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ABSTRACT  
There is a proliferation of geometric algorithms and data types 
with no existing mechanism to unify geometric programming in 
C++.  The geometry template library (GTL) provides geometry 
concepts and concept mapping through traits as well as algorithms 
parameterized by conceptual geometric data type to provide a 
unified library of fundamental geometric algorithms that is 
interoperable with existing geometric data types without the need 
for data copy conversion.  Specific concepts and algorithms 
provided in GTL focus on high performance/capacity 2D polygon 
manipulation, especially polygon clipping.  The application-
programming interface (API) for invoking algorithms is based on 
overloading of generic free functions by concepts.  Overloaded 
generic operator syntax for polygon clipping Booleans (see Figure 
1) and the supporting operator templates are provided to make the 
API highly productive and abstract away the details of algorithms 
from their usage.  The library was implemented in Intel 
Corporation to converge the programming of geometric 
manipulations in C++ while providing best in class runtime and 
memory performance for Booleans operations.  This paper 
discusses the specific needs of generic geometry programming 
and how those needs are met by the concepts-based type system 
that makes the generic API possible.  

Categories and Subject Descriptors 
I.3.5 [Computer Graphics]: Computational Geometry and Object 
Modeling – Curve, surface, solid and object representations.  

General Terms 
Algorithms, Performance, Design, Reliability, Standardization. 

Keywords 
C++ concepts, geometry, polygon clipping, data modeling, library 
design. 

1. INTRODUCTION 
1.1 Problem Statement and Motivation 
Traditional object-oriented design leads to type systems that 

employ a common base class to integrate new types into an 
existing system.  This leads to monolithic software design with 
shared dependencies on the base class, creating barriers of 
incompatibility between different software systems when they 
cannot share a common base class.  Integrating library 
functionality into such a software system typically requires 
wrapping the library API with functions that perform implicit data 
copy conversion or that data copy conversion be performed as an 
explicit step before the library API can be used.  This leads to 
code and memory bloat in applications and to libraries that are 
hard to use.  The problem presents itself clearly in geometry.  An 
application will model objects that have a geometric nature as 
well as application-specific attributes such as names, weights, 
colors etc.  These object models are geometric entities, but are 
typically not syntactically compatible with a geometric library 
unless there is code coupling through some base geometric class.  
Often an unnecessary copy conversion of data model to geometric 
object is required to satisfy syntactic requirements of a geometry 
library API.  For example, to use CGAL [8] library algorithms a 
polygon that depends on CGAL header files must be declared and 
data copied into it before that data can be passed into the 
algorithm.  Eliminating this artificial incompatibility and allowing 
a geometry library’s API to be used directly and non-intrusively in 
an application with its native object model is the design goal for 
GTL’s interfaces.  This allows application level programming 
tasks to benefit from the thoughtful design of a productive and 
intuitive set of library APIs. 

1.2 C++ Concepts Address the Problem 
Computational geometry is the ideal domain to apply C++ 
Concepts [10] based library design.  At a conceptual level, 
geometric objects are universally understood.  Existing geometry 
codes coming from different sources are not inter-compatible due 
largely to syntactic rather than semantic differences.  These 
syntactic differences can be easily resolved by concept mapping 
through C++ traits.  However, there are minor semantic 
differences that need to be comprehended in order to implement a 
truly generic geometry concept. 
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Figure 1. Booleans example: disjoint-union (a xor b) is c. 



A generic geometry library must also parameterize the 
numerical coordinate data type while at the same time providing 
numerically robust arithmetic.  Doing this requires more than 
simply making the coordinate data type a template parameter 
everywhere, but also looking up parameterized coordinate type 
conversions, handling the differences between integer and floating 
point programming, and making sparing use of high-precision 
data types to allow robust calculations.  The generic geometry 
library must define a type system of concepts that includes a 
coordinate concept and provide an API based upon it that is both 
intuitive and productive to use yet maintainable and easily 
extensible.   

We will compare and contrast different proposed approaches 
to generic geometry type systems in Section 2.  Section 3 will 
present the approach used in GTL to implement a geometry 
concepts API and explain its advantages over other proposals.  
Operator templates and the details of the operator based API for 
polygon set operations (intersection, union, etc.) will be presented 
in Section 4.  In Section 5 we will present a generic sweep-line 
algorithmic framework, explain the principles behind our 
implementation of sweep-line and how they are reflected in the 
requirements placed on its template parameters.  Numerical issues 
faced and solutions for numerical robustness problems 
implemented in our library will be discussed in Section 6.  A 
performance comparison with several open source computational 
geometry libraries will be presented in Section 7 and closing 
remarks in Section 8. 

2. Generic Geometry Approaches 
There are several well known generic programming techniques 
that are applicable to the design of a generic geometry library 
API.  The most important is C++ traits, which provides the 
necessary abstraction between the interface of a geometry object 
and its use in generic code.  In combination with traits, other 
generic programming techniques have been proposed in the 
design of generic geometry libraries including: tag dispatching, 
static asserts and substitution-failure-is-not-an-error (SFINAE) 
template function overloading.   

2.1 Free Functions and Traits 
The conventional way to implement a generic API is with 
template functions declared within a namespace.  This allows 
arbitrary objects to be passed directly into template functions and 
accessed through their associated traits.  There is, however, one 
problem with this approach when used for computational 
geometry.  How to specify what kind of geometric entity a given 
template parameter represents?  The simplest solution is to name 
the function such that it is clear what kind of geometry it expects.  
This prevents generic function name collisions and documents 
what expectation is placed upon the template parameter.  
However, it leads to overly long function names, particularly if 
two or more kinds of geometry are arguments of a function.  Such 
generic functions do not lend themselves to generic programming 
at a higher level of abstraction.  Consider the center(T)  
function.  If we name it variously rectangle_center(T)  for 
the rectangle case and polygon_center(T)  for polygons we 
cannot abstract away what kind of geometry we are dealing with 
when working with their center points.  As an example, a generic 
library function that computes the centroid of an iterator range 
over geometry objects using their center points weighted by their 

area would require two definitions that differ only by the names of 
functions that compute center and area.  As we add triangle and 
polygon-with-holes and circle to the generic library, the drawback 
of not being able to abstract away what kind of geometry is being 
worked with in library code as well as user code becomes 
painfully obvious. 

