//////////////////////////////////////////////////////////////////////////////// /// DISCLAIMER /// /// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany /// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, software /// distributed under the License is distributed on an "AS IS" BASIS, /// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. /// See the License for the specific language governing permissions and /// limitations under the License. /// /// Copyright holder is ArangoDB GmbH, Cologne, Germany /// /// @author Max Neunhoeffer /// @author Jan Steemann //////////////////////////////////////////////////////////////////////////////// #include "OptimizerRules.h" #include "Aql/ClusterNodes.h" #include "Aql/CollectNode.h" #include "Aql/CollectOptions.h" #include "Aql/Collection.h" #include "Aql/ConditionFinder.h" #include "Aql/DocumentProducingNode.h" #include "Aql/ExecutionEngine.h" #include "Aql/ExecutionNode.h" #include "Aql/ExecutionPlan.h" #include "Aql/Function.h" #include "Aql/IndexNode.h" #include "Aql/ModificationNodes.h" #include "Aql/Optimizer.h" #include "Aql/Query.h" #include "Aql/ShortestPathNode.h" #include "Aql/SortCondition.h" #include "Aql/SortNode.h" #include "Aql/TraversalConditionFinder.h" #include "Aql/TraversalNode.h" #include "Aql/Variable.h" #include "Aql/types.h" #include "Basics/AttributeNameParser.h" #include "Basics/SmallVector.h" #include "Basics/StaticStrings.h" #include "Basics/StringBuffer.h" #include "Cluster/ClusterInfo.h" #include "Graph/TraverserOptions.h" #include "Indexes/Index.h" #include "Transaction/Methods.h" #include "VocBase/Methods/Collections.h" #include #include using namespace arangodb; using namespace arangodb::aql; using EN = arangodb::aql::ExecutionNode; namespace { static int indexOf(std::vector const& haystack, std::string const& needle) { for (size_t i = 0; i < haystack.size(); ++i) { if (haystack[i] == needle) { return static_cast(i); } } return -1; } static aql::Collection const* getCollection(ExecutionNode const* node) { switch (node->getType()) { case EN::ENUMERATE_COLLECTION: return static_cast(node)->collection(); case EN::INDEX: return static_cast(node)->collection(); case EN::TRAVERSAL: case EN::SHORTEST_PATH: return static_cast(node)->collection(); default: // note: modification nodes are not covered here yet THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL, "node type does not have a collection"); } } static aql::Variable const* getVariable(ExecutionNode const* node) { auto const* n = dynamic_cast(node); if (n != nullptr) { return n->outVariable(); } // note: modification nodes are not covered here yet THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL, "node type does not have an out variable"); } /// @brief find the single shard id for the node to restrict an operation to /// this will check the conditions of an IndexNode or a data-modification node /// (excluding UPSERT) and check if all shard keys are used in it. If all shard /// keys are present and their values are fixed (constants), this function will /// try to figure out the target shard. If the operation cannot be restricted to /// a single shard, this function will return an empty string std::string getSingleShardId(ExecutionPlan const* plan, ExecutionNode const* node, aql::Collection const* collection) { if (collection->isSmart()) { // no support for smart graphs yet return std::string(); } TRI_ASSERT(node->getType() == EN::INDEX || node->getType() == EN::INSERT || node->getType() == EN::UPDATE || node->getType() == EN::REPLACE || node->getType() == EN::REMOVE); Variable const* inputVariable = nullptr; if (node->getType() == EN::INDEX) { inputVariable = node->getVariablesSetHere()[0]; } else { std::vector v = node->getVariablesUsedHere(); if (v.size() > 1) { // If there is a key variable: inputVariable = v[1]; } else { inputVariable = v[0]; } } // check if we can easily find out the setter of the input variable // (and if we can find it, check if the data is constant so we