# ArangoDB Server LDAP Options {% hint 'info' %} This feature is only available in the [**Enterprise Edition**](https://www.arangodb.com/why-arangodb/arangodb-enterprise/) {% endhint %} ## Basics Concepts The basic idea is that one can keep the user authentication setup for an ArangoDB instance (single or cluster) outside of ArangoDB in an LDAP server. A crucial feature of this is that one can add and withdraw users and permissions by only changing the LDAP server and in particular without touching the ArangoDB instance. Changes will be effective in ArangoDB within a few minutes. Since there are many different possible LDAP setups, we must support a variety of possibilities for authentication and authorization. Here is a short overview: To map ArangoDB user names to LDAP users there are two authentication methods called "simple" and "search". In the "simple" method the LDAP bind user is derived from the ArangoDB user name by prepending a prefix and appending a suffix. For example, a user "alice" could be mapped to the distinguished name `uid=alice,dc=arangodb,dc=com` to perform the LDAP bind and authentication. See [Simple authentication method](#simple-authentication-method) below for details and configuration options. In the "search" method there are two phases. In Phase 1 a generic read-only admin LDAP user account is used to bind to the LDAP server first and search for an LDAP user matching the ArangoDB user name. In Phase 2, the actual authentication is then performed against the LDAP user that was found in phase 1. Both methods are sensible and are recommended to use in production. See [Search authentication method](#search-authentication-method) below for details and configuration options. Once the user is authenticated, there are now two methods for authorization: (a) "roles attribute" and (b) "roles search". In method (a) ArangoDB acquires a list of roles the authenticated LDAP user has from the LDAP server. The actual access rights to databases and collections for these roles are configured in ArangoDB itself. The user effectively has the union of all access rights of all roles he has. This method is probably the most common one for production use cases. It combines the advantages of managing users and roles outside of ArangoDB in the LDAP server with the fine grained access control within ArangoDB for the individual roles. See [Roles attribute](#roles-attribute) below for details about method (a) and for the associated configuration options. Method (b) is very similar and only differs from (a) in the way the actual list of roles of a user is derived from the LDAP server. See [Roles search](#roles-search) below for details about method (b) and for the associated configuration options. Fundamental options ------------------- The fundamental options for specifying how to access the LDAP server are the following: - `--ldap.enabled` this is a boolean option which must be set to `true` to activate the LDAP feature - `--ldap.server` is a string specifying the host name or IP address of the LDAP server - `--ldap.port` is an integer specifying the port the LDAP server is running on, the default is *389* - `--ldap.basedn` specifies the base distinguished name under which the search takes place (can alternatively be set via `--ldap.url`) - `--ldap.binddn` and `--ldap.bindpasswd` are distinguished name and password for a read-only LDAP user to which ArangoDB can bind to search the LDAP server. Note that it is necessary to configure these for both the "simple" and "search" authentication methods, since even in the "simple" method, ArangoDB occasionally has to refresh the authorization information from the LDAP server even if the user session persists and no new authentication is needed! It is, however, allowed to leave both empty, but then the LDAP server must be readable with anonymous access. - `--ldap.refresh-rate` is a floating point value in seconds. The default is 300, which means that ArangoDB will refresh the authorization information for authenticated users after at most 5 minutes. This means that changes in the LDAP server like removed users or added or removed roles for a user will be effective after at most 5 minutes. Note that the `--ldap.server` and `--ldap.port` options can alternatively be specified in the `--ldap.url` string together with other configuration options. For details see Section "LDAP URLs" below. Here is an example on how to configure the connection to the LDAP server, with anonymous bind: --ldap.enabled=true \ --ldap.server=ldap.arangodb.com \ --ldap.basedn=dc=arangodb,dc=com With this configuration ArangoDB binds anonymously to the LDAP server on host `ldap.arangodb.com` on the default port 389 and executes all searches under the base distinguished name `dc=arangodb,dc=com`. If we need a user to read in LDAP here is the example for it: --ldap.enabled=true \ --ldap.server=ldap.arangodb.com \ --ldap.basedn=dc=arangodb,dc=com \ --ldap.binddn=uid=arangoadmin,dc=arangodb,dc=com \ --ldap.bindpasswd=supersecretpassword The connection is identical but the searches will