2.2 Concepts and Static Assert 
A static assert generates a syntax error whenever a concept check 
fails.  A boost geometry library proposal from Brandon Kohn [5] 
employs boost::static_assert  on top of generic free 
functions and traits.  This approach to C++ concepts when applied 
to computational geometry improves the API primarily by 
producing more intelligible syntax errors when the wrong type is 
passed into an API.  It does not solve the problem of not being 
able to abstract away the geometric concept itself because it still 
relies on functions having different names for different concepts 
to prevent function name collisions. 

2.3 Tag Dispatching Based Concepts 
A series of boost geometry library proposals from Barend Gehrels 
and Bruno Lalande [2] have culminated into a tag dispatching 
based API where a generic free function that looks up tag types 
for the objects passed in to disambiguate otherwise identical 
dispatch functions.  These dispatch functions are wrapped in 
structs to emulate partial specialization of dispatch functions by 
specializing the struct.  Partial specialization of template functions 
is not legal C++ syntax under the C++03 standard.   

 

This approach solves the name collision problem.  It allows 
one center()  function, for example, to dispatch to different 
implementations for various rectangle, circle, polygon conceptual 
types and abstract the concept away when working with objects 
that share the characteristic that they have a center.  However, it is 
hard to generalize about concepts in a tag dispatching API 
because concept tags need to be explicit in the declaration of 
dispatch functions.  For all combinations of tags that could satisfy 
a generic function, a definition of a dispatch function that accepts 
those tags must be provided.  For center()  this is merely one for 
each concept, but for a function such as distance()  it is all pairs 
and becomes cumbersome once the number of concepts in the 

namespace dispatch { 
  template <typename TAG1, typename TAG2,  
            typename G1, typename G2> 
  struct distance {}; 

  template <typename P1, typename P2> 
  struct distance<point_tag, point_tag, P1, P2> { 
    static typename distance_result<P1, P2>::type  
    calculate(const P1& p1, const P2& p2) {…}; 
  }; 

  template <typename P, typename L> 
  struct distance<point_tag,linestring_tag,P,L> { 
    template<typename S> 
    static typename distance_result<P1, P2>::type 
    calculate(const P& point, const L& linestr); 
} 

template <typename G1, typename G2> 
typename distance_result<G1, G2>::type 
distance(const G1& g1, const G2& g2) { 
  return  
  dispatch::distance< tag<G1>::type,  
    tag<G2>::type, G1, G2>::calculate(g1, g2); 
} 
 



system exceeds just a handful.  The number of such dispatch 
functions needed to implement an API explodes if some other 
abstraction is not used, such as multi-stage dispatch.  Another way 
to achieve that additional abstraction is inheritance sub-typing of 
tags, while SFINAE provides a third. 

3. GTL’s Approach to Generic Geometry 
Empty concept struct s are defined for the purposes of meta-
programming in terms of concepts and are analogous to tags used 
in tag dispatching.  Sub-typing relationships between concepts 
(concept refinements) are implemented by specializing meta-
functions that query for such.   

 
Even with concepts inherited from each other (for tag 

dispatching purposes, for instance) such meta-functions would 
still be convenient for SFINAE checks because inheritance 
relationships are not easily detected at compile time.  The use of 
boost::is_base_of could obviate the need for these meta-
functions in GTL.   

Traits related to geometry concepts are broken down into 
mutable and read-only traits structs.  A data type that models a 
concept must provide a specialization for that concept’s read-only 
traits or conform to the default traits definition.  It should also do 
the same for the mutable traits if possible.   

GTL interfaces follow a geometric programming style called 
isotropy, where abstract ideas like orientation and direction are 
program data.  Direction is a parameter to function calls rather 
than explicitly coded in function names and handled with flow 
control.  The access functions in the traits of a point data type 
therefore defines one get()  function that accepts a parameter for 
horizontal or vertical axis component rather than separate x()  and 
y()  access functions.    

A data type that models a refinement of a concept will 
automatically have read only traits instantiate for the more general 
concept based upon the traits of the refinement that data type 
models.  The programmer need only provide concept mapping 
traits for the exact concept their object models and it becomes 
fully integrated into the generic type system.   

Concept checking is performed by looking up the concept 
associated with a given object type by meta-function 
geometry_concept<T>  and using that along with pertinent 
concept refinement relationships through compile time logic to 
produce a yes or no answer for whether a given function should 
instantiate for the arguments provided or result in SFINAE 
behavior in the compiler.  This allows generic functions to be 
overloaded in GTL.  The two generic functions foo()  in the 
example code below differ only by return type, but are not 
ambiguous because their return types cannot both be instantiated 
for the same template argument type.  While SFINAE generic 
function overloading is quite powerful and flexible, the compiler 
support for it is currently inconsistent, requiring significant effort 
and knowledge of compiler idiosyncrasies and their implications 
in order to produce portable code.  

 

3.1 Geometry Concepts Provided by GTL 
GTL provides geometry concepts that are required to support 
planar polygon manipulation.  A summary of these concepts can 
be found in Table 1. 

