_holes_concept PWH45

polygon_concept P
polygon_with_holes_concept PWH

polygon_90_set_concept PS90
polygon_45_set_concept PS45

polygon_set_concept PS

Concept refinement relationships in GTL are shown in
Figure 2, with concepts labeled by the abbreviations listed in
Table 1. GTL provides algorithms that have been optimized for
Manhattan and 45-degree VLSI layout data, and concepts specific
to these restricted geometries are named with 90 and 45.

template <typename T> struct is_integer {};
template <>
struct is_integer<int> { typedef int type; };
template <typename T> struct is_float {};
template <>
struct is_float<float> { typedef float type; };

template <typename T>
typename is_int<T>::type foo(T input);
template <typename T>
typename is_float<T>::type foo(T input);

Figure 2. GTL Concept Refinement Diagram

template <typename T>
struct point_traits {
 typedef T::coordinate_type coordinate_type;
 coordinate_type get(const T& p,
 orientation_2d orient) { return p.get(orient);
}

template <typename T>
struct point_mutable_traits {
 void set(const T& p, orientation_2d orient,
 coordinate_type value) {
 p.set(orient, value);
 }
 T construct(coordinate_type x,
 coordinate_type y) { return T(x, y); }
};

struct polygon_concept {};
struct rectangle_concept {};

template <typename T>
struct is_a_polygon_concept{};

template <> struct is_a_polygon_concept<
 rectangle_concept> { typedef gtl_yes type; };

A polygon set in our terminology is any object that is
suitable for an argument to a polygon set operation (intersection,
union, disjoint union, etc.) A vector of polygons is a natural and
convenient way to define such an object. Vectors and lists of
objects that model polygon and rectangle concepts are
automatically models of polygon sets concepts. A user can define
the traits for their polygon data type, register it as a
polygon_concept type by specializing geometry_concept<T>
and immediately begin using vectors of those polygons as
arguments to GTL APIs that expect objects that model
polygon_set_concept . GTL also provides data structures for
polygon set objects that store the internal representation suitable
for consumption by the Booleans algorithms.

3.2 Generic Functions Provided
It is very important to make use of the concept refinement
definition of parent concept traits with child concept objects to
allow a complete and symmetric library of generic functions to be
implemented in a manageable amount of code. O(n) generic
functions defined for O(m) conceptual types can allow O(n * m)
function instantiations that all operate on distinct conceptual
types. A good example of this is the assign() function that
copies the second argument to the first and is provided in lieu of a
generic free assignment operator, which is not legal C++ syntax.
The assign() function can be called on any pair of objects
where the second is the same conceptual type as the first or a
refinement of the first conceptual type. GTL allows roughly fifty,
functionally correct and semantically sensible, instantiations of
assign() that accept distinct pairs of conceptual types. There is,
however, only one SFINAE overload of the generic assign
function for each of thirteen conceptual types. No nonsensical
combination of concepts passed to assign() is allowed to
compile and the syntax error generated is simply “no function
assign that accepts the arguments...”

The assign() function alone turns GTL into a Rosetta-
stone of geometry data type conversions, but the library also
provides a great many other useful functions such as area,
perimeter, contains, distance, extents etc. Because of the
extensible design, it is very feasible to add new functions and
concepts over time that work well with the existing functions and
concepts.

3.3 Bending the Rules with view_as
Sometimes use of GTL APIs with given types would be illegal
because the of a conceptual type mismatch, yet the programmer
knows that some invariant is true at runtime that the compiler
cannot know at compile time. For example, that a polygon is a
rectangle, or degenerate. In such cases, the programmer might
want to view an object of a given conceptual type as if it were a
refinement of that conceptual type. In such cases the programmer
can concept-cast the object to the refined concept type with a
view_as function call. A call to view_as provides read only
access to the object through the traits associated with the object.
For example, some algorithms may be cheaper to apply on
concepts that place restrictions on the geometry data through
refinement because they can safely assume certain invariants. It is
much faster to compute whether a rectangle fully contains a
polygon than it is to compute whether a polygon fully contains a
polygon. Rather than construct a rectangle from the polygon we

can simply view the polygon as a rectangle if we know that to be
the case at runtime.

The ability to perform concept casting, concept refinement
and overload generic functions by concept type results in a
complete C++ concepts-based type system.