can look // up the shard key attribute values) auto setter = plan->getVarSetBy(inputVariable->id); if (setter == nullptr) { // oops! TRI_ASSERT(false); return std::string(); } // note for which shard keys we need to look for auto shardKeys = collection->shardKeys(); std::unordered_set toFind; for (auto const& it : shardKeys) { if (it.find('.') != std::string::npos) { // shard key containing a "." (sub-attribute). this is not yet supported return std::string(); } toFind.emplace(it); } VPackBuilder builder; builder.openObject(); if (setter->getType() == ExecutionNode::CALCULATION) { CalculationNode const* c = static_cast(setter); auto ex = c->expression(); if (ex == nullptr) { return std::string(); } auto n = ex->node(); if (n == nullptr) { return std::string(); } if (n->isStringValue()) { if (!n->isConstant() || toFind.size() != 1 || toFind.find(StaticStrings::KeyString) == toFind.end()) { return std::string(); } // the lookup value is a string, and the only shard key is _key: so we can use it builder.add(VPackValue(StaticStrings::KeyString)); n->toVelocyPackValue(builder); toFind.clear(); } else if (n->isObject()) { // go through the input object attribute by attribute // and look for our shard keys for (size_t i = 0; i < n->numMembers(); ++i) { auto sub = n->getMember(i); if (sub->type != NODE_TYPE_OBJECT_ELEMENT) { continue; } auto it = toFind.find(sub->getString()); if (it != toFind.end()) { // we found one of the shard keys! auto v = sub->getMember(0); if (v->isConstant()) { // if the attribute value is a constant, we copy it into our // builder builder.add(VPackValue(sub->getString())); v->toVelocyPackValue(builder); // remove the attribute from our to-do list toFind.erase(it); } } } } else { return std::string(); } } else if (setter->getType() == ExecutionNode::INDEX) { IndexNode const* c = static_cast(setter); if (c->getIndexes().size() != 1) { // we can only handle a single index here return std::string(); } auto const* condition = c->condition(); if (condition == nullptr) { return std::string(); } AstNode const* root = condition->root(); if (root == nullptr || root->type != NODE_TYPE_OPERATOR_NARY_OR || root->numMembers() != 1) { return std::string(); } root = root->getMember(0); if (root == nullptr || root->type != NODE_TYPE_OPERATOR_NARY_AND) { return std::string(); } std::string result; for (size_t i = 0; i < root->numMembers(); ++i) { if (root->getMember(i) != nullptr && root->getMember(i)->type == NODE_TYPE_OPERATOR_BINARY_EQ) { AstNode const* value = nullptr; std::pair> pair; auto eq = root->getMember(i); auto lhs = eq->getMember(0); auto rhs = eq->getMember(1); result.clear(); if (lhs->isAttributeAccessForVariable(pair, false) && pair.first == inputVariable && rhs->isConstant()) { TRI_AttributeNamesToString(pair.second, result, true); value = rhs; } else if (rhs->isAttributeAccessForVariable(pair, false) && pair.first == inputVariable && lhs->isConstant()) { TRI_AttributeNamesToString(pair.second, result, true); value = lhs; } if (value != nullptr) { TRI_ASSERT(!result.empty()); auto it = toFind.find(result); if (it != toFind.end()) { builder.add(VPackValue(result)); value->toVelocyPackValue(builder); toFind.erase(it); } } } } } builder.close(); if (!toFind.empty()) { return std::string(); } // all shard keys found!! auto ci = ClusterInfo::instance(); if (ci == nullptr) { return std::string(); } // find the responsible shard for the data bool usedDefaultSharding; std::string shardId; int res = ci->getResponsibleShard(collection->getCollection().get(), builder.slice(), true, shardId, usedDefaultSharding); if (res != TRI_ERROR_NO_ERROR) { // some error occurred. better do not use the // single shard optimization here return std::string(); } // we will only need a single shard! return shardId; } } /// @brief adds a SORT operation for IN right-hand side operands void arangodb::aql::sortInValuesRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::FILTER, true); bool modified = false; for (auto const& n : nodes) { // filter