Oliver Kowalke 2014 Oliver Kowalke Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) C++ Library for swiching different user ctx Context
<link linkend="context.overview">Overview</link> Boost.Context is a foundational library that provides a sort of cooperative multitasking on a single thread. By providing an abstraction of the current execution state in the current thread, including the stack (with local variables) and stack pointer, all registers and CPU flags, and the instruction pointer, a execution_context represents a specific point in the application's execution path. This is useful for building higher-level abstractions, like coroutines, cooperative threads (userland threads) or an equivalent to C# keyword yield in C++. execution_context provides the means to suspend the current execution path and to transfer execution control, thereby permitting another context to run on the current thread. This state full transfer mechanism enables a context to suspend execution from within nested functions and, later, to resume from where it was suspended. While the execution path represented by a execution_context only runs on a single thread, it can be migrated to another thread at any given time. A context switch between threads requires system calls (involving the OS kernel), which can cost more than thousand CPU cycles on x86 CPUs. By contrast, transferring control among them requires only few CPU cycles because it does not involve system calls as it is done within a single thread. In order to use the classes and functions described here, you can either include the specific headers specified by the descriptions of each class or function, or include the master library header: #include <boost/context/all.hpp> which includes all the other headers in turn. All functions and classes are contained in the namespace boost::context. execution_context requires C++11!
<link linkend="context.requirements">Requirements</link> Boost.Context must be built for the particular compiler(s) and CPU architecture(s)s being targeted. Boost.Context includes assembly code and, therefore, requires GNU as and GNU preprocesspr for supported POSIX systems, MASM for Windows/x86 systems and ARMasm for Windows/arm systems. MASM64 (ml64.exe) is a part of Microsoft's Windows Driver Kit. Please note that address-model=64 must be given to bjam command line on 64bit Windows for 64bit build; otherwise 32bit code will be generated. For cross-compiling the lib you must specify certain additional properties at bjam command line: target-os, abi, binary-format, architecture and address-model. For safe SEH the property 'asmflags=\safeseh' must be specified at bjam command line.
<anchor id="ecv2"/><link linkend="context.ecv2">Class execution_context (version 2)</link> This class is enabled per default. Class execution_context encapsulates context switching and manages the associated context' stack (allocation/deallocation). execution_context allocates the context stack (using its StackAllocator argument) and creates a control structure on top of it. This structure is responsible for managing context' stack. The address of the control structure is stored in the first frame of context' stack (e.g. it can not directly accessed from within execution_context). In contrast to execution_context (v1) the ownership of the control structure is not shared (no member variable to control structure in execution_context). execution_context keeps internally a state that is moved by a call of execution_context::operator() (*this will be invalidated), e.g. after a calling execution_context::operator(), *this can not be used for an additional context switch. execution_context is only move-constructible and move-assignable. The moved state is assigned to a new instance of execution_context. This object becomes the first argument of the context-function, if the context was resumed the first time, or the first element in a tuple returned by execution_context::operator() that has been called in the resumed context. In contrast to execution_context (v1), the context switch is faster because no global pointer etc. is involved. Segmented stacks are not supported by execution_context (v2). On return the context-function of the current context has to specify an execution_context to which the execution control is transferred after termination of the current context. If an instance with valid state goes out of scope and the context-function has not yet returned, the stack is traversed in order to access the control structure (address stored at the first stack frame) and context' stack is deallocated via the StackAllocator. The stack walking makes the destruction of execution_context slow and should be prevented if possible. execution_context expects a context-function with signature execution_context(execution_context ctx, Args ... args). The parameter ctx represents the context from which this context was resumed (e.g. that has called execution_context::operator() on *this) and args are the data passed to execution_context::operator(). The return value represents the execution_context that has to be resumed, after termiantion of this context. Benefits of execution_context (v2) over execution_context (v1) are: faster context switch, type-safety of passed/returned arguments. usage of execution_context int n=35; ctx::execution_context<int> source( [n](ctx::execution_context<int> sink, int) mutable { int a=0; int b=1; while(n-->0){ auto result=sink(a); sink=std::move(std::get<0>(result)); auto next=a+b; a=b; b=next; } return sink; }); for(int i=0;i<10;++i){ auto result=source(i); source=std::move(std::get<0>(result)); std::cout<<std::get<1>(result)<<" "; } output: 0 1 1 2 3 5 8 13 21 34 This simple example demonstrates the basic usage of execution_context as a generator. The context sink represents the main-context (function main() running). sink is generated by the framework (first element of lambda's parameter list). Because the state is invalidated (== changed) by each call of execution_context::operator(), the new state of the execution_context, returned by execution_context::operator(), needs to be assigned to sink after each call. The lambda that calculates the Fibonacci numbers is executed inside the context represented by source. Calculated Fibonacci numbers are transferred between the two context' via expression sink(a) (and returned by source()). Note that this example represents a generator thus the value transferred into the lambda via source() is not used. Using boost::optional<> as transferred type, might also appropriate to express this fact. The locale variables a, b and next remain their values during each context switch (yield(a)). This is possible due source has its own stack and the stack is exchanged by each context switch. parameter passing With execution_context<void> no data will be transferred, only the context switch is