4. Booleans Operator Templates
The Booleans algorithms are the core algorithmic capability
provided by GTL. An example of a Boolean XOR operation on
two polygons is shown in Figure 1. The geometry concepts and
concept based object model are focused on providing mechanisms
for getting data in and out of the core Booleans in the format of
the user’s choosing. This enables the user to directly make use of
the API provided by GTL for invoking these algorithms on their
own data types. This novel ability to make use of library APIs
with application data types motivates us to provide the most
productive, intuitive, concise and readable API possible. We
overload the C++ bit-wise Boolean arithmetic operators to
perform geometric Boolean operations because it is immediately
intuitive, maximally concise, highly readable and productive for
the user to apply.

4.1 Supported Operators
A Boolean operator function call is allowed by the library for any
two objects that model a geometry concept for which an area
function call makes sense. These include the operator& for
intersection, operator| for union, operator^ for disjoint-union
and operator– for the and-not/subtract Boolean operation. Self-
assignment versions of these operators are provided for left hand
side objects that model the mutable polygon set concepts, which
are suitable to store the result of a Boolean. Also supported for
such objects are operator+ /operator- when the right hand side
is a numeric for inflate/deflate, known as offsetting or buffering
operations. There is no complement operation because the ability
to represent geometries of infinite extent is not expected of
application geometry types. Nor is such an operation truly needed
when object ^ rectangle with a suitably large rectangle is
equivalent for practical purposes.

4.2 Operator Templates Definition
To avoid the unnecessary copying of potentially large data
structures as the return value of an operator function call that must
return its result by value, the return value of GTL Boolean
operators is an operator template. The operator template caches
references to the operator arguments and allocates storage for the
result of the operation, which remains empty initially, allowing
the copy of the operator template to be lightweight when it is
returned by value. The operator template lazily performs the
Boolean operation, storing the output only when first requested.

if(is_rectilinear(polygon) &&
 size(polygon) == 4) {
 //polygon must be a rectangle
 //use cheaper O(n) algorithm
 return contains(view_as<
 rectangle_concept>(polygon), polygon2);
} else {
 //use O(n log n) Booleans-based algorithm
 return contains(polygon, polygon2);
}

Operator templates are expected to be temporaries when operators
are chained. For instance (a + b) - c produces an operator
template as the result of a + b , passes that into operator- and
another operator template is returned by operator- . Only later
when the result of that operator- is requested will both the
Booleans be performed as the operator templates recursively
perform lazy evaluation of the expression. Because the user is not
expected to refer to the operator templates by type, but instead use
them only as temporaries, there is little danger of the arguments
going out of scope before the expression is evaluated.

4.3 Exemplary User Code
The combination of operator templates with the C++ concepts
based type system leads to the ability to write exemplary user code
using the library. For instance, in an application that defines its
own CBoundingBox and CPolyon, the following GTL based
code snippet becomes possible:

The application of five GTL library algorithms is accomplished in
only two lines of code while the design intent of the code is clear
and easy to read. This is with application rather than library data
types and no performance is sacrificed for data copy to satisfy the
syntactic requirements of library interfaces or the operator
semantics of C++ that require return by value. This abstracts
away the low-level details of the algorithms and allows the user to
program at a higher level of abstraction while at the same time
preserving the optimality of the code produced.

5. Generic Sweep-line for Booleans
A common way to implement Booleans is to first intersect
polygon edges with an algorithm such as Bentley Ottmann [1].
After line segment intersection, new vertices are commonly
introduced on edges where intersections were identified along
with crosslinks that stitch the input polygons together into a graph
data structure. The graph data structure is then traversed and a
rules-based algorithm ensures that interior edges are not traversed.
Traversing exterior edges yields closed polygons. [12] This
traditional algorithm has several problems. The graph data
structure is expensive to construct, expensive to store and
expensive to traverse. When the graph is traversed to output
polygons the winding direction can be used to identify holes, but
no information stored within the graph helps to associate those
holes to the outer polygons, requiring that additional computation
be performed if that information is needed. The algorithm leads
to complex implementations of rule logic because it requires that
degeneracy be handled explicitly with logic, making it challenging
to achieve a reliable implementation of the algorithm.

A much better approach to Booleans is the application of
sweep-line to identify interior edges. GTL provides a generic
sweep-line algorithm framework that is used to implement line
segment intersection, Booleans and related algorithms such as
physical connectivity extraction.

