//////////////////////////////////////////////////////////////////////////////// /// DISCLAIMER /// /// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany /// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, software /// distributed under the License is distributed on an "AS IS" BASIS, /// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. /// See the License for the specific language governing permissions and /// limitations under the License. /// /// Copyright holder is ArangoDB GmbH, Cologne, Germany /// /// @author Dr. Frank Celler //////////////////////////////////////////////////////////////////////////////// #include "locks.h" #include "Basics/logging.h" //////////////////////////////////////////////////////////////////////////////// /// @brief initializes a new mutex //////////////////////////////////////////////////////////////////////////////// int TRI_InitMutex(TRI_mutex_t* mutex) { // as of VS2013, exclusive SRWLocks tend to be faster than native mutexes InitializeSRWLock(&mutex->_mutex); return TRI_ERROR_NO_ERROR; } //////////////////////////////////////////////////////////////////////////////// /// @brief destroys a mutex //////////////////////////////////////////////////////////////////////////////// int TRI_DestroyMutex(TRI_mutex_t* mutex) { // as of VS2013, exclusive SRWLocks tend to be faster than native mutexes return TRI_ERROR_NO_ERROR; } //////////////////////////////////////////////////////////////////////////////// /// @brief locks mutex //////////////////////////////////////////////////////////////////////////////// void TRI_LockMutex(TRI_mutex_t* mutex) { // as of VS2013, exclusive SRWLocks tend to be faster than native mutexes AcquireSRWLockExclusive(&mutex->_mutex); } //////////////////////////////////////////////////////////////////////////////// /// @brief unlocks mutex //////////////////////////////////////////////////////////////////////////////// void TRI_UnlockMutex(TRI_mutex_t* mutex) { // as of VS2013, exclusive SRWLocks tend to be faster than native mutexes ReleaseSRWLockExclusive(&mutex->_mutex); } //////////////////////////////////////////////////////////////////////////////// /// @brief initializes a new read-write lock //////////////////////////////////////////////////////////////////////////////// void TRI_InitReadWriteLock(TRI_read_write_lock_t* lock) { InitializeSRWLock(&lock->_lock); } //////////////////////////////////////////////////////////////////////////////// /// @brief destroys a read-write lock //////////////////////////////////////////////////////////////////////////////// void TRI_DestroyReadWriteLock(TRI_read_write_lock_t* lock) {} //////////////////////////////////////////////////////////////////////////////// /// @brief tries to read lock a read-write lock //////////////////////////////////////////////////////////////////////////////// bool TRI_TryReadLockReadWriteLock(TRI_read_write_lock_t* lock) { return (TryAcquireSRWLockShared(&lock->_lock) != 0); } //////////////////////////////////////////////////////////////////////////////// /// @brief read locks read-write lock //////////////////////////////////////////////////////////////////////////////// void TRI_ReadLockReadWriteLock(TRI_read_write_lock_t* lock) { AcquireSRWLockShared(&lock->_lock); } //////////////////////////////////////////////////////////////////////////////// /// @brief read unlocks read-write lock //////////////////////////////////////////////////////////////////////////////// void TRI_ReadUnlockReadWriteLock(TRI_read_write_lock_t* lock) { ReleaseSRWLockShared(&lock->_lock); } //////////////////////////////////////////////////////////////////////////////// /// @brief tries to write lock a read-write lock //////////////////////////////////////////////////////////////////////////////// bool TRI_TryWriteLockReadWriteLock(TRI_read_write_lock_t* lock) { return (TryAcquireSRWLockExclusive(&lock->_lock) != 0); } //////////////////////////////////////////////////////////////////////////////// /// @brief write locks read-write lock //////////////////////////////////////////////////////////////////////////////// void TRI_WriteLockReadWriteLock(TRI_read_write_lock_t* lock) { AcquireSRWLockExclusive(&lock->_lock); } //////////////////////////////////////////////////////////////////////////////// /// @brief write unlocks read-write lock //////////////////////////////////////////////////////////////////////////////// void TRI_WriteUnlockReadWriteLock(TRI_read_write_lock_t* lock) { ReleaseSRWLockExclusive(&lock->_lock); } //////////////////////////////////////////////////////////////////////////////// /// @brief initializes a new condition variable //////////////////////////////////////////////////////////////////////////////// void TRI_InitCondition(TRI_condition_t* cond) { InitializeCriticalSection(&cond->_lockWaiters); InitializeConditionVariable(&cond->_conditionVariable); } //////////////////////////////////////////////////////////////////////////////// /// @brief destroys a condition variable //////////////////////////////////////////////////////////////////////////////// void TRI_DestroyCondition(TRI_condition_t* cond) { DeleteCriticalSection(&cond->_lockWaiters); } //////////////////////////////////////////////////////////////////////////////// /// @brief signals a condition variable /// /// Note that you must hold the lock. //////////////////////////////////////////////////////////////////////////////// void TRI_SignalCondition(TRI_condition_t* cond) { WakeConditionVariable(&cond->_conditionVariable); } //////////////////////////////////////////////////////////////////////////////// /// @brief broad