executed. boost::context::execution_context<void> ctx1([](boost::context::execution_context<void> ctx2){ std::printf("inside ctx1\n"); return ctx2(); }); ctx1(); output: inside ctx1 ctx1() resumes ctx1, e.g. the lambda passed at the constructor of ctx1 is entered. Argument ctx2 represents the context that has been suspended with the invocation of ctx1(). When the lambda returns ctx2, context ctx1 will be terminated while the context represented by ctx2 is resumed, hence the control of execution returns from ctx1(). The arguments passed to execution_context::operator(), in one context, is passed as the last arguments of the context-function if the context is started for the first time. In all following invocations of execution_context::operator() the arguments passed to execution_context::operator(), in one context, is returned by execution_context::operator() in the other context. boost::context::execution_context<int> ctx1([](boost::context::execution_context<int> ctx2, int j){ std::printf("inside ctx1, j == %d\n", j); return ctx2(j+1); }); int i = 1; std::tie(ctx1, i) = ctx1(i); std::printf("i == %d\n", i); output: inside ctx1, j == 1 i == 2 ctx1(i) enters the lambda in context ctx1 with argument j=1. The expression ctx2(j+1) resumes the context represented by ctx2 and transfers back an integer of j+1. On return of ctx1(i), the variable i contains the value of j+1. If more than one argument has to be transferred, the signature of the context-function is simply extended. boost::context::execution_context<int,int> ctx1([](boost::context::execution_context<int,int> ctx2, int i, int j){ std::printf("inside ctx1, i == %d j == %d\n", i, j); return ctx2(i+j,i-j); }); int i = 2, j = 1; std::tie(ctx1, i, j) = ctx1(i,j); std::printf("i == %d j == %d\n", i, j); output: inside ctx1, i == 2 j == 1 i == 3 j == 1 For use-cases, that require to transfer data of different type in each direction, boost::variant<> could be used. class X{ private: std::exception_ptr excptr_; boost::context::execution_context<boost::variant<int,std::string>> ctx_; public: X(): excptr_(), ctx_( [=](boost::context::execution_context<boost::variant<int,std::string>> ctx, boost::variant<int,std::string> data){ try { for (;;) { int i = boost::get<int>(data); data = boost::lexical_cast<std::string>(i); auto result = ctx( data); ctx = std::move( std::get<0>( result) ); data = std::get<1>( result); } catch (std::bad_cast const&) { excptr_=std::current_exception(); } return ctx; }) {} std::string operator()(int i){ boost::variant<int,std::string> data = i; auto result = ctx_( data); ctx_ = std::move( std::get<0>( result) ); data = std::get<1>( result); if(excptr_){ std::rethrow_exception(excptr_); } return boost::get<std::string>(data); } }; X x; std::cout << x( 7) << std::endl; output: 7 In the case of unidirectional transfer of data, boost::optional<> or a pointer are appropriate. exception handling If the function executed inside a execution_context emits ans exception, the application is terminated by calling std::terminate(). std::exception_ptr can be used to transfer exceptions between different execution contexts. Do not jump from inside a catch block and then re-throw the exception in another execution context. Executing function on top of a context Sometimes it is useful to execute a new function on top of a resumed context. For this purpose execution_context::operator() with first argument exec_ontop_arg has to be used. The function passed as argument must return a tuple of execution_context and arguments. boost::context::execution_context<int> f1(boost::context::execution_context<int> ctx,int data) { std::cout << "f1: entered first time: " << data << std::endl; std::tie(ctx,data) = ctx(data+1); std::cout << "f1: entered second time: " << data << std::endl; std::tie(ctx,data) = ctx(data+1); std::cout << "f1: entered third time: " << data << std::endl; return ctx; } std::tuple<boost::context::execution_context<int>,int> f2(boost::context::execution_context<int> ctx,int data) { std::cout << "f2: entered: " << data << std::endl; return std::make_tuple(std::move(ctx),-1); } int data = 0; ctx::execution_context< int > ctx(f1); std::tie(ctx,data) = ctx(data+1); std::cout << "f1: returned first time: " << data << std::endl; std::tie(ctx,data) = ctx(data+1); std::cout << "f1: returned second time: " << data << std::endl; std::tie(ctx,data) = ctx(ctx::exec_ontop_arg,f2,data+1); output: f1: entered first time: 1 f1: returned first time: 2 f1: entered second time: 3 f1: returned second time: 4 f2: entered: 5 f1: entered third time: -1 The expression ctx(ctx::exec_ontop_arg,f2,data+1) executes f2() on top of context ctx, e.g. an additional stack frame is allocated on top of the context stack (in front of f1()). f2() returns argument -1 that will returned by the second invocation of ctx(data+1) in f1(). Another option is to execute a function on top of the context that throws an exception. struct interrupt { boost::context::execution_context< void > ctx; interrupt( boost::context::execution_context< void > && ctx_) : ctx( std::forward< boost::context::execution_context< void > >( ctx_) ) { } }; boost::context::execution_context<void> f1(boost::context::execution_context<void> ctx) { try { for (;;) { std::cout << "f1()" << std::endl; ctx = ctx(); } } catch (interrupt & e) { std::cout << "f1(): interrupted" << std::endl; ctx = std::move( e.ctx); } return ctx; } boost::context::execution_context<void> f2(boost::context::execution_context<void> ctx) { throw interrupt(std::move(ctx)); return ctx; } boost::context::execution_context< void > ctx(f1); ctx = ctx(); ctx = ctx(); ctx = ctx(boost::context::exec_ontop_arg,f2); output: f1() f1() f1(): interrupted In this example f2() is used to interrupt the for-loop in f1(). Stack destruction On construction of execution_context a stack is allocated. If the context-function returns the stack will be destructed. If the context-function has not yet returned and the destructor of an valid execution_context instance (e.g. execution_context::operator bool() returns true) is called, the stack will be destructed too. allocating control structures on top of stack Allocating control structures on top of the stack requires to allocated the stack_context and create the control structure with placement new before execution_context is created. The user is responsible for destructing the control structure at the top of the stack. // stack-allocator used for (de-)allocating stack fixedsize_stack salloc( 4048); // allocate stack space stack_context sctx( salloc.allocate() ); // reserve space for control structure on top of the stack void * sp = static_cast< char * >( sctx.sp) - sizeof( my_control_structure); std::size_t size = sctx.size - sizeof( my_control_structure); // placement new creates control structure on reserved space my_control_structure * cs = new ( sp) my_control_structure( sp, size, sctx, salloc); ... // destructing the control structure