nodes always have one input variable auto varsUsedHere = n->getVariablesUsedHere(); TRI_ASSERT(varsUsedHere.size() == 1); // now check who introduced our variable auto variable = varsUsedHere[0]; auto setter = plan->getVarSetBy(variable->id); if (setter == nullptr || setter->getType() != EN::CALCULATION) { // filter variable was not introduced by a calculation. continue; } // filter variable was introduced a CalculationNode. now check the // expression auto s = static_cast(setter); auto filterExpression = s->expression(); auto const* inNode = filterExpression->node(); TRI_ASSERT(inNode != nullptr); // check the filter condition if ((inNode->type != NODE_TYPE_OPERATOR_BINARY_IN && inNode->type != NODE_TYPE_OPERATOR_BINARY_NIN) || inNode->canThrow() || !inNode->isDeterministic()) { // we better not tamper with this filter continue; } auto rhs = inNode->getMember(1); if (rhs->type != NODE_TYPE_REFERENCE) { continue; } auto loop = n->getLoop(); if (loop == nullptr) { // FILTER is not used inside a loop. so it will be used at most once // not need to sort the IN values then continue; } variable = static_cast(rhs->getData()); setter = plan->getVarSetBy(variable->id); if (setter == nullptr || (setter->getType() != EN::CALCULATION && setter->getType() != EN::SUBQUERY)) { // variable itself was not introduced by a calculation. continue; } if (loop == setter->getLoop()) { // the FILTER and its value calculation are contained in the same loop // this means the FILTER will be executed as many times as its value // calculation. sorting the IN values will not provide a benefit here continue; } auto ast = plan->getAst(); AstNode const* originalArg = nullptr; if (setter->getType() == EN::CALCULATION) { AstNode const* originalNode = static_cast(setter)->expression()->node(); TRI_ASSERT(originalNode != nullptr); AstNode const* testNode = originalNode; if (originalNode->type == NODE_TYPE_FCALL && static_cast(originalNode->getData())->name == "NOOPT") { // bypass NOOPT(...) TRI_ASSERT(originalNode->numMembers() == 1); auto args = originalNode->getMember(0); if (args->numMembers() > 0) { testNode = args->getMember(0); } } if (testNode->type == NODE_TYPE_VALUE || testNode->type == NODE_TYPE_OBJECT) { // not really usable... continue; } if (testNode->type == NODE_TYPE_ARRAY && testNode->numMembers() < AstNode::SortNumberThreshold) { // number of values is below threshold continue; } if (testNode->isSorted()) { // already sorted continue; } originalArg = originalNode; } else { TRI_ASSERT(setter->getType() == EN::SUBQUERY); auto sub = static_cast(setter); // estimate items in subquery size_t nrItems = 0; sub->getSubquery()->getCost(nrItems); if (nrItems < AstNode::SortNumberThreshold) { continue; } originalArg = ast->createNodeReference(sub->outVariable()); } TRI_ASSERT(originalArg != nullptr); auto args = ast->createNodeArray(); args->addMember(originalArg); auto sorted = ast->createNodeFunctionCall(TRI_CHAR_LENGTH_PAIR("SORTED_UNIQUE"), args); auto outVar = ast->variables()->createTemporaryVariable(); ExecutionNode* calculationNode = nullptr; auto expression = new Expression(plan.get(), ast, sorted); try { calculationNode = new CalculationNode(plan.get(), plan->nextId(), expression, outVar); } catch (...) { delete expression; throw; } plan->registerNode(calculationNode); // make the new node a parent of the original calculation node TRI_ASSERT(setter != nullptr); calculationNode->addDependency(setter); auto oldParent = setter->getFirstParent(); TRI_ASSERT(oldParent != nullptr); calculationNode->addParent(oldParent); oldParent->removeDependencies(); oldParent->addDependency(calculationNode); setter->setParent(calculationNode); if (setter->getType() == EN::CALCULATION) { // mark the original node as being removable, even if it can throw // this is special as the optimizer will normally not remove any nodes // if they throw - even when fully unused otherwise static_cast(setter)->canRemoveIfThrows(true); } AstNode* clone = ast->clone(inNode); // set