5.1 Better Booleans through Calculus
Our Booleans algorithm differs from the traditional approaches
found in the literature. The algorithm most closely resembles [11]
in that it can perform polygon clipping and line segment
intersection with a single pass of sweep-line. In our problem
formulation we model a polygon as a mathematical function of
two variables x and y such that for all x/y points inside the
polygon the function returns one, and for all points outside the
polygon the function returns zero. This view of a polygon is
useful because it allows us to reason about the problem
mathematically.

If we consider a mathematical function of two variables, we
can apply the partial derivative with respect to each of those
variables, which provides the points at which the function value
changes and the directions and magnitudes in which it is
changing. Because our geometry is piece-wise linear this reduces
the two dimensional definition of the polygon function to a
collection of zero dimensional quantities at its vertices that are
directed impulses with magnitude of positive or negative one.

Integrating with respect to x and y allows us to reconstruct
the two dimensional polygon function from these zero
dimensional derivative quantities.

This integration with respect to x and y in mathematical
terms is analogous to programmatically sweeping from left to
right and from bottom to top along the sweep-line and
accumulating partial sums. Because the polygons are piecewise
linear this summation is discreet rather than continuous and is
therefore computationally simple. What this mathematical model
for calculus of polygons allows us to do is superimpose multiple
overlapping polygons by decomposing them into vertex objects
that carry data about direction and magnitude of change along the
edges that project out of those vertices. Because these vertices are
zero-dimensional quantities they can be superimposed simply by
placing them together in a collection, trivially sorting them in the
order they are to be scanned and summing any that have the same
point in common. When scanned, their magnitudes are summed
(integrated) onto intervals of the sweep-line data structure. The
sweep-line data structure should ideally be a binary tree that

Figure 4. Integrating polygon-derivative reproduces polygon

Figure 3. Derivative of a polygon

void foo(list<CPolygon>& result,
const list<CPolygon>& a,
const list<CPolygon>& b) {

CBoundingBox domainExtent;
gtl::extents(domainExtent, a);
result += (b & domainExtent) ^ (a - 10);

}

provides amortized log(n) lookup, insertion and removal of these
sums, keyed by the lower bound of the interval (which of course
changes as the sweep-line moves.) Each such interval on the
sweep-line data structure stores the count of the number of
polygons the sweep-line is currently intersecting along that
interval. Notably, the definition allows for counts to be negative.
A union operation is performed by retaining all edges for which
the count above is greater than zero and the count below is less
than or equal to zero or visa-versa. Vertical edges are a special
case because they are parallel to our sweep-line but are easily
handled by summing them from bottom to top as we progress
along the sweep-line.

The sequence of steps to perform a Boolean OR (union)
operation on two polygons is shown in Figure 5. The two input
polygons are shown overlapping in Figure 5 a. They are
decomposed into their derivative points as shown in Figure 5 b.
Line segment intersection points are inserted as shown in Figure 5
c. These intersection points carry no derivative data quantities
because no change in direction of edges takes place at intersection
points. The result of a pass of sweep-line to remove interior
points through integration and output updated derivative
quantities is shown in Figure 5 d. Note that it is the same data-
format as the input shown in Figure 5 b and is in fact the
derivative of the output polygons. This facilitates the chaining
together of multiple Booleans operations without the need to
convert to and from polygons in between. Note that one point in
Figure 5 d. has no derivative vector quantities assigned to it. That
point is collinear with the previous and next point in the output
polygon and therefore doesn’t represent a change in direction of
edges. It is retained because preserving the topology of collinear
points in the output is a requirement for some meshing algorithms
that their input polygons be “linearly consistent.” Such collinear
points can be trivially discarded if undesired. A final pass of
sweep-line can either integrate the output polygon derivative from
Figure 5 d to form polygons with holes as shown in Figure 5 e or
keyhole out the holes to the outer shells as shown in Figure 5 f. It
is possible to perform line segment intersection, interior point
removal and form output polygons in a single pass of sweep-line.
We break it down into separate steps for convenience. The
computation required for interior point removal, updating of
derivative quantities and formation of output polygons increases

the computational complexity of sweep-line based generalized
line segment intersection such as that described by [1] by only a
constant factor whether performed as a single pass or separated
into multiple passes. The algorithm presented here is therefore
optimal because it is well known that polygon clipping is bounded
by the complexity of line segment intersection, as can be trivially
proven because line segment intersection could be implemented
with our polygon-clipping algorithm.