Table 1. GTL Concepts 

Concept Abbreviation 
coordinate_concept C 

interval_concept I 
point_concept PT 

point_3d_concept PT3D 
rectangle_concept R 

polygon_90_concept P90 
polygon_90_with_holes_concept PWH90 

polygon_45_concept P45 
polygon_45_with_holes_concept PWH45 

polygon_concept P 
polygon_with_holes_concept PWH 

polygon_90_set_concept PS90 
polygon_45_set_concept PS45 

polygon_set_concept PS 

 

Concept refinement relationships in GTL are shown in 
Figure 2, with concepts labeled by the abbreviations listed in 
Table 1.  GTL provides algorithms that have been optimized for 
Manhattan and 45-degree VLSI layout data, and concepts specific 
to these restricted geometries are named with 90 and 45.   

template <typename T> struct is_integer {}; 
template <>  
struct is_integer<int> { typedef int type; }; 
template <typename T> struct is_float {}; 
template <>  
struct is_float<float> { typedef float type; }; 
 
template <typename T> 
typename is_int<T>::type foo(T input); 
template <typename T> 
typename is_float<T>::type foo(T input); 

Figure 2. GTL Concept Refinement Diagram 

template <typename T> 
struct point_traits { 
  typedef T::coordinate_type coordinate_type; 
  coordinate_type get(const T& p,  
    orientation_2d orient) { return p.get(orient); 
} 

template <typename T> 
struct point_mutable_traits { 
  void set(const T& p, orientation_2d orient, 
           coordinate_type value) { 
    p.set(orient, value); 
  }  
  T construct(coordinate_type x,  
    coordinate_type y) { return T(x, y); } 
}; 
 

struct polygon_concept {}; 
struct rectangle_concept {}; 

template <typename T> 
struct is_a_polygon_concept{}; 

template <> struct is_a_polygon_concept< 
  rectangle_concept> { typedef gtl_yes type; }; 



A polygon set in our terminology is any object that is 
suitable for an argument to a polygon set operation (intersection, 
union, disjoint union, etc.)  A vector of polygons is a natural and 
convenient way to define such an object.  Vectors and lists of 
objects that model polygon and rectangle concepts are 
automatically models of polygon sets concepts.  A user can define 
the traits for their polygon data type, register it as a 
polygon_concept  type by specializing geometry_concept<T>  
and immediately begin using vectors of those polygons as 
arguments to GTL APIs that expect objects that model 
polygon_set_concept .  GTL also provides data structures for 
polygon set objects that store the internal representation suitable 
for consumption by the Booleans algorithms. 

3.2 Generic Functions Provided 
It is very important to make use of the concept refinement 
definition of parent concept traits with child concept objects to 
allow a complete and symmetric library of generic functions to be 
implemented in a manageable amount of code.  O(n) generic 
functions defined for O(m) conceptual types can allow O(n * m) 
function instantiations that all operate on distinct conceptual 
types.  A good example of this is the assign()  function that 
copies the second argument to the first and is provided in lieu of a 
generic free assignment operator, which is not legal C++ syntax.  
The assign()  function can be called on any pair of objects 
where the second is the same conceptual type as the first or a 
refinement of the first conceptual type.  GTL allows roughly fifty, 
functionally correct and semantically sensible, instantiations of 
assign()  that accept distinct pairs of conceptual types.  There is, 
however, only one SFINAE overload of the generic assign 
function for each of thirteen conceptual types.  No nonsensical 
combination of concepts passed to assign()  is allowed to 
compile and the syntax error generated is simply “no function 
assign that accepts the arguments...” 

The assign()  function alone turns GTL into a Rosetta-
stone of geometry data type conversions, but the library also 
provides a great many other useful functions such as area, 
perimeter, contains, distance, extents etc.  Because of the 
extensible design, it is very feasible to add new functions and 
concepts over time that work well with the existing functions and 
concepts.  

3.3 Bending the Rules with view_as 
Sometimes use of GTL APIs with given types would be illegal 
because the of a conceptual type mismatch, yet the programmer 
knows that some invariant is true at runtime that the compiler 
cannot know at compile time.  For example, that a polygon is a 
rectangle, or degenerate.  In such cases, the programmer might 
want to view an object of a given conceptual type as if it were a 
refinement of that conceptual type.  In such cases the programmer 
can concept-cast the object to the refined concept type with a 
view_as  function call.  A call to view_as  provides read only 
access to the object through the traits associated with the object.  
For example, some algorithms may be cheaper to apply on 
concepts that place restrictions on the geometry data through 
refinement because they can safely assume certain invariants.  It is 
much faster to compute whether a rectangle fully contains a 
polygon than it is to compute whether a polygon fully contains a 
polygon.  Rather than construct a rectangle from the polygon we 

can simply view the polygon as a rectangle if we know that to be 
the case at runtime. 

 

The ability to perform concept casting, concept refinement 
and overload generic functions by concept type results in a 
complete C++ concepts-based type system. 

4. Booleans Operator Templates 
The Booleans algorithms are the core algorithmic capability 
provided by GTL.  An example of a Boolean XOR operation on 
two polygons is shown in Figure 1.  The geometry concepts and 
concept based object model are focused on providing mechanisms 
for getting data in and out of the core Booleans in the format of 
the user’s choosing.  This enables the user to directly make use of 
the API provided by GTL for invoking these algorithms on their 
own data types.  This novel ability to make use of library APIs 
with application data types motivates us to provide the most 
productive, intuitive, concise and readable API possible.  We 
overload the C++ bit-wise Boolean arithmetic operators to 
perform geometric Boolean operations because it is immediately 
intuitive, maximally concise, highly readable and productive for 
the user to apply. 