cs->~my_control_structure(); ... struct my_control_structure { // captured context execution_context cctx; template< typename StackAllocator > my_control_structure( void * sp, std::size_t size, stack_context sctx, StackAllocator salloc) : // create captured context cctx( std::allocator_arg, preallocated( sp, size, sctx), salloc, entry_func) { } ... }; inverting the control flow /* * grammar: * P ---> E '\0' * E ---> T {('+'|'-') T} * T ---> S {('*'|'/') S} * S ---> digit | '(' E ')' */ class Parser{ // implementation omitted; see examples directory }; std::istringstream is("1+1"); bool done=false; std::exception_ptr except; // execute parser in new execution context boost::context::execution_context<char> source( [&is,&done,&except](ctx::execution_context<char> sink,char){ // create parser with callback function Parser p( is, [&sink](char ch){ // resume main execution context auto result = sink(ch); sink = std::move(std::get<0>(result)); }); try { // start recursive parsing p.run(); } catch (...) { // store other exceptions in exception-pointer except = std::current_exception(); } // set termination flag done=true; // resume main execution context return sink; }); // user-code pulls parsed data from parser // invert control flow auto result = source('\0'); source = std::move(std::get<0>(result)); char c = std::get<1>(result); if ( except) { std::rethrow_exception(except); } while( ! done) { printf("Parsed: %c\n",c); std::tie(source,c) = source('\0'); if (except) { std::rethrow_exception(except); } } output: Parsed: 1 Parsed: + Parsed: 1 In this example a recursive descent parser uses a callback to emit a newly passed symbol. Using execution_context the control flow can be inverted, e.g. the user-code pulls parsed symbols from the parser - instead to get pushed from the parser (via callback). The data (character) is transferred between the two execution_context. If the code executed by execution_context emits an exception, the application is terminated. std::exception_ptr can be used to transfer exceptions between different execution contexts. Sometimes it is necessary to unwind the stack of an unfinished context to destroy local stack variables so they can release allocated resources (RAII pattern). The user is responsible for this task. Class execution_context struct exec_ontop_arg_t {}; const exec_ontop_arg_t exec_ontop_arg{}; template< typename ... Args > class execution_context { public: template< typename Fn, typename ... Params > execution_context( Fn && fn, Params && ... params); template< typename StackAlloc, typename Fn, typename ... Params > execution_context( std::allocator_arg_t, StackAlloc salloc, Fn && fn, Params && ... params); template< typename StackAlloc, typename Fn, typename ... Params > execution_context( std::allocator_arg_t, preallocated palloc, StackAlloc salloc, Fn && fn, Params && ... params); template< typename Fn, typename ... Params > execution_context( std::allocator_arg_t, segemented_stack, Fn && fn, Params && ... params) = delete; template< typename Fn, typename ... Params > execution_context( std::allocator_arg_t, preallocated palloc, segmented, Fn && fn, Params && ... params)= delete; ~execution_context(); execution_context( execution_context && other) noexcept; execution_context & operator=( execution_context && other) noexcept; execution_context( execution_context const& other) noexcept = delete; execution_context & operator=( execution_context const& other) noexcept = delete; explicit operator bool() const noexcept; bool operator!() const noexcept; std::tuple< execution_context, Args ... > operator()( Args ... args); template< typename Fn > std::tuple< execution_context, Args ... > operator()( exec_ontop_arg_t, Fn && fn, Args ... args); bool operator==( execution_context const& other) const noexcept; bool operator!=( execution_context const& other) const noexcept; bool operator<( execution_context const& other) const noexcept; bool operator>( execution_context const& other) const noexcept; bool operator<=( execution_context const& other) const noexcept; bool operator>=( execution_context const& other) const noexcept; template< typename charT, class traitsT > friend std::basic_ostream< charT, traitsT > & operator<<( std::basic_ostream< charT, traitsT > & os, execution_context const& other); }; Constructor template< typename Fn, typename ... Params > execution_context( Fn && fn, Params && ... params); template< typename StackAlloc, typename Fn, typename ... Params > execution_context( std::allocator_arg_t, StackAlloc salloc, Fn && fn, Params && ... params); template< typename StackAlloc, typename Fn, typename ... Params > execution_context( std::allocator_arg_t, preallocated palloc, StackAlloc salloc, Fn && fn, Params && ... params); Effects: Creates a new execution context and prepares the context to execute fn. fixedsize_stack is used as default stack allocator (stack size == fixedsize_stack::traits::default_size()). The constructor with argument type preallocated, is used to create a user defined data (for instance additional control structures) on top of the stack. Destructor ~execution_context(); Effects: Destructs the associated stack if *this is a valid context, e.g. execution_context::operator bool() returns true. Throws: Nothing. Move constructor execution_context( execution_context && other) noexcept; Effects: Moves underlying capture record to *this. Throws: Nothing. Move assignment operator execution_context & operator=( execution_context && other) noexcept; Effects: Moves the state of other to *this using move semantics. Throws: Nothing. Member function operator bool() explicit operator bool() const noexcept; Returns: true if *this points to a capture record. Throws: Nothing. Member function operator!() bool operator!() const noexcept; Returns: true if *this does not point to a capture record. Throws: Nothing. Member function operator()() std::tuple< execution_context< Args ... >, Args ... > operator()( Args ... args); // member of generic execution_context template execution_context< void > operator()(); // member of execution_context< void > Effects: Stores internally the current context data (stack pointer, instruction pointer, and CPU registers) of the current active context and restores the context data from *this, which implies jumping to *this's context. The arguments, ... args, are passed to the current context to be returned by the most recent call to execution_context::operator() in the same thread. Returns: The tuple of execution_context and returned arguments passed to the most recent call to execution_context::operator(), if any and a execution_context representing the context that has been suspended. Note: The returned execution_context indicates if the suspended context has terminated (return from context-function) via bool operator(). If the returned execution_context has terminated no data are transferred in the returned tuple. Member