The output polygons can contain holes, and the input
polygons can likewise contain holes. Moreover, the output holes
can be associated to their outer shells as additional data available
in the output or geometrically by keyholing. The output can
easily be obtained as the non-overlapping trapezoid
decomposition of polygons sliced along the sweep-line orientation
similar to [11]. All of these polygonal forms of output are legal
inputs to the algorithm, and it is closed both on the polygon
domain as well as the polygon derivative domain meaning that it
consumes its own output. The other advantage of this algorithm
over the traditional previous polygon clipping algorithms is that it
correctly handles all degeneracy in inputs implicitly with the same
logic path that handles the normal case. Our algorithm reduces
the complex logic of categorizing states to simple arithmetic
applied while scanning. It is robust to negative polygon counts
(holes outside of shells), high order overlaps of intersections and
edges, co-linear and duplicate points, zero length edges, zero
degree angles and self-intersecting/self-overlapping polygons, all
by simply applying the same calculus of summing derivative
values that are easily computed by inspecting each polygon
vertex. To our knowledge this polygon-derivative data-modeling
and algorithm for polygon clipping has not appeared in past
literature and is novel.

5.2 Generic Booleans Algorithmic Framework
The scanning of geometry for a Boolean in GTL performs
integration with respect to x and y of changes in counts of the
number of polygons from left-to-right/bottom-to-top. The sweep-
line data structure stores the current count of the number of
polygons that overlap intervals of the sweep-line. We employ the
stl map for our sweep-line data structure using a similar technique
as described in [9] to implement a comparison functor that
depends upon the position of the sweep-line. The count data type
stored as the value of the map element is a template parameter of
the sweep-line algorithm. It is required to be addable, and
generally conform to the integral behaviors. An integer is a valid
data type for the count and is used to implement unary Boolean
operations. A pair of integers can be used to implement binary
Boolean operations such as intersection. A map of property value
to count can be used to perform sweep-line on an arbitrary
number of input geometry “layers” in a single pass. Other
template parameters include an output functor, output data
structure and of course the coordinate data type.

Figure 5. Sequence of Boolean OR (union) operation

template <typename coordinate_type>
struct boolean_op {
 template <typename count, typename output_f>
 struct sweep_line {
 template <output_c, input_i>
 void scan(output_c& o, input_i b, input_i e);
 };
};

The generic algorithm takes care of all the details of
intersecting polygon edges and summing counts while the output
functor, count data type and output data structure control what is
done with that information. In this way, the algorithm can be
adapted to perform multiple operations with minimal effort. The
seven simple Booleans supported by GTL employ output functors
that differ only in the logic they apply to the count data type.

If the logic applied by these output functors to the count
results in true on one side of an edge and false on the other then
that edge is exterior and appended to the output data structure. If
partial polygons are stored as part of the count data structure in
the sweep-line tree then the output functor can construct output
polygons.

Also implemented with the generic Booleans framework are
property merge and connectivity extraction. By using a map of
property to polygon count as the data type for the counts stored on
the sweep-line and appropriate output functor and output data
structure the connectivity graph of n nodes of polygonal inputs
can be computed in a single pass of the algorithm to provide a
solution to the spatial overlay join problem. An example of the
output of this algorithm for the geometry in Figure 6 a. is shown
in Figure 6 b. Similarly, the geometry of all unique combinations
of overlap between n polygonal inputs can be computed and
output by the property merge output functor to a map of polygon
sets keyed by sets of property values. An example of the output of
property merge for the geometry in Figure 6 a. is shown in Figure
6 c. The property merge algorithm is a generalization of two
input Boolean operations to n inputs to solve the n-layer map
overlay problem. The generic algorithm can be easily adapted to
implement other sweep-line based algorithms including domain
specific algorithm such as capacitance estimation.