4.1 Supported Operators 
A Boolean operator function call is allowed by the library for any 
two objects that model a geometry concept for which an area 
function call makes sense.  These include the operator&  for 
intersection, operator|  for union, operator^  for disjoint-union 
and operator–  for the and-not/subtract Boolean operation.  Self-
assignment versions of these operators are provided for left hand 
side objects that model the mutable polygon set concepts, which 
are suitable to store the result of a Boolean. Also supported for 
such objects are operator+ /operator-  when the right hand side 
is a numeric for inflate/deflate, known as offsetting or buffering 
operations.  There is no complement operation because the ability 
to represent geometries of infinite extent is not expected of 
application geometry types.  Nor is such an operation truly needed 
when object ^ rectangle  with a suitably large rectangle is 
equivalent for practical purposes.  

4.2 Operator Templates Definition 
To avoid the unnecessary copying of potentially large data 
structures as the return value of an operator function call that must 
return its result by value, the return value of GTL Boolean 
operators is an operator template.  The operator template caches 
references to the operator arguments and allocates storage for the 
result of the operation, which remains empty initially, allowing 
the copy of the operator template to be lightweight when it is 
returned by value.  The operator template lazily performs the 
Boolean operation, storing the output only when first requested.  

if(is_rectilinear(polygon) &&  
   size(polygon) == 4) { 
  //polygon must be a rectangle 
  //use cheaper O(n) algorithm 
  return contains(view_as< 
    rectangle_concept>(polygon), polygon2); 
} else { 
  //use O(n log n) Booleans-based algorithm 
  return contains(polygon, polygon2); 
} 
 



Operator templates are expected to be temporaries when operators 
are chained.  For instance (a + b) - c  produces an operator 
template as the result of a + b , passes that into operator-  and 
another operator template is returned by operator- .  Only later 
when the result of that operator-  is requested will both the 
Booleans be performed as the operator templates recursively 
perform lazy evaluation of the expression.  Because the user is not 
expected to refer to the operator templates by type, but instead use 
them only as temporaries, there is little danger of the arguments 
going out of scope before the expression is evaluated.    

4.3 Exemplary User Code 
The combination of operator templates with the C++ concepts 
based type system leads to the ability to write exemplary user code 
using the library.  For instance, in an application that defines its 
own CBoundingBox  and CPolyon,  the following GTL based 
code snippet becomes possible: 

 
The application of five GTL library algorithms is accomplished in 
only two lines of code while the design intent of the code is clear 
and easy to read.  This is with application rather than library data 
types and no performance is sacrificed for data copy to satisfy the 
syntactic requirements of library interfaces or the operator 
semantics of C++ that require return by value.  This abstracts 
away the low-level details of the algorithms and allows the user to 
program at a higher level of abstraction while at the same time 
preserving the optimality of the code produced. 

5. Generic Sweep-line for Booleans 
A common way to implement Booleans is to first intersect 
polygon edges with an algorithm such as Bentley Ottmann [1].  
After line segment intersection, new vertices are commonly 
introduced on edges where intersections were identified along 
with crosslinks that stitch the input polygons together into a graph 
data structure.  The graph data structure is then traversed and a 
rules-based algorithm ensures that interior edges are not traversed.  
Traversing exterior edges yields closed polygons. [12] This 
traditional algorithm has several problems.  The graph data 
structure is expensive to construct, expensive to store and 
expensive to traverse.  When the graph is traversed to output 
polygons the winding direction can be used to identify holes, but 
no information stored within the graph helps to associate those 
holes to the outer polygons, requiring that additional computation 
be performed if that information is needed.  The algorithm leads 
to complex implementations of rule logic because it requires that 
degeneracy be handled explicitly with logic, making it challenging 
to achieve a reliable implementation of the algorithm.    

A much better approach to Booleans is the application of 
sweep-line to identify interior edges.  GTL provides a generic 
sweep-line algorithm framework that is used to implement line 
segment intersection, Booleans and related algorithms such as 
physical connectivity extraction.   

5.1 Better Booleans through Calculus 
Our Booleans algorithm differs from the traditional approaches 
found in the literature.  The algorithm most closely resembles [11] 
in that it can perform polygon clipping and line segment 
intersection with a single pass of sweep-line.  In our problem 
formulation we model a polygon as a mathematical function of 
two variables x and y such that for all x/y points inside the 
polygon the function returns one, and for all points outside the 
polygon the function returns zero.  This view of a polygon is 
useful because it allows us to reason about the problem 
mathematically. 

If we consider a mathematical function of two variables, we 
can apply the partial derivative with respect to each of those 
variables, which provides the points at which the function value 
changes and the directions and magnitudes in which it is 
changing.  Because our geometry is piece-wise linear this reduces 
the two dimensional definition of the polygon function to a 
collection of zero dimensional quantities at its vertices that are 
directed impulses with magnitude of positive or negative one.    

 

Integrating with respect to x and y allows us to reconstruct 
the two dimensional polygon function from these zero 
dimensional derivative quantities.  