sortedness bit for the IN operator clone->setBoolValue(true); // finally adjust the variable inside the IN calculation clone->changeMember(1, ast->createNodeReference(outVar)); filterExpression->replaceNode(clone); modified = true; } opt->addPlan(std::move(plan), rule, modified); } /// @brief remove redundant sorts /// this rule modifies the plan in place: /// - sorts that are covered by earlier sorts will be removed void arangodb::aql::removeRedundantSortsRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::SORT, true); if (nodes.empty()) { // quick exit opt->addPlan(std::move(plan), rule, false); return; } std::unordered_set toUnlink; arangodb::basics::StringBuffer buffer(false); for (auto const& n : nodes) { if (toUnlink.find(n) != toUnlink.end()) { // encountered a sort node that we already deleted continue; } auto const sortNode = static_cast(n); auto sortInfo = sortNode->getSortInformation(plan.get(), &buffer); if (sortInfo.isValid && !sortInfo.criteria.empty()) { // we found a sort that we can understand std::vector stack; sortNode->addDependencies(stack); int nodesRelyingOnSort = 0; while (!stack.empty()) { auto current = stack.back(); stack.pop_back(); if (current->getType() == EN::SORT) { // we found another sort. now check if they are compatible! auto other = static_cast(current)->getSortInformation( plan.get(), &buffer); switch (sortInfo.isCoveredBy(other)) { case SortInformation::unequal: { // different sort criteria if (nodesRelyingOnSort == 0) { // a sort directly followed by another sort: now remove one of // them if (other.canThrow || !other.isDeterministic) { // if the sort can throw or is non-deterministic, we must not // remove it break; } if (sortNode->isStable()) { // we should not optimize predecessors of a stable sort (used // in a COLLECT node) // the stable sort is for a reason, and removing any // predecessors sorts might // change the result break; } // remove sort that is a direct predecessor of a sort toUnlink.emplace(current); } break; } case SortInformation::otherLessAccurate: { toUnlink.emplace(current); break; } case SortInformation::ourselvesLessAccurate: { // the sort at the start of the pipeline makes the sort at the end // superfluous, so we'll remove it toUnlink.emplace(n); break; } case SortInformation::allEqual: { // the sort at the end of the pipeline makes the sort at the start // superfluous, so we'll remove it toUnlink.emplace(current); break; } } } else if (current->getType() == EN::FILTER) { // ok: a filter does not depend on sort order } else if (current->getType() == EN::CALCULATION) { // ok: a filter does not depend on sort order only if it does not // throw if (current->canThrow()) { ++nodesRelyingOnSort; } } else if (current->getType() == EN::ENUMERATE_LIST || current->getType() == EN::ENUMERATE_COLLECTION || current->getType() == EN::TRAVERSAL || current->getType() == EN::SHORTEST_PATH) { // ok, but we cannot remove two different sorts if one of these node // types is between them // example: in the following query, the one sort will be optimized // away: // FOR i IN [ { a: 1 }, { a: 2 } , { a: 3 } ] SORT i.a ASC SORT i.a // DESC RETURN i // but in the following query, the sorts will stay: // FOR i IN [ { a: 1 }, { a: 2 } , { a: 3 } ] SORT i.a ASC LET a = // i.a SORT i.a DESC RETURN i ++nodesRelyingOnSort; } else { // abort at all other type of nodes. we cannot remove a sort beyond // them // this includes COLLECT and LIMIT break; } if (!current->hasDependency()) { // node either has no or more than one dependency. we don't know what // to do and must abort // note: this will also handle Singleton nodes break; } current->addDependencies(stack); } if (toUnlink.find(n) == toUnlink.end() && sortNode->simplify(plan.get())) { // sort node had only constant expressions. it will make no difference // if we execute it or not // so we can remove it toUnlink.emplace(n); } } } if (!toUnlink.empty()) { plan->unlinkNodes(toUnlink); } opt->addPlan(std::move(plan), rule, !toUnlink.empty()); } /// @brief