5.3 Offsetting/Buffering Operations
In addition to Booleans, GTL also provides the capability to offset
polygons by “inflating” or “deflating” them by a given resizing
value. Polygons grow to encompass all points within the resizing
distance of their original geometry. If the resizing distance is

negative, polygons shrink. This implies that circular arcs be
inserted at protruding corners when a polygon is resized. Such
circular arcs are segmented to make the output polygonal. Other
options for handling such corners include inserting a single edge
instead of an arc, simply maintaining the original topology or
leaving the corner region unfilled. The resizing operations are
accomplished by a union operation on the original polygons with
a collection of trapezoids constructed from their edges of width
equal to the resizing distance and with polygons at the corners
generated based on the two adjacent edge trapezoids. An example
of the shapes created from the input 45-degree geometry in Figure
7 a is shown in Figure 7 b and the result of the union between
those shapes and the original to create the output geometry of an
inflate operation is shown in Figure 7 c. Deflate is accomplished
by substituting subtraction for union.

6. Numerical Robustness
There are three problems in integer arithmetic that must be
overcome to implement generalized line segment intersection for
polygon clipping. These are integer overflow, integer truncation
of fractional results and integer snapping of intersection points.
Overflow and truncation of fractional results makes computing the
result of very innocent looking algebraic expressions all but
impossible with built-in integer types. The common practice of
resorting to floating point arithmetic in these cases is clearly not
suitable because the error it introduces is even more problematic.

Intersection points must be snapped to the integer grid at the
output of the algorithm. However, snapping the intersection point
causes a small lateral movement of the line segments it is inserted
on. This movement can cause a line segment to cross to the other
side of a vertex than was at the case in the input, introducing new
intersections. If these new intersections have not yet been reached
by the forward progress of the line segment intersection sweep-
line, they might be handled naturally by the algorithm, however, it
is just as likely they are introduced prior to the current position of
the sweep-line and the algorithm will not have the opportunity to
handle them during its forward progress.

A choice about how to handle spurious intersection points
introduced by intersection point snapping must be made. It is
impossible to both output the idealized “correct” topology of
intersected line segments and at the same time output fully
intersected line segments with their end points on the integer grid
with the property that no two line segments intersect except at
their end points. The invariant that output line segments not
intersect except at their end points is crucial because this invariant
is a requirement of algorithms that would consume the output.
Topologically, the important consideration for polygon clipping is
that the output edges describe closed figures. Violating this
invariant would, at best, cause polygons to be “dropped” during
subsequent execution and, at worst, result in undefined behavior.

Figure 6. Connectivity Extraction and Property Merge

Figure 7. Resize Example: inflate of polygon with hole

//intersect
count[0] > 0 && count[1] > 0;
//union
count[0] > 0 || count[1] > 0;
//self-union
count > 0
//disjoint-union
(count[0] > 0) ^ (count[1] > 0)
//subtract
(count[0] > 0) && !(count[1] > 0)
//self-intersect
(count > 1)
//self-xor
(count % 2)

It is obvious that merging of vertices and the insertion of new
vertices are both topological changes that preserve the property of
the network that all closed cycles remain closed. These
topological changes are allowed to occur as the result of snapping
intersection points because we choose to enforce the invariant that
no line segments at the output intersect except at their end points.

6.1 Solving Overflow and Truncation
Overflow is easy to handle if the appropriate data types are
available. Thirty-two bit can be promoted to sixty-four and sixty-
four bit can be promoted to multi-precision integer. However, in
generic code it becomes impossible to be explicit about when to
cast and what to cast to. The same algorithm might be applied on
several different coordinate data types when instantiated with
different template parameters. We provide indirect access to the
appropriate data types through coordinate traits, a coordinate
concept and a meta-function: high_precision_type<T> . The
coordinate traits allow the lookup of what data type to use for
area, difference, Euclidean distance, etc. The coordinate concept
is used to provide algorithms that apply these data types correctly
to ease the burden of common operations such as computing the
absolute distance between two coordinate values in one-
dimensional space. The high precision type is used where built-in
data types would not be sufficient. It defaults to long double,
which is the highest precision built-in data type, but still
potentially insufficient. By specializing for a specific coordinate
data type such as integer, a multi-precision rational such as the
gmp mpq type [3] can be specified. This can be done outside the
GTL library itself, making it easy to integrate license encumbered
numerical data types with GTL and its boost license without the
need for the GTL code itself to depend on license encumbered
header files.