 

This integration with respect to x and y in mathematical 
terms is analogous to programmatically sweeping from left to 
right and from bottom to top along the sweep-line and 
accumulating partial sums.  Because the polygons are piecewise 
linear this summation is discreet rather than continuous and is 
therefore computationally simple.  What this mathematical model 
for calculus of polygons allows us to do is superimpose multiple 
overlapping polygons by decomposing them into vertex objects 
that carry data about direction and magnitude of change along the 
edges that project out of those vertices.  Because these vertices are 
zero-dimensional quantities they can be superimposed simply by 
placing them together in a collection, trivially sorting them in the 
order they are to be scanned and summing any that have the same 
point in common.  When scanned, their magnitudes are summed 
(integrated) onto intervals of the sweep-line data structure.  The 
sweep-line data structure should ideally be a binary tree that 

Figure 4. Integrating polygon-derivative reproduces polygon 

Figure 3. Derivative of a polygon 

void foo(list<CPolygon>& result,  
const list<CPolygon>& a,  
const list<CPolygon>& b) { 

CBoundingBox domainExtent; 
gtl::extents(domainExtent, a); 
result += (b & domainExtent) ^ (a - 10); 

} 
 



provides amortized log(n) lookup, insertion and removal of these 
sums, keyed by the lower bound of the interval (which of course 
changes as the sweep-line moves.)  Each such interval on the 
sweep-line data structure stores the count of the number of 
polygons the sweep-line is currently intersecting along that 
interval.  Notably, the definition allows for counts to be negative.  
A union operation is performed by retaining all edges for which 
the count above is greater than zero and the count below is less 
than or equal to zero or visa-versa.  Vertical edges are a special 
case because they are parallel to our sweep-line but are easily 
handled by summing them from bottom to top as we progress 
along the sweep-line. 

 

The sequence of steps to perform a Boolean OR (union) 
operation on two polygons is shown in Figure 5.  The two input 
polygons are shown overlapping in Figure 5 a.  They are 
decomposed into their derivative points as shown in Figure 5 b.  
Line segment intersection points are inserted as shown in Figure 5 
c.  These intersection points carry no derivative data quantities 
because no change in direction of edges takes place at intersection 
points.  The result of a pass of sweep-line to remove interior 
points through integration and output updated derivative 
quantities is shown in Figure 5 d.  Note that it is the same data-
format as the input shown in Figure 5 b and is in fact the 
derivative of the output polygons.  This facilitates the chaining 
together of multiple Booleans operations without the need to 
convert to and from polygons in between.  Note that one point in 
Figure 5 d. has no derivative vector quantities assigned to it.  That 
point is collinear with the previous and next point in the output 
polygon and therefore doesn’t represent a change in direction of 
edges.  It is retained because preserving the topology of collinear 
points in the output is a requirement for some meshing algorithms 
that their input polygons be “linearly consistent.”  Such collinear 
points can be trivially discarded if undesired.  A final pass of 
sweep-line can either integrate the output polygon derivative from 
Figure 5 d to form polygons with holes as shown in Figure 5 e or 
keyhole out the holes to the outer shells as shown in Figure 5 f.  It 
is possible to perform line segment intersection, interior point 
removal and form output polygons in a single pass of sweep-line.  
We break it down into separate steps for convenience.  The 
computation required for interior point removal, updating of 
derivative quantities and formation of output polygons increases 

the computational complexity of sweep-line based generalized 
line segment intersection such as that described by [1] by only a 
constant factor whether performed as a single pass or separated 
into multiple passes.  The algorithm presented here is therefore 
optimal because it is well known that polygon clipping is bounded 
by the complexity of line segment intersection, as can be trivially 
proven because line segment intersection could be implemented 
with our polygon-clipping algorithm.   

The output polygons can contain holes, and the input 
polygons can likewise contain holes.  Moreover, the output holes 
can be associated to their outer shells as additional data available 
in the output or geometrically by keyholing.  The output can 
easily be obtained as the non-overlapping trapezoid 
decomposition of polygons sliced along the sweep-line orientation 
similar to [11].  All of these polygonal forms of output are legal 
inputs to the algorithm, and it is closed both on the polygon 
domain as well as the polygon derivative domain meaning that it 
consumes its own output.  The other advantage of this algorithm 
over the traditional previous polygon clipping algorithms is that it 
correctly handles all degeneracy in inputs implicitly with the same 
logic path that handles the normal case.  Our algorithm reduces 
the complex logic of categorizing states to simple arithmetic 
applied while scanning.  It is robust to negative polygon counts 
(holes outside of shells), high order overlaps of intersections and 
edges, co-linear and duplicate points, zero length edges, zero 
degree angles and self-intersecting/self-overlapping polygons, all 
by simply applying the same calculus of summing derivative 
values that are easily computed by inspecting each polygon 
vertex.  To our knowledge this polygon-derivative data-modeling 
and algorithm for polygon clipping has not appeared in past 
literature and is novel. 

5.2 Generic Booleans Algorithmic Framework 
The scanning of geometry for a Boolean in GTL performs 
integration with respect to x and y of changes in counts of the 
number of polygons from left-to-right/bottom-to-top.  The sweep-
line data structure stores the current count of the number of 
polygons that overlap intervals of the sweep-line.  We employ the 
stl map for our sweep-line data structure using a similar technique 
as described in [9] to implement a comparison functor that 
depends upon the position of the sweep-line.  The count data type 
stored as the value of the map element is a template parameter of 
the sweep-line algorithm.  It is required to be addable, and 
generally conform to the integral behaviors.  An integer is a valid 
data type for the count and is used to implement unary Boolean 
operations.  A pair of integers can be used to implement binary 
Boolean operations such as intersection.  A map of property value 
to count can be used to perform sweep-line on an arbitrary 
number of input geometry “layers” in a single pass.  Other 
template parameters include an output functor, output data 
structure and of course the coordinate data type.   

 

Figure 5. Sequence of Boolean OR (union) operation 

template <typename coordinate_type> 
struct boolean_op { 
  template <typename count, typename output_f> 
  struct sweep_line { 
    template <output_c, input_i> 
    void scan(output_c& o, input_i b, input_i e); 
  }; 
}; 



The generic algorithm takes care of all the details of 
intersecting polygon edges and summing counts while the output 
functor, count data type and output data structure control what is 
done with that information.  In this way, the algorithm can be 
adapted to perform multiple operations with minimal effort.  The 
seven simple Booleans supported by GTL employ output functors 
that differ only in the logic they apply to the count data type. 