be executed with the given distinguished name in `binddn`. Note here: The given user (or the anonymous one) needs at least read access on all user objects to find them and in the case of Roles search also read access on the objects storing the roles. Up to this point ArangoDB can now connect to a given LDAP server but it is not yet able to authenticate users properly with it. For this pick one of the following two authentication methods. ### LDAP URLs As an alternative one can specify the values of multiple LDAP related configuration options by specifying a single LDAP URL. Here is an example: --ldap.url ldap://ldap.arangodb.com:1234/dc=arangodb,dc=com?uid?sub This one option has the combined effect of setting the following: --ldap.server=ldap.arangodb.com \ --ldap.port=1234 \ --ldap.basedn=dc=arangodb,dc=com \ --ldap.searchAttribute=uid \ --ldap.searchScope=sub That is, the LDAP URL consists of the LDAP *server* and *port*, a *basedn*, a *search attribute* and a *scope* which can be one of *base*, *one* or *sub*. There is also the possibility to use the `ldaps` protocol as in: --ldap.url ldaps://ldap.arangodb.com:636/dc=arangodb,dc=com?uid?sub This does exactly the same as the one above, except that it uses the LDAP over TLS protocol. This is a non-standard method which does not involve using the STARTTLS protocol. Note that this does not work in the Windows version! We suggest to use the `ldap` protocol and STARTTLS as described in the next section. ### TLS options {% hint 'warning' %} TLS is not supported in the Windows version of ArangoDB! {% endhint %} To configure the usage of encrypted TLS to communicate with the LDAP server the following options are available: - `--ldap.tls`: the main switch to active TLS. can either be `true` (use TLS) or `false` (do not use TLS). It is switched off by default. If you switch this on and do not use the `ldaps` protocol via the [LDAP URL](#ldap-urls), then ArangoDB will use the `STARTTLS` protocol to initiate TLS. This is the recommended approach. - `--ldap.tls-version`: the minimal TLS version that ArangoDB should accept. Available versions are `1.0`, `1.1` and `1.2`. The default is `1.2`. If your LDAP server does not support Version 1.2, you have to change this setting. - `--ldap.tls-cert-check-strategy`: strategy to validate the LDAP server certificate. Available strategies are `never`, `hard`, `demand`, `allow` and `try`. The default is `hard`. - `--ldap.tls-cacert-file`: a file path to one or more (concatenated) certificate authority certificates in PEM format. As default no file path is configured. This certificate is used to validate the server response. - `--ldap.tls-cacert-dir`: a directory path to certificate authority certificates in [c_rehash](https://www.openssl.org/docs/man1.0.2/apps/c_rehash.html) format. As default no directory path is configured. Assuming you have the TLS CAcert file that is given to the server at `/path/to/certificate.pem`, here is an example on how to configure TLS: --ldap.tls true \ --ldap.tls-cacert-file /path/to/certificate.pem You can use TLS with any of the following authentication mechanisms. ### Esoteric options The following options can be used to configure advanced options for LDAP connectivity: - `--ldap.serialized`: whether or not calls into the underlying LDAP library should be serialized. This option can be used to work around thread-unsafe LDAP library functionality. - `--ldap.serialize-timeout`: sets the timeout value that is used when waiting to enter the LDAP library call serialization lock. This is only meaningful when `--ldap.serialized` has been set to `true`. - `--ldap.retries`: number of tries to attempt a connection. Setting this to values greater than one will make ArangoDB retry to contact the LDAP server in case no connection can be made initially. Please note that some of the following options are platform-specific and may not work with all LDAP servers reliably: - `--ldap.restart`: whether or not the LDAP library should implicitly restart connections - `--ldap.referrals`: whether or not the LDAP library should implicitly chase referrals The following options can be used to adjust the LDAP configuration on Linux and MacOS platforms only, but will not work on Windows: - `--ldap.debug`: turn on internal OpenLDAP library output (warning: will print to stdout). - `--ldap.timeout`: timeout value (in seconds) for synchronous LDAP API calls (a value of 0 means default timeout). - `--ldap.network-timeout`: timeout value (in seconds) after which network operations following the initial connection return in case of no activity (a value of 0 means default timeout). - `--ldap.async-connect`: whether or not the connection to the LDAP library will be done asynchronously. ## Authentication methods In order to authenticate users in LDAP we have two options available. We need to pick exactly one them. ### Simple authentication method The simple authentication method is used if and only if both the `--ldap.prefix` and `--ldap.suffix` configuration options are specified and are non-empty. In all other cases