remove all unnecessary filters /// this rule modifies the plan in place: /// - filters that are always true are removed completely /// - filters that are always false will be replaced by a NoResults node void arangodb::aql::removeUnnecessaryFiltersRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::FILTER, true); bool modified = false; std::unordered_set toUnlink; for (auto const& n : nodes) { // filter nodes always have one input variable auto varsUsedHere = n->getVariablesUsedHere(); TRI_ASSERT(varsUsedHere.size() == 1); // now check who introduced our variable auto variable = varsUsedHere[0]; auto setter = plan->getVarSetBy(variable->id); if (setter == nullptr || setter->getType() != EN::CALCULATION) { // filter variable was not introduced by a calculation. continue; } // filter variable was introduced a CalculationNode. now check the // expression auto s = static_cast(setter); auto root = s->expression()->node(); TRI_ASSERT(root != nullptr); if (root->canThrow() || !root->isDeterministic()) { // we better not tamper with this filter continue; } // filter expression is constant and thus cannot throw // we can now evaluate it safely TRI_ASSERT(!s->expression()->canThrow()); if (root->isTrue()) { // filter is always true // remove filter node and merge with following node toUnlink.emplace(n); modified = true; } else if (root->isFalse()) { // filter is always false // now insert a NoResults node below it auto noResults = new NoResultsNode(plan.get(), plan->nextId()); plan->registerNode(noResults); plan->replaceNode(n, noResults); modified = true; } } if (!toUnlink.empty()) { plan->unlinkNodes(toUnlink); } opt->addPlan(std::move(plan), rule, modified); } /// @brief remove INTO of a COLLECT if not used /// additionally remove all unused aggregate calculations from a COLLECT void arangodb::aql::removeCollectVariablesRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::COLLECT, true); bool modified = false; for (auto const& n : nodes) { auto collectNode = static_cast(n); TRI_ASSERT(collectNode != nullptr); auto varsUsedLater = n->getVarsUsedLater(); auto outVariable = collectNode->outVariable(); if (outVariable != nullptr && varsUsedLater.find(outVariable) == varsUsedLater.end()) { // outVariable not used later if (!collectNode->count()) { collectNode->clearOutVariable(); } modified = true; } collectNode->clearAggregates( [&varsUsedLater, &modified]( std::pair> const& aggregate) -> bool { if (varsUsedLater.find(aggregate.first) == varsUsedLater.end()) { // result of aggregate function not used later modified = true; return true; } return false; }); } opt->addPlan(std::move(plan), rule, modified); } class PropagateConstantAttributesHelper { public: PropagateConstantAttributesHelper() : _constants(), _modified(false) {} bool modified() const { return _modified; } /// @brief inspects a plan and propages constant values in expressions void propagateConstants(ExecutionPlan* plan) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::FILTER, true); for (auto const& node : nodes) { auto fn = static_cast(node); auto inVar = fn->getVariablesUsedHere(); TRI_ASSERT(inVar.size() == 1); auto setter = plan->getVarSetBy(inVar[0]->id); if (setter != nullptr && setter->getType() == EN::CALCULATION) { auto cn = static_cast(setter); auto expression = cn->expression(); if (expression != nullptr) { collectConstantAttributes(const_cast(expression->node())); } } } if (!