function operator()() template< typename Fn > std::tuple< execution_context< Args ... >, Args ... > operator()( exec_ontop_arg_t, Fn && fn, Args ... args); // member of generic execution_context template< typename Fn > execution_context< void > operator()( exec_ontop_arg_t, Fn && fn); // member of execution_context< void > Effects: Same as execution_context::operator(). Additionally, function fn is executed in the context of *this (e.g. the stack frame of fn is allocated on stack of *this). Returns: The tuple of execution_context and returned arguments passed to the most recent call to execution_context::operator(), if any and a execution_context representing the context that has been suspended . Note: The tuple of execution_context and returned arguments from fn are passed as arguments to the context-function of resumed context (if the context is entered the first time) or those arguments are returned from execution_context::operator() within the resumed context. Note: Function fn needs to return a tuple of execution_context and arguments (see description). Note: The context calling this function must not be destroyed before the arguments, that will be returned from fn, are preserved at least in the stack frame of the resumed context. Note: The returned execution_context indicates if the suspended context has terminated (return from context-function) via bool operator(). If the returned execution_context has terminated no data are transferred in the returned tuple. Member function operator==() bool operator==( execution_context const& other) const noexcept; Returns: true if *this and other represent the same execution context, false otherwise. Throws: Nothing. Member function operator!=() bool operator!=( execution_context const& other) const noexcept; Returns: ! (other == * this) Throws: Nothing. Member function operator<() bool operator<( execution_context const& other) const noexcept; Returns: true if *this != other is true and the implementation-defined total order of execution_context values places *this before other, false otherwise. Throws: Nothing. Member function operator>() bool operator>( execution_context const& other) const noexcept; Returns: other < * this Throws: Nothing. Member function operator<=() bool operator<=( execution_context const& other) const noexcept; Returns: ! (other < * this) Throws: Nothing. Member function operator>=() bool operator>=( execution_context const& other) const noexcept; Returns: ! (* this < other) Throws: Nothing. Non-member function operator<<() template< typename charT, class traitsT > std::basic_ostream< charT, traitsT > & operator<<( std::basic_ostream< charT, traitsT > & os, execution_context const& other); Efects: Writes the representation of other to stream os. Returns: os
<anchor id="ecv1"/><link linkend="context.ecv1">Class execution_context (version 1)</link> This class is only enabled if property segmented-stacks=on (enables segmented stacks) or compiler flag BOOST_EXECUTION_CONTEXT=1 is specified at b2-commandline. Class execution_context encapsulates context switching and manages the associated context' stack (allocation/deallocation). execution_context allocates the context stack (using its StackAllocator argument) and creates a control structure on top of it. This structure is responsible for managing context' stack. Instances of execution_context, associated with a specific context, share the ownership of the control structure. If the last reference goes out of scope, the control structure is destroyed and the stack gets deallocated via the StackAllocator. execution_context is copy-constructible, move-constructible, copy-assignable and move-assignable. execution_context maintains a static (thread-local) pointer, accessed by execution_context::current(), pointing to the active context. On each context switch the pointer is updated. The usage of this global pointer makes the context switch a little bit slower (due access of thread local storage) but has some advantages. It allows to access the control structure of the current active context from arbitrary code paths required in order to support segmented stacks, which require to call certain maintenance functions (like __splitstack_getcontext() etc.) before each context switch (each context switch exchanges the stack). execution_context expects a function/functor with signature void(void* vp) (vp is the data passed at the first invocation of ecv1::operator()()). usage of execution_context int n=35; boost::context::execution_context sink(boost::context::execution_context::current()); boost::context::execution_context source( [n,&sink](void*)mutable{ int a=0; int b=1; while(n-->0){ sink(&a); auto next=a+b; a=b; b=next; } }); for(int i=0;i<10;++i){ std::cout<<*(int*)source()<<" "; } output: 0 1 1 2 3 5 8 13 21 34 This simple example demonstrates the basic usage of execution_context. The context sink, returned by execution_context::current(), represents the main-context (function main() running) and is one of the captured parameters in the lambda expression. The lambda that calculates the Fibonacci numbers is executed inside the context represented by source. Calculated Fibonacci numbers are transferred between the two context' via expression sink(&a) (and returned by source()). The locale variables a, b and next remain their values during each context switch (yield(a)). This is possible because ctx owns a stack (exchanged by context switch). inverting the control flow /* * grammar: * P ---> E '\0' * E ---> T {('+'|'-') T} * T ---> S {('*'|'/') S} * S ---> digit | '(' E ')' */ class Parser{ // implementation omitted; see examples directory }; std::istringstream is("1+1"); bool done=false; std::exception_ptr except; // create handle to main execution context auto main_ctx(boost::context::execution_context::current()); // execute parser in new execution context boost::context::execution_context source( [&sink,&is,&done,&except](void*){ // create parser with callback function Parser p(is, [&sink](char ch){ // resume main execution context sink(&ch); }); try { // start recursive parsing p.run(); } catch (...) { // store other exceptions in exception-pointer except = std::current_exception(); } // set termination flag done=true; // resume main execution context sink(); }); // user-code pulls parsed data from parser // invert control flow void* vp = source(); if (except) { std::rethrow_exception(except); } while( ! done) { printf("Parsed: %c\n",* static_cast<char*>(vp)); vp = source(); if (except) { std::rethrow_exception(except); } } output: Parsed: 1 Parsed: + Parsed: 1 In this example a recursive descent parser uses a callback to emit a newly passed symbol. Using execution_context the control flow can be inverted, e.g. the user-code pulls parsed symbols from the parser - instead to get pushed from the parser (via callback). The data (character) is transferred between the two execution_context. If