Handling integer truncation of fractional results can be done
either by applying the high-precision type (preferably a multi-
precision rational) or by algebraic manipulation to minimize the
need for division and other operations that may produce factional
results. Some examples of this are distance comparison, slope
comparison and intersection point computations. When
comparing the distances between two points it is not necessary to
apply the square root operation because that function is
monotonic. When comparing slopes we use the cross-product as a
substitute for the naïve implementation. This avoids division and
produces reliable results when performed with integer data types
of sufficient precision. Comparing intersection coordinates can
also use the cross product to avoid division because computing
the intersection point of two line segments can be algebraically
manipulated to require only a single division operation per
coordinate, which is performed last.

6.2 Solving Spurious Intersections
Non-integer intersection points need to be snapped to the integer
grid in the output. We snap each intersection point to the integer
grid at the time it is identified. We do this by taking the floor of
the fractional value. Integer truncation is platform dependent, but
frequently snaps toward zero, which is undesirable because it is
not uniformly consistent. Because the integer grid is uniform, the
distance a point can be snapped by taking the floor is bounded to
a 1x1 unit integer grid region. Our current approach differs from
the similar approach described by John Hobby [4] in that he
rounds to the nearest integer.

Because the distance a segment can move is bounded, it is
predictable. That means that we can predict the distance a
segment might move due to a future intersection event and handle
any problems that would cause pro-actively in the execution of
line segment intersection. There are two types of intersection
artifacts created by snapping. The first is caused when a line
segment moves laterally and crosses a vertex, causing intersection
with edges that would not otherwise be intersected. The second is
when an output line sub-segment is lengthened by snapping and
its end point crosses a stationary line segment. The second case is
functionally equivalent to the first since it doesn’t matter whether
a point moves to cross an edge or an edge moves to cross a point.
Both can be handled by the same strategy so we’ll focus on the
case of the line segment moving in the description of our strategy.
That strategy relies upon the following lemma: all artifacts take
place only when a vertex lies within a distance of a line segment
bounded by the max distance an intersection point can be
snapped. This lemma can be trivially proven because the distance
that segments can move is bounded and it is obviously impossible
for two non-intersecting line segments to cross each other without
one first crossing an end-point of the other. Moreover, since the
direction of snapping is known to be always downward, it follows
that a vertex can only be crossed by a line segment if that line
segment intersects the 1x1 integer unit grid box with that vertex in
its lower left corner. In these cases, we intersect the line segment
with those vertices pro-actively such that if a future intersection
causes the line segment to move, the output topology cannot
contain spurious intersection artifacts due to that event. Because
the vertex is intersected and not other edges, no additional line
segment intersections need be introduced and no propagation of
intersection artifacts through the network can take place. This
method in known as snap-rounding and has been much discussed
in the literature. [4]

Given an algorithm that finds intersections between line
segments, it is easy to find intersections with 1x1 integer grid
boxes at segment end-points and snapped-intersection points by
modeling them as several tiny line segments called a widget. Any
line segment that intersects the unit grid box will intersect at least
one of the segments of the widget shown in Figure 8.

Importantly, intersection events are detected by the algorithm
based on only the input line segments geometry and never that of

Figure 8. Example: Vertex/Segment Intersection Widget

//Segment 1: (x11,y11) to (x12, y12)
//Segment 2: (x21,y21) to (x22, y22)
x = (x11 * dy1 * dx2 – x21 * dy2 * dx1 +
 y21 * dx1 * dx2 - y11 * dx1 * dx2) /
 (dy1 * dx2 - dy2 * dx1);
y = (y11 * dx1 * dy2 - y21 * dx2 * dy1 +
 x21 * dy1 * dy2 - x11 * dy1 * dy2) /
 (dx1 * dy2 - dx2 * dy1);

the intersected line segments it has produced. Otherwise,
numerical error could propagate forward in cascading increased
severity to reach arbitrarily large magnitudes. If such were the
case, no assurance of numerical robustness could be reasonably
made.

If the snapping direction is uniform it can be arranged so that
vertices snap forward in the scanning direction allowing
evaluation of the widget to be performed by the same sweep-line
that finds the intersections. This is our intention. However,
currently our arbitrary angle polygon Booleans apply a much
simpler line segment intersection algorithm implemented to
validate the sweep-line version of robust line segment
intersection, which is still a work in progress. It compares all
pairs of line segments that overlap in their x coordinate range and
all vertices and snapped intersection points with all segments that
overlap with the x coordinate of those points. It has O(n^2) worst
case runtime complexity, but in the common case it has expected
runtime of O(n3/2) and, in practice, performs nearly as well as the
expected O(n log n) runtime of the optimal algorithm, making its
use for even quite large input data sets highly practical.