 

If the logic applied by these output functors to the count 
results in true on one side of an edge and false on the other then 
that edge is exterior and appended to the output data structure.  If 
partial polygons are stored as part of the count data structure in 
the sweep-line tree then the output functor can construct output 
polygons. 

 

Also implemented with the generic Booleans framework are 
property merge and connectivity extraction.  By using a map of 
property to polygon count as the data type for the counts stored on 
the sweep-line and appropriate output functor and output data 
structure the connectivity graph of n nodes of polygonal inputs 
can be computed in a single pass of the algorithm to provide a 
solution to the spatial overlay join problem.  An example of the 
output of this algorithm for the geometry in Figure 6 a. is shown 
in Figure 6 b.  Similarly, the geometry of all unique combinations 
of overlap between n polygonal inputs can be computed and 
output by the property merge output functor to a map of polygon 
sets keyed by sets of property values.  An example of the output of 
property merge for the geometry in Figure 6 a. is shown in Figure 
6 c.  The property merge algorithm is a generalization of two 
input Boolean operations to n inputs to solve the n-layer map 
overlay problem.  The generic algorithm can be easily adapted to 
implement other sweep-line based algorithms including domain 
specific algorithm such as capacitance estimation. 

5.3 Offsetting/Buffering Operations 
In addition to Booleans, GTL also provides the capability to offset 
polygons by “inflating” or “deflating” them by a given resizing 
value.  Polygons grow to encompass all points within the resizing 
distance of their original geometry.  If the resizing distance is 

negative, polygons shrink.  This implies that circular arcs be 
inserted at protruding corners when a polygon is resized.  Such 
circular arcs are segmented to make the output polygonal.  Other 
options for handling such corners include inserting a single edge 
instead of an arc, simply maintaining the original topology or 
leaving the corner region unfilled.  The resizing operations are 
accomplished by a union operation on the original polygons with 
a collection of trapezoids constructed from their edges of width 
equal to the resizing distance and with polygons at the corners 
generated based on the two adjacent edge trapezoids.  An example 
of the shapes created from the input 45-degree geometry in Figure 
7 a is shown in Figure 7 b and the result of the union between 
those shapes and the original to create the output geometry of an 
inflate operation is shown in Figure 7 c.  Deflate is accomplished 
by substituting subtraction for union. 

 

6. Numerical Robustness 
There are three problems in integer arithmetic that must be 
overcome to implement generalized line segment intersection for 
polygon clipping.  These are integer overflow, integer truncation 
of fractional results and integer snapping of intersection points.  
Overflow and truncation of fractional results makes computing the 
result of very innocent looking algebraic expressions all but 
impossible with built-in integer types.  The common practice of 
resorting to floating point arithmetic in these cases is clearly not 
suitable because the error it introduces is even more problematic.  

Intersection points must be snapped to the integer grid at the 
output of the algorithm.  However, snapping the intersection point 
causes a small lateral movement of the line segments it is inserted 
on.  This movement can cause a line segment to cross to the other 
side of a vertex than was at the case in the input, introducing new 
intersections.  If these new intersections have not yet been reached 
by the forward progress of the line segment intersection sweep-
line, they might be handled naturally by the algorithm, however, it 
is just as likely they are introduced prior to the current position of 
the sweep-line and the algorithm will not have the opportunity to 
handle them during its forward progress. 

A choice about how to handle spurious intersection points 
introduced by intersection point snapping must be made.  It is 
impossible to both output the idealized “correct” topology of 
intersected line segments and at the same time output fully 
intersected line segments with their end points on the integer grid 
with the property that no two line segments intersect except at 
their end points.  The invariant that output line segments not 
intersect except at their end points is crucial because this invariant 
is a requirement of algorithms that would consume the output.  
Topologically, the important consideration for polygon clipping is 
that the output edges describe closed figures.  Violating this 
invariant would, at best, cause polygons to be “dropped” during 
subsequent execution and, at worst, result in undefined behavior.  

Figure 6. Connectivity Extraction and Property Merge 

Figure 7. Resize Example: inflate of polygon with hole 

//intersect 
count[0] > 0 && count[1] > 0; 
//union 
count[0] > 0 || count[1] > 0; 
//self-union 
count > 0 
//disjoint-union 
(count[0] > 0) ^ (count[1] > 0) 
//subtract 
(count[0] > 0) && !(count[1] > 0) 
//self-intersect 
(count > 1) 
//self-xor 
(count % 2) 
 



It is obvious that merging of vertices and the insertion of new 
vertices are both topological changes that preserve the property of 
the network that all closed cycles remain closed.  These 
topological changes are allowed to occur as the result of snapping 
intersection points because we choose to enforce the invariant that 
no line segments at the output intersect except at their end points. 

6.1 Solving Overflow and Truncation  
Overflow is easy to handle if the appropriate data types are 
available.  Thirty-two bit can be promoted to sixty-four and sixty-
four bit can be promoted to multi-precision integer.  However, in 
generic code it becomes impossible to be explicit about when to 
cast and what to cast to.  The same algorithm might be applied on 
several different coordinate data types when instantiated with 
different template parameters.  We provide indirect access to the 
appropriate data types through coordinate traits, a coordinate 
concept and a meta-function: high_precision_type<T> .  The 
coordinate traits allow the lookup of what data type to use for 
area, difference, Euclidean distance, etc.  The coordinate concept 
is used to provide algorithms that apply these data types correctly 
to ease the burden of common operations such as computing the 
absolute distance between two coordinate values in one-
dimensional space.  The high precision type is used where built-in 
data types would not be sufficient.  It defaults to long double, 
which is the highest precision built-in data type, but still 
potentially insufficient.  By specializing for a specific coordinate 
data type such as integer, a multi-precision rational such as the 
gmp mpq type [3] can be specified.  This can be done outside the 
GTL library itself, making it easy to integrate license encumbered 
numerical data types with GTL and its boost license without the 
need for the GTL code itself to depend on license encumbered 
header files. 