the code executed by execution_context emits an exception, the application is terminated. std::exception_ptr can be used to transfer exceptions between different execution contexts. Sometimes it is necessary to unwind the stack of an unfinished context to destroy local stack variables so they can release allocated resources (RAII pattern). The user is responsible for this task. allocating control structures on top of stack Allocating control structures on top of the stack requires to allocated the stack_context and create the control structure with placement new before execution_context is created. The user is responsible for destructing the control structure at the top of the stack. // stack-allocator used for (de-)allocating stack fixedsize_stack salloc( 4048); // allocate stack space stack_context sctx( salloc.allocate() ); // reserve space for control structure on top of the stack void * sp = static_cast< char * >( sctx.sp) - sizeof( my_control_structure); std::size_t size = sctx.size - sizeof( my_control_structure); // placement new creates control structure on reserved space my_control_structure * cs = new ( sp) my_control_structure( sp, size, sctx, salloc); ... // destructing the control structure cs->~my_control_structure(); ... struct my_control_structure { // execution context execution_context ectx; template< typename StackAllocator > my_control_structure( void * sp, std::size_t size, stack_context sctx, StackAllocator salloc) : // create execution context ectx( std::allocator_arg, preallocated( sp, size, sctx), salloc, entry_func) { } ... }; exception handling If the function executed inside a execution_context emits ans exception, the application is terminated by calling std::terminate(). std::exception_ptr can be used to transfer exceptions between different execution contexts. Do not jump from inside a catch block and then re-throw the exception in another execution context. parameter passing The void pointer argument passed to execution_context::operator(), in one context, is passed as the last argument of the context-function if the context is started for the first time. In all following invocations of execution_context::operator() the void pointer passed to execution_context::operator(), in one context, is returned by execution_context::operator() in the other context. class X { private: std::exception_ptr excptr_; boost::context::execution_context caller_; boost::context::execution_context callee_; public: X() : excptr_(), caller_( boost::context::execution_context::current() ), callee_( [=] (void * vp) { try { int i = * static_cast< int * >( vp); std::string str = boost::lexical_cast<std::string>(i); caller_( & str); } catch (std::bad_cast const&) { excptr_=std::current_exception(); } }) {} std::string operator()( int i) { void * ret = callee_( & i); if(excptr_){ std::rethrow_exception(excptr_); } return * static_cast< std::string * >( ret); } }; X x; std::cout << x( 7) << std::endl; output: 7 Class execution_context class execution_context { public: static execution_context current() noexcept; template< typename Fn, typename ... Args > execution_context( Fn && fn, Args && ... args); template< typename StackAlloc, typename Fn, typename ... Args > execution_context( std::allocator_arg_t, StackAlloc salloc, Fn && fn, Args && ... args); template< typename StackAlloc, typename Fn, typename ... Args > execution_context( std::allocator_arg_t, preallocated palloc, StackAlloc salloc, Fn && fn, Args && ... args); execution_context( execution_context const& other) noexcept; execution_context( execution_context && other) noexcept; execution_context & operator=( execution_context const& other) noexcept; execution_context & operator=( execution_context && other) noexcept; explicit operator bool() const noexcept; bool operator!() const noexcept; void * operator()( void * vp = nullptr); template< typename Fn > void * operator()( exec_ontop_arg_t, Fn && fn, void * vp = nullptr); bool operator==( execution_context const& other) const noexcept; bool operator!=( execution_context const& other) const noexcept; bool operator<( execution_context const& other) const noexcept; bool operator>( execution_context const& other) const noexcept; bool operator<=( execution_context const& other) const noexcept; bool operator>=( execution_context const& other) const noexcept; template< typename charT, class traitsT > friend std::basic_ostream< charT, traitsT > & operator<<( std::basic_ostream< charT, traitsT > & os, execution_context const& other); }; Static member function current() static execution_context current() noexcept; Returns: Returns an instance of excution_context pointing to the active execution context. Throws: Nothing. Constructor template< typename Fn, typename ... Args > execution_context( Fn && fn, Args && ... args); template< typename StackAlloc, typename Fn, typename ... Args > execution_context( std::allocator_arg_t, StackAlloc salloc, Fn && fn, Args && ... args); template< typename StackAlloc, typename Fn, typename ... Args > execution_context( std::allocator_arg_t, preallocated palloc, StackAlloc salloc, Fn && fn, Args && ... args); Effects: Creates a new execution context and prepares the context to execute fn. fixedsize_stack is used as default stack allocator (stack size == fixedsize_stack::traits::default_size()). The constructor with argument type preallocated, is used to create a user defined data (for instance additional control structures) on top of the stack. Copy constructor execution_context( execution_context const& other) noexcept; Effects: Copies other, e.g. underlying control structure is shared with *this. Throws: Nothing. Move constructor execution_context( execution_context && other) noexcept; Effects: Moves underlying control structure to *this. Throws: Nothing. Copy assignment operator execution_context & operator=( execution_context const& other) noexcept; Effects: Copies the state of other to *this, control structure is shared. Throws: Nothing. Move assignment operator execution_context & operator=( execution_context && other) noexcept; Effects: Moves the control structure of other to *this using move semantics. Throws: Nothing. Member function operator bool() explicit operator bool() const noexcept; Returns: true if *this points to a control structure. Throws: Nothing. Member function operator!() bool operator!