The combination of handling overflow and applying rational
data types to overcome truncation errors with the strategy for
mitigating errors introduced by intersection point snapping allows
100% robust integer line segment intersection. The algorithm
approximates output intersection points to within one integer unit
in x and y and may intersect line segments with points that lie
within one integer unit in x and y. This approximates the ideal
“correct” output to the extent practical with integer coordinates.
The algorithm could be enhanced to round to closest integer grid
point when snapping intersections and make intersecting segments
to nearby vertices predicated upon whether it later becomes
necessary to do so. As a practical matter, however, these
measures would result in very little benefit to accuracy. That
benefit, and more, can be more easily obtained by scaling up the
input and applying higher precision integer arithmetic, if
necessary, which is easily accomplished using GTL.

7. Experimental Results
We benchmarked our own GTL polygon clipping Booleans
algorithm against the GPC [7], PolyBoolean [6] and CGAL [8]
polygon clippers. We benchmarked the three GTL algorithms,
Manhattan, 45-degree, and general Booleans against all three.
These benchmarks were performed on a two-package, 8 core, 3.0
GHz Xenon with 32 GB of RAM, 32 KB of L1 cache and 6 MB
L2 cache. Hyper-threading was disabled. None of the algorithms
tested were threaded and all ran in the same process. We
compiled the benchmark executable using gcc 4.2.2 with O3 and
finline-limit=400 optimization flags.

Inputs consisted of small arbitrary triangles, arbitrarily
distributed over square domains of progressively increasing size.
Runtimes measured were the wall-clock execution time of the
intersection operation on geometry contained within two such
domains. The overlapping triangles in each domain had to be
merged first with GTL to make them legal inputs for the other
three libraries’ Boolean operations. For the Manhattan (axis-
aligned rectilinear) benchmark we used small arbitrary rectangles
instead of triangles.

Results of our benchmarking are shown in Figures 9, 10 and
11. Note that in Figure 11 the last two data points for
PolyBoolean are absent. PolyBoolean suffered from unexplained
crashes as well as erroneously returning an error code due to a
bug in its computation of whether a hole is contained within a
polygon. This prevented PolyBoolean from successfully
processing large data sets. CGAL had a similar problem that
prevented it from processing data sets larger than those in Figure
11. We conclude that this is a bug in CGAL because both GTL
and GPC were always successful in processing the same polygons.
This issue with GCAL was observed regardless of which kernel
was employed.

Figure 9. GPC/GTL Scalability Comparison

Figure 10. Rectilinear Scalability Comparison

Figure 11. Small Scale Performance Comparison

All libraries performed roughly within the range of 2X faster
to 2X slower than GTL for the small inputs shown in Figure 11.
We feel that such small constant factor variation is not significant
since it could likely be remedied by profile-guided performance
tuning of implementation details. We did not apply empirical
complexity measurement on the data sets in the General
Performance plot because non-linearity in micro-architecture
performance as memory footprints start to exceed L1 cache size
renders such analysis on very small input sizes faulty.

While successful at processing all inputs, the GPC library’s
runtime scaled sub-optimally for large inputs, as can be seen in
Figure 10. The empirical runtime complexity of GPC from that
plot is n2.6, which can be clearly seen in its steep slope relative to
GTL. We were unable to measure CGAL or PolyBoolean for this
benchmark because of the bugs that effectively prevented them
from processing inputs larger than those shown in Figure 11.
Also in Figure 9 we show the portion of GTL runtime spent in the
core Boolean sweep as gtlb. Note that the runtime of GTL is
dominated by the currently suboptimal line segment intersection,
which we plan on eventually rectifying by integrating line
segment intersection into the core Boolean sweep at a constant
factor overhead.