Handling integer truncation of fractional results can be done 
either by applying the high-precision type (preferably a multi-
precision rational) or by algebraic manipulation to minimize the 
need for division and other operations that may produce factional 
results.  Some examples of this are distance comparison, slope 
comparison and intersection point computations.  When 
comparing the distances between two points it is not necessary to 
apply the square root operation because that function is 
monotonic.  When comparing slopes we use the cross-product as a 
substitute for the naïve implementation.  This avoids division and 
produces reliable results when performed with integer data types 
of sufficient precision.  Comparing intersection coordinates can 
also use the cross product to avoid division because computing 
the intersection point of two line segments can be algebraically 
manipulated to require only a single division operation per 
coordinate, which is performed last. 

 

6.2 Solving Spurious Intersections 
Non-integer intersection points need to be snapped to the integer 
grid in the output.  We snap each intersection point to the integer 
grid at the time it is identified.  We do this by taking the floor of 
the fractional value.  Integer truncation is platform dependent, but 
frequently snaps toward zero, which is undesirable because it is 
not uniformly consistent.  Because the integer grid is uniform, the 
distance a point can be snapped by taking the floor is bounded to 
a 1x1 unit integer grid region.   Our current approach differs from 
the similar approach described by John Hobby [4] in that he 
rounds to the nearest integer. 

Because the distance a segment can move is bounded, it is 
predictable.  That means that we can predict the distance a 
segment might move due to a future intersection event and handle 
any problems that would cause pro-actively in the execution of 
line segment intersection.  There are two types of intersection 
artifacts created by snapping.  The first is caused when a line 
segment moves laterally and crosses a vertex, causing intersection 
with edges that would not otherwise be intersected.  The second is 
when an output line sub-segment is lengthened by snapping and 
its end point crosses a stationary line segment.  The second case is 
functionally equivalent to the first since it doesn’t matter whether 
a point moves to cross an edge or an edge moves to cross a point.  
Both can be handled by the same strategy so we’ll focus on the 
case of the line segment moving in the description of our strategy.  
That strategy relies upon the following lemma: all artifacts take 
place only when a vertex lies within a distance of a line segment 
bounded by the max distance an intersection point can be 
snapped.  This lemma can be trivially proven because the distance 
that segments can move is bounded and it is obviously impossible 
for two non-intersecting line segments to cross each other without 
one first crossing an end-point of the other.  Moreover, since the 
direction of snapping is known to be always downward, it follows 
that a vertex can only be crossed by a line segment if that line 
segment intersects the 1x1 integer unit grid box with that vertex in 
its lower left corner.  In these cases, we intersect the line segment 
with those vertices pro-actively such that if a future intersection 
causes the line segment to move, the output topology cannot 
contain spurious intersection artifacts due to that event.  Because 
the vertex is intersected and not other edges, no additional line 
segment intersections need be introduced and no propagation of 
intersection artifacts through the network can take place.  This 
method in known as snap-rounding and has been much discussed 
in the literature. [4]  

Given an algorithm that finds intersections between line 
segments, it is easy to find intersections with 1x1 integer grid 
boxes at segment end-points and snapped-intersection points by 
modeling them as several tiny line segments called a widget.  Any 
line segment that intersects the unit grid box will intersect at least 
one of the segments of the widget shown in Figure 8. 

 

Importantly, intersection events are detected by the algorithm 
based on only the input line segments geometry and never that of 

Figure 8. Example: Vertex/Segment Intersection Widget 

//Segment 1: (x11,y11) to (x12, y12) 
//Segment 2: (x21,y21) to (x22, y22) 
x = (x11 * dy1 * dx2 – x21 * dy2 * dx1 +  
     y21 * dx1 * dx2 - y11 * dx1 * dx2) /  
     (dy1 * dx2 - dy2 * dx1);  
y = (y11 * dx1 * dy2 - y21 * dx2 * dy1 +  
     x21 * dy1 * dy2 - x11 * dy1 * dy2) /  
     (dx1 * dy2 - dx2 * dy1);  
 



the intersected line segments it has produced.  Otherwise, 
numerical error could propagate forward in cascading increased 
severity to reach arbitrarily large magnitudes.  If such were the 
case, no assurance of numerical robustness could be reasonably 
made.   

If the snapping direction is uniform it can be arranged so that 
vertices snap forward in the scanning direction allowing 
evaluation of the widget to be performed by the same sweep-line 
that finds the intersections.  This is our intention.  However, 
currently our arbitrary angle polygon Booleans apply a much 
simpler line segment intersection algorithm implemented to 
validate the sweep-line version of robust line segment 
intersection, which is still a work in progress.  It compares all 
pairs of line segments that overlap in their x coordinate range and 
all vertices and snapped intersection points with all segments that 
overlap with the x coordinate of those points.  It has O(n^2) worst 
case runtime complexity, but in the common case it has expected 
runtime of O(n3/2) and, in practice, performs nearly as well as the 
expected O(n log n) runtime of the optimal algorithm, making its 
use for even quite large input data sets highly practical. 

The combination of handling overflow and applying rational 
data types to overcome truncation errors with the strategy for 
mitigating errors introduced by intersection point snapping allows 
100% robust integer line segment intersection.  The algorithm 
approximates output intersection points to within one integer unit 
in x and y and may intersect line segments with points that lie 
within one integer unit in x and y.  This approximates the ideal 
“correct” output to the extent practical with integer coordinates.  
The algorithm could be enhanced to round to closest integer grid 
point when snapping intersections and make intersecting segments 
to nearby vertices predicated upon whether it later becomes 
necessary to do so.  As a practical matter, however, these 
measures would result in very little benefit to accuracy.  That 
benefit, and more, can be more easily obtained by scaling up the 
input and applying higher precision integer arithmetic, if 
necessary, which is easily accomplished using GTL. 