_constants.empty()) { for (auto const& node : nodes) { auto fn = static_cast(node); auto inVar = fn->getVariablesUsedHere(); TRI_ASSERT(inVar.size() == 1); auto setter = plan->getVarSetBy(inVar[0]->id); if (setter != nullptr && setter->getType() == EN::CALCULATION) { auto cn = static_cast(setter); auto expression = cn->expression(); if (expression != nullptr) { insertConstantAttributes(const_cast(expression->node())); } } } } } private: AstNode const* getConstant(Variable const* variable, std::string const& attribute) const { auto it = _constants.find(variable); if (it == _constants.end()) { return nullptr; } auto it2 = (*it).second.find(attribute); if (it2 == (*it).second.end()) { return nullptr; } return (*it2).second; } /// @brief inspects an expression (recursively) and notes constant attribute /// values so they can be propagated later void collectConstantAttributes(AstNode* node) { if (node == nullptr) { return; } if (node->type == NODE_TYPE_OPERATOR_BINARY_AND) { auto lhs = node->getMember(0); auto rhs = node->getMember(1); collectConstantAttributes(lhs); collectConstantAttributes(rhs); } else if (node->type == NODE_TYPE_OPERATOR_BINARY_EQ) { auto lhs = node->getMember(0); auto rhs = node->getMember(1); if (lhs->isConstant() && rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) { inspectConstantAttribute(rhs, lhs); } else if (rhs->isConstant() && lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) { inspectConstantAttribute(lhs, rhs); } } } /// @brief traverses an AST part recursively and patches it by inserting /// constant values void insertConstantAttributes(AstNode* node) { if (node == nullptr) { return; } if (node->type == NODE_TYPE_OPERATOR_BINARY_AND) { auto lhs = node->getMember(0); auto rhs = node->getMember(1); insertConstantAttributes(lhs); insertConstantAttributes(rhs); } else if (node->type == NODE_TYPE_OPERATOR_BINARY_EQ) { auto lhs = node->getMember(0); auto rhs = node->getMember(1); if (!lhs->isConstant() && rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) { insertConstantAttribute(node, 1); } if (!rhs->isConstant() && lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS) { insertConstantAttribute(node, 0); } } } /// @brief extract an attribute and its variable from an attribute access /// (e.g. `a.b.c` will return variable `a` and attribute name `b.c.`. bool getAttribute(AstNode const* attribute, Variable const*& variable, std::string& name) { TRI_ASSERT(attribute != nullptr && attribute->type == NODE_TYPE_ATTRIBUTE_ACCESS); TRI_ASSERT(name.empty()); while (attribute->type == NODE_TYPE_ATTRIBUTE_ACCESS) { name = std::string(".") + attribute->getString() + name; attribute = attribute->getMember(0); } if (attribute->type != NODE_TYPE_REFERENCE) { return false; } variable = static_cast(attribute->getData()); TRI_ASSERT(variable != nullptr); return true; } /// @brief inspect the constant value assigned to an attribute /// the attribute value will be stored so it can be inserted for the attribute /// later void inspectConstantAttribute(AstNode const* attribute, AstNode const* value) { Variable const* variable = nullptr; std::string name; if (!getAttribute(attribute, variable, name)) { return; } auto it = _constants.find(variable); if (it == _constants.end()) { _constants.emplace( variable, std::unordered_map{{name, value}}); return; } auto it2 = (*it).second.find(name); if (it2 == (*it).second.end()) { // first value for the attribute (*it).second.emplace(name, value); } else { auto previous = (*it2).second; if (previous == nullptr) { // we have multiple different values for the attribute. better not use // this attribute return; } if (!value->computeValue().equals(previous->computeValue())) { // different value found for an already tracked attribute. better not // use this attribute (*it2).second = nullptr; } } } /// @brief patches an AstNode by inserting a constant value into it void insertConstantAttribute(AstNode* parentNode, size_t accessIndex) { Variable const* variable = nullptr; std::string name; if (!getAttribute(parentNode->getMember(accessIndex), variable, name)) { return; } auto constantValue = getConstant(variable, name); if (constantValue != nullptr) { parentNode->changeMember(accessIndex, const_cast(constantValue)); _modified = true; } } std::unordered_map> _constants; bool _modified; }; /// @brief propagate constant attributes in FILTERs void arangodb::aql::propagateConstantAttributesRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { PropagateConstantAttributesHelper helper; helper.propagateConstants(plan.get()); opt->addPlan(std::move(plan), rule, helper.modified()); } /// @brief