All libraries were successful in processing large-scale
Manhattan polygon inputs. There is a 100X variability in
runtimes, however, as can be seen in Figure 10. The Manhattan
Booleans algorithm in GTL is labeled gtl90 in the figure, and the
45-degree Booleans algorithm is labeled gtl45. Note that the 45-
degree algorithm is optimal, computing line segment intersection
in the same sweep as the Boolean operation, and performs within
a small constant factor of the similar 90-degree algorithm. Again,
we show the portion of the general Booleans algorithm labeled
gtlb. We believe that when upgraded with optimal line segment
intersection the general Booleans algorithm could perform closer
to the gtlb curve than the current performance, which is labeled
gtl. GPC and PolyBoolean both turn in suboptimal n1.8 runtime
scaling in this benchmark. CGAL appears to be optimal for this
benchmark, scaling at a near linear n1.07. Frequently we have
observed O(n log n) algorithms will have an empirical scaling
factor of less than one for input ranges that are modest in size, as
we see in both log-log plots for gtlb as well as for gtl90. This is
because the micro-architecture has advanced features such as
speculative memory pre-fetch that become more effective as input
vector sizes grow. However, it clearly demonstrates that empirical
scaling observations must be interpreted cautiously when drawing
conclusions about algorithmic complexity and optimality. Our
review of GPC and PolyBoolean code lead us to believe that their
line segment intersection algorithms should perform at around
n1.5log n on the test data we generated. Our conclusion that they
are suboptimal is not based upon empirical data alone.

8. Conclusion
Our C++ Concepts based API for planar polygon manipulations
makes these powerful algorithms readily accessible to applications
developers. Improvements in our Booleans algorithm over prior
work frees users of that API from the hassles of accommodating
library restrictions and conventions imposed upon input
geometries, while the C++ Concepts based API frees them from
syntactic restrictions on how the algorithms may be applied.

Because our library compares favorably with similar open-source
libraries, in terms of both performance and feature set, while
providing a superior API based upon generic programming
techniques, we feel that it is a good candidate for acceptance into
boost and plan to pursue review this year.

9. ACKNOWLEDGMENTS
Our thanks to Fernando Cacciola for technical guidance and
editorial review and to Intel for supporting our work.

10. REFERENCES
[1] Bentley, J.L., Ottmann, T.A. Algorithms for reporting and

counting geometric intersections. IEEE Transactions on
Computers, 9, (C-28), 643-647.

[2] Gehrels, B., Lalande, B. Generic Geometry Library, 2009.
Retrieved February 17 2009, from boost:
https://svn.boost.org/svn/boost/sandbox/ggl

[3] GMP Gnu Multi-Precision Library, 2009. Retrieved August
9, 2008, from gmplib.org: http://gmplib.org

[4] Hobby, J. Practical segment intersection with finite precision
output. Technical Report 93/2-27, Bell Laboratories (Lucent
Technologies), 1993.

[5] Kohn, B. Generative Geometry Library, 2008. Retrieved July
22, 2008, from boost:
http://www.boostpro.com/vault/index.php?action=downloadf
ile&filename=generative_geometry_algorithms.zip&director
y=Math - Geometry&

[6] Leonov, M. PolyBoolean, 2009. Retrieved March 15, 2009,
from Complex A5 Co. Ltd.: http://www.complex-
a5.ru/polyboolean/index.html

[7] Murta, A. GPC General Polygon Clipper library, 2009.
Retrieved March 15, 2009, from The University of
Manchester: http://www.cs.man.ac.uk/~toby/alan/software/

[8] Pion, S. CGAL 3.3.1, 2007. Retrieved October 10, 2008,
from CGAL: http://www.cgal.org

[9] Ruud, B. Building a Mutable Set, 2003. Retrieved March 3,
2009, from Dr. Dobb’s Portal:
http://www.ddj.com/cpp/184401664

[10] Dos Reis, G. and Stroustrup, B. 2006. Specifying C++
concepts. In Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (Charleston, South Carolina, USA, January 11 -
13, 2006). POPL '06. ACM, New York, NY, 295-308. DOI=
http://doi.acm.org/10.1145/1111037.1111064

[11] Vatti, B. R. 1992. A generic solution to polygon clipping.
Commun. ACM 35, 7 (Jul. 1992), 56-63. DOI=
http://doi.acm.org/10.1145/129902.129906

[12] Weiler, K. 1980. Polygon comparison using a graph
representation. In Proceedings of the 7th Annual Conference
on Computer Graphics and interactive Techniques (Seattle,
Washington, United States, July 14 - 18, 1980). SIGGRAPH
'80. ACM, New York, NY, 10-18. DOI=
http://doi.acm.org/10.1145/800250.8074