() const noexcept; Returns: true if *this does not point to a control structure. Throws: Nothing. Member function operator()() void * operator()( void * vp = nullptr) noexcept; Effects: Stores internally the current context data (stack pointer, instruction pointer, and CPU registers) of the current active context and restores the context data from *this, which implies jumping to *this's context. The void pointer argument, vp, is passed to the current context to be returned by the most recent call to execution_context::operator() in the same thread. fn is executed with arguments args on top of the stack of this. Note: The behaviour is undefined if operator()() is called while execution_context::current() returns *this (e.g. resuming an already running context). If the top-level context function returns, std::exit() is called. Returns: The void pointer argument passed to the most recent call to execution_context::operator(), if any. Member function operator(exec_ontop_arg_t)() template< typename Fn > void * operator()( exec_ontop_arg_t, Fn && fn, void * vp = nullptr); Effects: Same as execution_context::operator(). Additionally, function fn is executed with arguments vp in the context of *this (e.g. the stack frame of fn is allocated on stack of *this). Returns: The void pointer argument passed to the most recent call to execution_context::operator(), if any. Member function operator==() bool operator==( execution_context const& other) const noexcept; Returns: true if *this and other represent the same execution context, false otherwise. Throws: Nothing. Member function operator!=() bool operator!=( execution_context const& other) const noexcept; Returns: ! (other == * this) Throws: Nothing. Member function operator<() bool operator<( execution_context const& other) const noexcept; Returns: true if *this != other is true and the implementation-defined total order of execution_context values places *this before other, false otherwise. Throws: Nothing. Member function operator>() bool operator>( execution_context const& other) const noexcept; Returns: other < * this Throws: Nothing. Member function operator<=() bool operator<=( execution_context const& other) const noexcept; Returns: ! (other < * this) Throws: Nothing. Member function operator>=() bool operator>=( execution_context const& other) const noexcept; Returns: ! (* this < other) Throws: Nothing. Non-member function operator<<() template< typename charT, class traitsT > std::basic_ostream< charT, traitsT > & operator<<( std::basic_ostream< charT, traitsT > & os, execution_context const& other); Efects: Writes the representation of other to stream os. Returns: os
<anchor id="stack"/><link linkend="context.stack">Stack allocation</link> The memory used by the stack is allocated/deallocated via a StackAllocator which is required to model a stack-allocator concept. stack-allocator concept A StackAllocator must satisfy the stack-allocator concept requirements shown in the following table, in which a is an object of a StackAllocator type, sctx is a stack_context, and size is a std::size_t: expression return type notes a(size) creates a stack allocator a.allocate() stack_context creates a stack a.deallocate( sctx) void deallocates the stack created by a.allocate() The implementation of allocate() might include logic to protect against exceeding the context's available stack size rather than leaving it as undefined behaviour. Calling deallocate() with a stack_context not set by allocate() results in undefined behaviour. The stack is not required to be aligned; alignment takes place inside execution_context. Depending on the architecture allocate() stores an address from the top of the stack (growing downwards) or the bottom of the stack (growing upwards).
<link linkend="context.stack.protected_fixedsize">Class <emphasis>protected_fixedsize</emphasis></link> Boost.Context provides the class protected_fixedsize_stack which models the stack-allocator concept. It appends a guard page at the end of each stack to protect against exceeding the stack. If the guard page is accessed (read or write operation) a segmentation fault/access violation is generated by the operating system. Using protected_fixedsize_stack is expensive. That is, launching a new coroutine with a new stack is expensive; the allocated stack is just as efficient to use as any other stack. The appended guard page is not mapped to physical memory, only virtual addresses are used. #include <boost/context/protected_fixedsize.hpp> template< typename traitsT > struct basic_protected_fixedsize { typedef traitT traits_type; basic_protected_fixesize(std::size_t size = traits_type::default_size()); stack_context allocate(); void deallocate( stack_context &); } typedef basic_protected_fixedsize< stack_traits > protected_fixedsize stack_context allocate() Preconditions: traits_type::minimum:size() <= size and ! traits_type::is_unbounded() && ( traits_type::maximum:size() >= size). Effects: Allocates memory of at least size Bytes and stores a pointer to the stack and its actual size in sctx. Depending on the architecture (the stack grows downwards/upwards) the stored address is the highest/lowest address of the stack. void deallocate( stack_context & sctx) Preconditions: sctx.sp is valid, traits_type::minimum:size() <= sctx.size and ! traits_type::is_unbounded() && ( traits_type::maximum:size() >= sctx.size). Effects: Deallocates the stack space.
<link linkend="context.stack.pooled_fixedsize">Class <emphasis>pooled_fixedsize_stack</emphasis></link> Boost.Context provides the class pooled_fixedsize_stack which models the stack-allocator concept. In contrast to protected_fixedsize_stack it does not append a guard page at the end of each stack. The memory is managed internally by boost::pool<>. #include <boost/context/pooled_fixedsize_stack.hpp> template< typename traitsT > struct basic_pooled_fixedsize_stack { typedef traitT traits_type; basic_pooled_fixedsize_stack(std::size_t stack_size = traits_type::default_size(), std::size_t next_size = 32, std::size_t max_size = 0); stack_context allocate(); void deallocate( stack_context &); } typedef basic_pooled_fixedsize_stack< stack_traits > pooled_fixedsize_stack; basic_pooled_fixedsize_stack(std::size_t stack_size, std::size_t next_size, std::size_t max_size) Preconditions: ! traits_type::is_unbounded() && ( traits_type::maximum:size() >= stack_size) and 0 < nest_size. Effects: Allocates memory of at least stack_size Bytes and stores a pointer to the stack and its actual size in sctx. Depending on the architecture (the stack grows downwards/upwards) the stored address is the highest/lowest address of the stack. Argument next_size determines the number of stacks to request from the system the first time that *this needs to allocate system memory. The third argument max_size controls how many memory might be allocated for stacks - a value of zero means no uper limit. stack_context allocate() Preconditions: ! traits_type::is_unbounded() && ( traits_type::maximum:size() >= stack_size). Effects: Allocates memory of at least stack_size Bytes and stores a pointer to the stack and its actual size in sctx. Depending on the architecture (the stack grows downwards/upwards) the stored address is the highest/lowest address of the stack. void deallocate( stack_context & sctx) Preconditions: sctx.sp is valid, ! traits_type::is_unbounded() && ( traits_type::maximum:size() >= sctx.size). Effects: Deallocates the stack space.