move calculations up in the plan /// this rule modifies the plan in place /// it aims to move up calculations as far up in the plan as possible, to /// avoid redundant calculations in inner loops void arangodb::aql::moveCalculationsUpRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::CALCULATION, true); bool modified = false; for (auto const& n : nodes) { auto nn = static_cast(n); if (nn->expression()->canThrow() || !nn->expression()->isDeterministic()) { // we will only move expressions up that cannot throw and that are // deterministic continue; } std::unordered_set neededVars; n->getVariablesUsedHere(neededVars); std::vector stack; n->addDependencies(stack); while (!stack.empty()) { auto current = stack.back(); stack.pop_back(); bool found = false; for (auto const& v : current->getVariablesSetHere()) { if (neededVars.find(v) != neededVars.end()) { // shared variable, cannot move up any more found = true; break; } } if (found) { // done with optimizing this calculation node break; } if (!current->hasDependency()) { // node either has no or more than one dependency. we don't know what to // do and must abort // note: this will also handle Singleton nodes break; } current->addDependencies(stack); // first, unlink the calculation from the plan plan->unlinkNode(n); // and re-insert into before the current node plan->insertDependency(current, n); modified = true; } } opt->addPlan(std::move(plan), rule, modified); } /// @brief move calculations down in the plan /// this rule modifies the plan in place /// it aims to move calculations as far down in the plan as possible, beyond /// FILTER and LIMIT operations void arangodb::aql::moveCalculationsDownRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::CALCULATION, true); bool modified = false; for (auto const& n : nodes) { auto nn = static_cast(n); if (nn->expression()->canThrow() || !nn->expression()->isDeterministic()) { // we will only move expressions down that cannot throw and that are // deterministic continue; } // this is the variable that the calculation will set auto variable = nn->outVariable(); std::vector stack; n->addParents(stack); bool shouldMove = false; ExecutionNode* lastNode = nullptr; while (!stack.empty()) { auto current = stack.back(); stack.pop_back(); lastNode = current; bool done = false; for (auto const& v : current->getVariablesUsedHere()) { if (v == variable) { // the node we're looking at needs the variable we're setting. // can't push further! done = true; break; } } if (done) { // done with optimizing this calculation node break; } auto const currentType = current->getType(); if (currentType == EN::FILTER || currentType == EN::SORT || currentType == EN::LIMIT || currentType == EN::SUBQUERY) { // we found something interesting that justifies moving our node down shouldMove = true; } else if (currentType == EN::INDEX || currentType == EN::ENUMERATE_COLLECTION || currentType == EN::ENUMERATE_LIST || currentType == EN::TRAVERSAL || currentType == EN::SHORTEST_PATH || currentType == EN::COLLECT || currentType == EN::NORESULTS) { // we will not push further down than such nodes shouldMove = false; break; } if (!current->hasParent()) { break; } current->addParents(stack); } if (shouldMove && lastNode != nullptr) { // first, unlink the calculation from the plan plan->unlinkNode(n); // and re-insert into before the current node plan->insertDependency(lastNode, n); modified = true; } } opt->addPlan(std::move(plan), rule, modified); } /// @brief determine the "right" type of CollectNode and /// add a sort node for each COLLECT (note: the sort may be removed later) /// this rule cannot be turned off (otherwise, the query result might be wrong!) void arangodb::aql::specializeCollectRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::COLLECT, true); bool modified = false; for (auto const& n : nodes) { auto collectNode = static_cast(n); if (collectNode->isSpecialized()) { // already specialized this node