7. Experimental Results 
We benchmarked our own GTL polygon clipping Booleans 
algorithm against the GPC [7], PolyBoolean [6] and CGAL [8] 
polygon clippers.  We benchmarked the three GTL algorithms, 
Manhattan, 45-degree, and general Booleans against all three.  
These benchmarks were performed on a two-package, 8 core, 3.0 
GHz Xenon with 32 GB of RAM, 32 KB of L1 cache and 6 MB 
L2 cache.  Hyper-threading was disabled.  None of the algorithms 
tested were threaded and all ran in the same process.  We 
compiled the benchmark executable using gcc 4.2.2 with O3 and 
finline-limit=400 optimization flags. 

Inputs consisted of small arbitrary triangles, arbitrarily 
distributed over square domains of progressively increasing size.  
Runtimes measured were the wall-clock execution time of the 
intersection operation on geometry contained within two such 
domains.  The overlapping triangles in each domain had to be 
merged first with GTL to make them legal inputs for the other 
three libraries’ Boolean operations.  For the Manhattan (axis-
aligned rectilinear) benchmark we used small arbitrary rectangles 
instead of triangles.  

Results of our benchmarking are shown in Figures 9, 10 and 
11.  Note that in Figure 11 the last two data points for 
PolyBoolean are absent.  PolyBoolean suffered from unexplained 
crashes as well as erroneously returning an error code due to a 
bug in its computation of whether a hole is contained within a 
polygon.  This prevented PolyBoolean from successfully 
processing large data sets.  CGAL had a similar problem that 
prevented it from processing data sets larger than those in Figure 
11.  We conclude that this is a bug in CGAL because both GTL 
and GPC were always successful in processing the same polygons.  
This issue with GCAL was observed regardless of which kernel 
was employed.    

 

 

 

Figure 9. GPC/GTL Scalability Comparison 

Figure 10. Rectilinear Scalability Comparison 

Figure 11. Small Scale Performance Comparison 



All libraries performed roughly within the range of 2X faster 
to 2X slower than GTL for the small inputs shown in Figure 11.  
We feel that such small constant factor variation is not significant 
since it could likely be remedied by profile-guided performance 
tuning of implementation details.  We did not apply empirical 
complexity measurement on the data sets in the General 
Performance plot because non-linearity in micro-architecture 
performance as memory footprints start to exceed L1 cache size 
renders such analysis on very small input sizes faulty. 

While successful at processing all inputs, the GPC library’s 
runtime scaled sub-optimally for large inputs, as can be seen in 
Figure 10.  The empirical runtime complexity of GPC from that 
plot is n2.6, which can be clearly seen in its steep slope relative to 
GTL.  We were unable to measure CGAL or PolyBoolean for this 
benchmark because of the bugs that effectively prevented them 
from processing inputs larger than those shown in Figure 11.  
Also in Figure 9 we show the portion of GTL runtime spent in the 
core Boolean sweep as gtlb.  Note that the runtime of GTL is 
dominated by the currently suboptimal line segment intersection, 
which we plan on eventually rectifying by integrating line 
segment intersection into the core Boolean sweep at a constant 
factor overhead.   

All libraries were successful in processing large-scale 
Manhattan polygon inputs.  There is a 100X variability in 
runtimes, however, as can be seen in Figure 10.  The Manhattan 
Booleans algorithm in GTL is labeled gtl90 in the figure, and the 
45-degree Booleans algorithm is labeled gtl45.  Note that the 45-
degree algorithm is optimal, computing line segment intersection 
in the same sweep as the Boolean operation, and performs within 
a small constant factor of the similar 90-degree algorithm.  Again, 
we show the portion of the general Booleans algorithm labeled 
gtlb.  We believe that when upgraded with optimal line segment 
intersection the general Booleans algorithm could perform closer 
to the gtlb curve than the current performance, which is labeled 
gtl.  GPC and PolyBoolean both turn in suboptimal n1.8 runtime 
scaling in this benchmark.  CGAL appears to be optimal for this 
benchmark, scaling at a near linear n1.07.  Frequently we have 
observed O(n log n) algorithms will have an empirical scaling 
factor of less than one for input ranges that are modest in size, as 
we see in both log-log plots for gtlb as well as for gtl90.  This is 
because the micro-architecture has advanced features such as 
speculative memory pre-fetch that become more effective as input 
vector sizes grow.  However, it clearly demonstrates that empirical 
scaling observations must be interpreted cautiously when drawing 
conclusions about algorithmic complexity and optimality.  Our 
review of GPC and PolyBoolean code lead us to believe that their 
line segment intersection algorithms should perform at around 
n1.5log n on the test data we generated.  Our conclusion that they 
are suboptimal is not based upon empirical data alone. 

8. Conclusion 
Our C++ Concepts based API for planar polygon manipulations 
makes these powerful algorithms readily accessible to applications 
developers.  Improvements in our Booleans algorithm over prior 
work frees users of that API from the hassles of accommodating 
library restrictions and conventions imposed upon input 
geometries, while the C++ Concepts based API frees them from 
syntactic restrictions on how the algorithms may be applied.  

Because our library compares favorably with similar open-source 
libraries, in terms of both performance and feature set, while 
providing a superior API based upon generic programming 
techniques, we feel that it is a good candidate for acceptance into 
boost and plan to pursue review this year. 
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