<link linkend="context.stack.fixedsize">Class <emphasis>fixedsize_stack</emphasis></link> Boost.Context provides the class fixedsize_stack which models the stack-allocator concept. In contrast to protected_fixedsize_stack it does not append a guard page at the end of each stack. The memory is simply managed by std::malloc() and std::free(). #include <boost/context/fixedsize_stack.hpp> template< typename traitsT > struct basic_fixedsize_stack { typedef traitT traits_type; basic_fixesize_stack(std::size_t size = traits_type::default_size()); stack_context allocate(); void deallocate( stack_context &); } typedef basic_fixedsize_stack< stack_traits > fixedsize_stack; stack_context allocate() Preconditions: traits_type::minimum:size() <= size and ! traits_type::is_unbounded() && ( traits_type::maximum:size() >= size). Effects: Allocates memory of at least size Bytes and stores a pointer to the stack and its actual size in sctx. Depending on the architecture (the stack grows downwards/upwards) the stored address is the highest/lowest address of the stack. void deallocate( stack_context & sctx) Preconditions: sctx.sp is valid, traits_type::minimum:size() <= sctx.size and ! traits_type::is_unbounded() && ( traits_type::maximum:size() >= sctx.size). Effects: Deallocates the stack space.
<link linkend="context.stack.segmented">Class <emphasis>segmented_stack</emphasis></link> Boost.Context supports usage of a segmented_stack, e. g. the size of the stack grows on demand. The coroutine is created with a minimal stack size and will be increased as required. Class segmented_stack models the stack-allocator concept. In contrast to protected_fixedsize_stack and fixedsize_stack it creates a stack which grows on demand. Segmented stacks are currently only supported by gcc from version 4.7 clang from version 3.4 onwards. In order to use a __segmented_stack__ Boost.Context must be built with property segmented-stacks, e.g. toolset=gcc segmented-stacks=on at b2/bjam command line. #include <boost/context/segmented_stack.hpp> template< typename traitsT > struct basic_segmented_stack { typedef traitT traits_type; basic_segmented_stack(std::size_t size = traits_type::default_size()); stack_context allocate(); void deallocate( stack_context &); } typedef basic_segmented_stack< stack_traits > segmented_stack; stack_context allocate() Preconditions: traits_type::minimum:size() <= size and ! traits_type::is_unbounded() && ( traits_type::maximum:size() >= size). Effects: Allocates memory of at least size Bytes and stores a pointer to the stack and its actual size in sctx. Depending on the architecture (the stack grows downwards/upwards) the stored address is the highest/lowest address of the stack. void deallocate( stack_context & sctx) Preconditions: sctx.sp is valid, traits_type::minimum:size() <= sctx.size and ! traits_type::is_unbounded() && ( traits_type::maximum:size() >= sctx.size). Effects: Deallocates the stack space. If the library is compiled for segmented stacks, __segmented_stack__ is the only available stack allocator.
<link linkend="context.stack.stack_traits">Class <emphasis>stack_traits</emphasis></link> stack_traits models a stack-traits providing a way to access certain properites defined by the enironment. Stack allocators use stack-traits to allocate stacks. #include <boost/context/stack_traits.hpp> struct stack_traits { static bool is_unbounded() noexcept; static std::size_t page_size() noexcept; static std::size_t default_size() noexcept; static std::size_t minimum_size() noexcept; static std::size_t maximum_size() noexcept; } static bool is_unbounded() Returns: Returns true if the environment defines no limit for the size of a stack. Throws: Nothing. static std::size_t page_size() Returns: Returns the page size in bytes. Throws: Nothing. static std::size_t default_size() Returns: Returns a default stack size, which may be platform specific. If the stack is unbounded then the present implementation returns the maximum of 64 kB and minimum_size(). Throws: Nothing. static std::size_t minimum_size() Returns: Returns the minimum size in bytes of stack defined by the environment (Win32 4kB/Win64 8kB, defined by rlimit on POSIX). Throws: Nothing. static std::size_t maximum_size() Preconditions: is_unbounded() returns false. Returns: Returns the maximum size in bytes of stack defined by the environment. Throws: Nothing.
<link linkend="context.stack.stack_context">Class <emphasis>stack_context</emphasis></link> Boost.Context provides the class stack_context which will contain the stack pointer and the size of the stack. In case of a segmented_stack, stack_context contains some extra control structures. struct stack_context { void * sp; std::size_t size; // might contain additional control structures // for segmented stacks } void * sp Value: Pointer to the beginning of the stack. std::size_t size Value: Actual size of the stack.
<link linkend="context.stack.valgrind">Support for valgrind</link> Running programs that switch stacks under valgrind causes problems. Property (b2 command-line) valgrind=on let valgrind treat the memory regions as stack space which suppresses the errors.
<link linkend="context.struct__preallocated_">Struct <code><phrase role="identifier">preallocated</phrase></code></link> struct preallocated { void * sp; std::size_t size; stack_context sctx; preallocated( void * sp, std:size_t size, stack_allocator sctx) noexcept; }; Constructor preallocated( void * sp, std:size_t size, stack_allocator sctx) noexcept; Effects: Creates an object of preallocated.
<link linkend="context.performance">Performance</link> Performance of Boost.Context was measured on the platforms shown in the following table. Performance measurements were taken using rdtsc and boost::chrono::high_resolution_clock, with overhead corrections, on x86 platforms. In each case, cache warm-up was accounted for, and the one running thread was pinned to a single CPU. The code was compiled using the build options, 'variant = release cxxflags = -DBOOST_DISABLE_ASSERTS'. Performance of context switch Platform ucontext_t execution_context (v1) execution_context (v2) x86_64 Intel Core2 Q6700 547 ns / 1433 cycles 51 ns / 141 cycles 7 ns / 18 cycles
<link linkend="context.architectures">Architectures</link> Boost.Context supports following architectures: Supported architectures (<ABI|binary format>) Architecture LINUX (UNIX) Windows MacOS X iOS arm (aarch32) AAPCS|ELF AAPCS|PE - AAPCS|MACH-O arm (aarch64) AAPCS|ELF - - AAPCS|MACH-O i386 SYSV|ELF MS|PE SYSV|MACH-O - mips1 O32|ELF - - - ppc32 SYSV|ELF,XCOFF - SYSV|MACH-O - ppc64 SYSV|ELF,XCOFF - SYSV|MACH-O - sparc - - - - x86_64 SYSV,X32|ELF MS|PE SYSV|MACH-O -
<link linkend="context.architectures.crosscompiling">Cross compiling</link> Cross compiling the library requires to specify the build properties <architecture>, <address-model>, <binary-format> and <abi> at b2 command line.