the ["search" authentication method](#search-authentication-method) is used. In the "simple" method the LDAP bind user is derived from the ArangoDB user name by prepending the value of the `--ldap.prefix` configuration option and by appending the value of the `--ldap.suffix` configuration option. For example, an ArangoDB user "alice" would be mapped to the distinguished name `uid=alice,dc=arangodb,dc=com` to perform the LDAP bind and authentication, if `--ldap.prefix` is set to `uid=` and `--ldap.suffix` is set to `,dc=arangodb,dc=com`. ArangoDB binds to the LDAP server and authenticates with the distinguished name and the password provided by the client. If the LDAP server successfully verifies the password then the user is authenticated. If you want to use this method add the following example to your ArangoDB configuration together with the fundamental configuration: --ldap.prefix uid= \ --ldap.suffix ,dc=arangodb,dc=com This method will authenticate an LDAP user with the distinguished name `{PREFIX}{USERNAME}{SUFFIX}`, in this case for the arango user `alice` it will search for: `uid=alice,dc=arangodb,dc=com`. This distinguished name will be used as `{{USER}}` for the roles later on. ### Search authentication method The search authentication method is used if at least one of the two options `--ldap.prefix` and `--ldap.suffix` is empty or not specified. ArangoDB uses the LDAP user credentials given by the `--ldap.binddn` and `--ldap.bindpasswd` to perform a search for LDAP users. In this case, the values of the options `--ldap.basedn`, `--ldap.search-attribute`, `--ldap.search-filter` and `--ldap.search-scope` are used in the following way: - `--ldap.search-scope` is an LDAP search scope with possible values `base` (just search the base distinguished name), `sub` (recursive search under the base distinguished name) or `one` (search the base's immediate children) (default: `sub`) - `--ldap.search-filter` is an LDAP filter expression which limits the set of LDAP users being considered (default: `objectClass=*` which means all objects) - `--ldap.search-attribute` specifies the attribute in the user objects which is used to match the ArangoDB user name (default: `uid`) Here is an example on how to configure the search method. Assume we have users like the following stored in LDAP: dn: uid=alice,dc=arangodb,dc=com uid: alice objectClass: inetOrgPerson objectClass: organizationalPerson objectClass: top objectClass: person Where `uid` is the username used in ArangoDB, and we only search for objects of type `person` then we can add the following to our fundamental LDAP configuration: --ldap.search-attribute=uid \ --ldap.search-filter=objectClass=person This will use the `sub` search scope by default and will find all `person` objects where the `uid` is equal to the given username. From these the `dn` will be extracted and used as `{{USER}}` in the roles later on. ## Fetching roles for a user After authentication, the next step is to derive authorization information from the authenticated LDAP user. In order to fetch the roles and thereby the access rights for a user we again have two possible options and need to pick one of them. We can combine each authentication method with each role method. In any case a user can have no role or more than one. If a user has no role the user will not get any access to ArangoDB at all. If a user has multiple roles with different rights then the rights will be combined and the `strongest` right will win. Example: - `alice` has the roles `project-a` and `project-b`. - `project-a` has no access to collection `BData`. - `project-b` has `rw` access to collection `BData`, - hence `alice` will have `rw` on `BData`. Note that the actual database and collection access rights will be configured in ArangoDB itself by roles in the users module. The role name is always prefixed with `:role:`, e.g.: `:role:project-a` and `:role:project-b` respectively. You can use the normal user permissions tools in the Web interface or `arangosh` to configure these. ### Roles attribute The most important method for this is to read off the roles an LDAP user is associated with from an attribute in the LDAP user object. If the configuration option --ldap.roles-attribute-name configuration option is set, then the value of that option is the name of the attribute being used. Here is the example to add to the overall configuration: --ldap.roles-attribute-name=role If we have the user stored like the following in LDAP: dn: uid=alice,dc=arangodb,dc=com uid: alice objectClass: inetOrgPerson objectClass: organizationalPerson objectClass: top objectClass: person role: project-a role: project-b Then the request will grant the roles `project-a` and `project-b` for the user `alice` after successful authentication, as they are stored within the `role` on the user object. ### Roles search An alternative method for authorization is to conduct a search in the LDAP server for LDAP objects representing roles a user has. If the configuration option --ldap.roles-search= is given, then the string `{USER}` in `` is