casts a condition variable /// /// Note that you must hold the lock. //////////////////////////////////////////////////////////////////////////////// void TRI_BroadcastCondition(TRI_condition_t* cond) { WakeAllConditionVariable(&cond->_conditionVariable); } //////////////////////////////////////////////////////////////////////////////// /// @brief waits for a signal on a condition variable /// /// Note that you must hold the lock. //////////////////////////////////////////////////////////////////////////////// void TRI_WaitCondition(TRI_condition_t* cond) { SleepConditionVariableCS(&cond->_conditionVariable, &cond->_lockWaiters, INFINITE); } //////////////////////////////////////////////////////////////////////////////// /// @brief waits for a signal with a timeout in micro-seconds /// /// Note that you must hold the lock. //////////////////////////////////////////////////////////////////////////////// bool TRI_TimedWaitCondition(TRI_condition_t* cond, uint64_t delay) { // ........................................................................... // The POSIX threads function pthread_cond_timedwait accepts microseconds // while the Windows function accepts milliseconds // ........................................................................... delay = delay / 1000; if (SleepConditionVariableCS(&cond->_conditionVariable, &cond->_lockWaiters, (DWORD)delay) != 0) { return true; } DWORD res = GetLastError(); if (res == ERROR_TIMEOUT) { return false; } return false; } //////////////////////////////////////////////////////////////////////////////// /// @brief locks the mutex of a condition variable //////////////////////////////////////////////////////////////////////////////// void TRI_LockCondition(TRI_condition_t* cond) { EnterCriticalSection(&cond->_lockWaiters); } //////////////////////////////////////////////////////////////////////////////// /// @brief unlocks the mutex of a condition variable //////////////////////////////////////////////////////////////////////////////// void TRI_UnlockCondition(TRI_condition_t* cond) { LeaveCriticalSection(&cond->_lockWaiters); } // ----------------------------------------------------------------------------- // COMPARE & SWAP operations below for windows // Note that for the MAC OS we use the 'barrier' functions which ensure that // read/write operations on the scalars are executed in order. According to the // available documentation, the GCC variants of these COMPARE & SWAP operations // are implemented with a memory barrier. The MS Windows variants of these // operations (according to the documentation on MS site) also provide a full // memory barrier. // ----------------------------------------------------------------------------- #if 0 //////////////////////////////////////////////////////////////////////////////// /// @brief atomically compares and swaps 32bit integers with full memory barrier //////////////////////////////////////////////////////////////////////////////// bool TRI_CompareAndSwapIntegerInt32 (volatile int32_t* theValue, int32_t oldValue, int32_t newValue) { return ( (int32_t)( InterlockedCompareExchange((volatile LONG*)(theValue), (LONG)(newValue), (LONG)(oldValue) ) ) == oldValue ); } bool TRI_CompareIntegerInt32 (volatile int32_t* theValue, int32_t oldValue) { return ( (int32_t)( InterlockedCompareExchange((volatile LONG*)(theValue), (LONG)(oldValue), (LONG)(oldValue) ) ) == oldValue ); } bool TRI_CompareAndSwapIntegerUInt32 (volatile uint32_t* theValue, uint32_t oldValue, uint32_t newValue) { return ( (uint32_t)(InterlockedCompareExchange((volatile LONG*)(theValue), (LONG)(newValue), (LONG)(oldValue) ) ) == oldValue ); } bool TRI_CompareIntegerUInt32 (volatile uint32_t* theValue, uint32_t oldValue) { return ( (uint32_t)(InterlockedCompareExchange((volatile LONG*)(theValue), (LONG)(oldValue), (LONG)(oldValue) ) ) == oldValue ); } //////////////////////////////////////////////////////////////////////////////// /// @brief atomically compares and swaps 64bit integers with full memory barrier //////////////////////////////////////////////////////////////////////////////// bool TRI_CompareAndSwapIntegerInt64 (volatile int64_t* theValue, int64_t oldValue, int64_t newValue) { return ( (int64_t)(InterlockedCompareExchange64((volatile LONGLONG*)(theValue), (LONGLONG)(newValue), (LONGLONG)(oldValue) ) ) == oldValue ); } bool TRI_CompareIntegerInt64 (volatile int64_t* theValue, int64_t oldValue) { return ( (int64_t)(InterlockedCompareExchange64((volatile LONGLONG*)(theValue), (LONGLONG)(oldValue), (LONGLONG)(oldValue) ) ) == oldValue ); } bool TRI_CompareAndSwapIntegerUInt64 (volatile uint64_t* theValue, uint64_t oldValue, uint64_t newValue) { return ( (uint64_t)(InterlockedCompareExchange64((volatile LONGLONG*)(theValue), (LONGLONG)(newValue), (LONGLONG)(oldValue) ) ) == oldValue ); } bool TRI_CompareIntegerUInt64 (volatile uint64_t* theValue, uint64_t oldValue) { return ( (uint64_t)(InterlockedCompareExchange64((volatile LONGLONG*)(theValue), (LONGLONG)(oldValue), (LONGLONG)(oldValue) ) ) == oldValue ); } //////////////////////////////////////////////////////////////////////////////// /// @brief atomically compares and swaps pointers with full memory barrier //////////////////////////////////////////////////////////////////////////////// bool TRI_CompareAndSwapPointer(void* volatile* theValue, void* oldValue, void* newValue) { return ( InterlockedCompareExchangePointer(theValue, newValue, oldValue) == oldValue ); } bool TRI_ComparePointer(void* volatile* theValue, void* oldValue) { return ( InterlockedCompareExchangePointer(theValue, oldValue, oldValue) == oldValue ); } #endif