<link linkend="context.rationale">Rationale</link> No inline-assembler Some newer compiler (for instance MSVC 10 for x86_64 and itanium) do not support inline assembler. MSDN article 'Inline Assembler' . Inlined assembler generates code bloating which is not welcome on embedded systems. fcontext_t Boost.Context provides the low level API fcontext_t which is implemented in assembler to provide context swapping operations. fcontext_t is the part to port to new platforms. Context switches do not preserve the signal mask on UNIX systems. fcontext_t is an opaque pointer.
<link linkend="context.rationale.other_apis_">Other APIs </link> setjmp()/longjmp() C99 defines setjmp()/longjmp() to provide non-local jumps but it does not require that longjmp() preserves the current stack frame. Therefore, jumping into a function which was exited via a call to longjmp() is undefined ISO/IEC 9899:1999, 2005, 7.13.2.1:2 . ucontext_t Since POSIX.1-2003 ucontext_t is deprecated and was removed in POSIX.1-2008! The function signature of makecontext() is: void makecontext(ucontext_t *ucp, void (*func)(), int argc, ...); The third argument of makecontext() specifies the number of integer arguments that follow which will require function pointer cast if func will accept those arguments which is undefined in C99 ISO/IEC 9899:1999, 2005, J.2 . The arguments in the var-arg list are required to be integers, passing pointers in var-arg list is not guaranteed to work, especially it will fail for architectures where pointers are larger than integers. ucontext_t preserves signal mask between context switches which involves system calls consuming a lot of CPU cycles (ucontext_t is slower by perfomance_link[factor 13x] relative to fcontext_t). Windows fibers A drawback of Windows Fiber API is that CreateFiber() does not accept a pointer to user allocated stack space preventing the reuse of stacks for other context instances. Because the Windows Fiber API requires to call ConvertThreadToFiber() if SwitchFiber() is called for a thread which has not been converted to a fiber. For the same reason ConvertFiberToThread() must be called after return from SwitchFiber() if the thread was forced to be converted to a fiber before (which is inefficient). if ( ! is_a_fiber() ) { ConvertThreadToFiber( 0); SwitchToFiber( ctx); ConvertFiberToThread(); } If the condition _WIN32_WINNT >= _WIN32_WINNT_VISTA is met function IsThreadAFiber() is provided in order to detect if the current thread was already converted. Unfortunately Windows XP + SP 2/3 defines _WIN32_WINNT >= _WIN32_WINNT_VISTA without providing IsThreadAFiber().
<link linkend="context.rationale.x86_and_floating_point_env">x86 and floating-point env</link> i386 "The FpCsr and the MxCsr register must be saved and restored before any call or return by any procedure that needs to modify them ..." 'Calling Conventions', Agner Fog . x86_64 Windows MxCsr - "A callee that modifies any of the non-volatile fields within MxCsr must restore them before returning to its caller. Furthermore, a caller that has modified any of these fields must restore them to their standard values before invoking a callee ..." MSDN article 'MxCsr' . FpCsr - "A callee that modifies any of the fields within FpCsr must restore them before returning to its caller. Furthermore, a caller that has modified any of these fields must restore them to their standard values before invoking a callee ..." MSDN article 'FpCsr' . "The MMX and floating-point stack registers (MM0-MM7/ST0-ST7) are preserved across context switches. There is no explicit calling convention for these registers." MSDN article 'Legacy Floating-Point Support' . "The 64-bit Microsoft compiler does not use ST(0)-ST(7)/MM0-MM7". 'Calling Conventions', Agner Fog . "XMM6-XMM15 must be preserved" MSDN article 'Register Usage' SysV "The control bits of the MxCsr register are callee-saved (preserved across calls), while the status bits are caller-saved (not preserved). The x87 status word register is caller-saved, whereas the x87 control word (FpCsr) is callee-saved." SysV ABI AMD64 Architecture Processor Supplement Draft Version 0.99.4, 3.2.1 .
<link linkend="context.reference">Reference</link> ARM AAPCS ABI: Procedure Call Standard for the ARM Architecture AAPCS/LINUX: ARM GNU/Linux Application Binary Interface Supplement MIPS O32 ABI: SYSTEM V APPLICATION BINARY INTERFACE, MIPS RISC Processor Supplement PowerPC32 SYSV ABI: SYSTEM V APPLICATION BINARY INTERFACE PowerPC Processor Supplement PowerPC64 SYSV ABI: PowerPC User Instruction Set Architecture, Book I X86-32 SYSV ABI: SYSTEM V APPLICATION BINARY INTERFACE, Intel386TM Architecture Processor Supplement MS PE: Calling Conventions X86-64 SYSV ABI: System V Application Binary Interface, AMD64 Architecture Processor Supplement MS PE: x64 Software Conventions
<link linkend="context.acknowledgements">Acknowledgments</link> I'd like to thank Adreas Fett, Artyom Beilis, Daniel Larimer, David Deakins, Evgeny Shapovalov, Fernando Pelliccioni, Giovanni Piero Deretta, Gordon Woodhull, Helge Bahmann, Holger Grund, Jeffrey Lee Hellrung (Jr.), Keith Jeffery, Martin Husemann, Phil Endecott, Robert Stewart, Sergey Cheban, Steven Watanabe, Vicente J. Botet Escriba, Wayne Piekarski.