replaced with the distinguished name of the authenticated LDAP user and the resulting search expression is used to match distinguished names of LDAP objects representing roles of that user. Example: --ldap.roles-search '(&(objectClass=groupOfUniqueNames)(uniqueMember={USER}))' After a LDAP user was found and authenticated as described in the authentication section above the `{USER}` in the search expression will be replaced by its distinguished name, e.g. `uid=alice,dc=arangodb,dc=com`, and thus with the above search expression the actual search expression would end up being: (&(objectClass=groupOfUniqueNames)(uniqueMember=uid=alice,dc=arangodb,dc=com})) This search will find all objects of `groupOfUniqueNames` where at least one `uniqueMember` has the `dn` of `alice`. The list of results of that search would be the list of roles given by the values of the `dn` attributes of the found role objects. ### Role transformations and filters For both of the above authorization methods there are further configuration options to tune the role lookup. In this section we describe these further options: - `--ldap.roles-include` can be used to specify a regular expression that is used to filter roles. Only roles that match the regular expression are used. - `--ldap.roles-exclude` can be used to specify a regular expression that is used to filter roles. Only roles that do not match the regular expression are used. - `--ldap.roles-transformation` can be used to specify a regular expression and replacement text as `/re/text/`. This regular expression is applied to the role name found. This is especially useful in the roles-search variant to extract the real role name out of the `dn` value. - `--ldap.superuser-role` can be used to specify the role associated with the superuser. Any user belonging to this role gains superuser status. This role is checked after applying the roles-transformation expression. Example: --ldap.roles-include "^arangodb" will only consider roles that start with `arangodb`. --ldap.roles-exclude=disabled will only consider roles that do contain the word `disabled`. --ldap.superuser-role "arangodb-admin" anyone belonging to the group "arangodb-admin" will become a superuser. The roles-transformation deserves a larger example. Assume we are using roles search and have stored roles in the following way: dn: cn=project-a,dc=arangodb,dc=com objectClass: top objectClass: groupOfUniqueNames uniqueMember: uid=alice,dc=arangodb,dc=com uniqueMember: uid=bob,dc=arangodb,dc=com cn: project-a description: Internal project A dn: cn=project-b,dc=arangodb,dc=com objectClass: top objectClass: groupOfUniqueNames uniqueMember: uid=alice,dc=arangodb,dc=com uniqueMember: uid=charlie,dc=arangodb,dc=com cn: project-b description: External project B In this case we will find `cn=project-a,dc=arangodb,dc=com` as one role of `alice`. However we actually want to configure a role name: `:role:project-a` which is easier to read and maintain for our administrators. If we now apply the following transformation: --ldap.roles-transformation=/^cn=([^,]*),.*$/$1/ The regex will extract out `project-a` resp. `project-b` of the `dn` attribute. In combination with the `superuser-role` we could make all `project-a` members arangodb admins by using: --ldap.roles-transformation=/^cn=([^,]*),.*$/$1/ \ --ldap.superuser-role=project-a ## Complete configuration examples In this section we would like to present complete examples for a successful LDAP configuration of ArangoDB. All of the following are just combinations of the details described above. **Simple authentication with role-search, using anonymous LDAP user** This example connects to the LDAP server with an anonymous read-only user. We use the simple authentication mode (`prefix` + `suffix`) to authenticate users and apply a role search for `groupOfUniqueNames` objects where the user is a `uniqueMember`. Furthermore we extract only the `cn` out of the distinguished role name. --ldap.enabled=true \ --ldap.server=ldap.arangodb.com \ --ldap.basedn=dc=arangodb,dc=com \ --ldap.prefix uid= \ --ldap.suffix ,dc=arangodb,dc=com \ --ldap.roles-search '(&(objectClass=groupOfUniqueNames)(uniqueMember={USER}))' \ --ldap.roles-transformation=/^cn=([^,]*),.*$/$1/ \ --ldap.superuser-role=project-a **Search authentication with roles attribute using LDAP admin user having TLS enabled** This example connects to the LDAP server with a given distinguished name of an admin user + password. Furthermore we activate TLS and give the certificate file to validate server responses. We use the search authentication searching for the `uid` attribute of `person` objects. These `person` objects have `role` attribute(s) containing the role(s) of a user. --ldap.enabled=true \ --ldap.server=ldap.arangodb.com \ --ldap.basedn=dc=arangodb,dc=com \ --ldap.binddn=uid=arangoadmin,dc=arangodb,dc=com \ --ldap.bindpasswd=supersecretpassword \ --ldap.tls true \ --ldap.tls-cacert-file /path/to/certificate.pem \ --ldap.search-attribute=uid \ --ldap.search-filter=objectClass=person \ --ldap.roles-attribute-name=role