continue; } auto const& groupVariables = collectNode->groupVariables(); // test if we can use an alternative version of COLLECT with a hash table bool const canUseHashAggregation = (!groupVariables.empty() && (!collectNode->hasOutVariable() || collectNode->count()) && collectNode->getOptions().canUseMethod(CollectOptions::CollectMethod::HASH)); if (canUseHashAggregation && !opt->runOnlyRequiredRules(1)) { if (collectNode->getOptions().shouldUseMethod(CollectOptions::CollectMethod::HASH)) { // user has explicitly asked for hash method // specialize existing the CollectNode so it will become a HashedCollectBlock // later. additionally, add a SortNode BEHIND the CollectNode (to sort the // final result) collectNode->aggregationMethod( CollectOptions::CollectMethod::HASH); collectNode->specialized(); if (!collectNode->isDistinctCommand()) { // add the post-SORT SortElementVector sortElements; for (auto const& v : collectNode->groupVariables()) { sortElements.emplace_back(v.first, true); } auto sortNode = new SortNode(plan.get(), plan->nextId(), sortElements, false); plan->registerNode(sortNode); TRI_ASSERT(collectNode->hasParent()); auto parent = collectNode->getFirstParent(); TRI_ASSERT(parent != nullptr); sortNode->addDependency(collectNode); parent->replaceDependency(collectNode, sortNode); } modified = true; continue; } // create a new plan with the adjusted COLLECT node std::unique_ptr newPlan(plan->clone()); // use the cloned COLLECT node auto newCollectNode = static_cast(newPlan->getNodeById(collectNode->id())); TRI_ASSERT(newCollectNode != nullptr); // specialize the CollectNode so it will become a HashedCollectBlock // later // additionally, add a SortNode BEHIND the CollectNode (to sort the // final result) newCollectNode->aggregationMethod( CollectOptions::CollectMethod::HASH); newCollectNode->specialized(); if (!collectNode->isDistinctCommand()) { // add the post-SORT SortElementVector sortElements; for (auto const& v : newCollectNode->groupVariables()) { sortElements.emplace_back(v.first, true); } auto sortNode = new SortNode(newPlan.get(), newPlan->nextId(), sortElements, false); newPlan->registerNode(sortNode); TRI_ASSERT(newCollectNode->hasParent()); auto parent = newCollectNode->getFirstParent(); TRI_ASSERT(parent != nullptr); sortNode->addDependency(newCollectNode); parent->replaceDependency(newCollectNode, sortNode); } newPlan->findVarUsage(); if (nodes.size() > 1) { // this will tell the optimizer to optimize the cloned plan with this // specific rule again opt->addPlan(std::move(newPlan), rule, true, static_cast(rule->level - 1)); } else { // no need to run this specific rule again on the cloned plan opt->addPlan(std::move(newPlan), rule, true); } } else if (groupVariables.empty() && collectNode->aggregateVariables().empty() && collectNode->count()) { collectNode->aggregationMethod(CollectOptions::CollectMethod::COUNT); collectNode->specialized(); modified = true; continue; } // mark node as specialized, so we do not process it again collectNode->specialized(); // finally, adjust the original plan and create a sorted version of COLLECT // specialize the CollectNode so it will become a SortedCollectBlock // later collectNode->aggregationMethod( CollectOptions::CollectMethod::SORTED); // insert a SortNode IN FRONT OF the CollectNode if (!groupVariables.empty()) { SortElementVector sortElements; for (auto const& v : groupVariables) { sortElements.emplace_back(v.second, true); } auto sortNode = new SortNode(plan.get(), plan->nextId(), sortElements, true); plan->registerNode(sortNode); TRI_ASSERT(collectNode->hasDependency()); auto dep = collectNode->getFirstDependency(); TRI_ASSERT(dep != nullptr); sortNode->addDependency(dep); collectNode->replaceDependency(dep, sortNode); modified = true; } } opt->addPlan(std::move(plan), rule, modified); } /// @brief split and-combined filters and break them into smaller parts void arangodb::aql::splitFiltersRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::FILTER, true); bool modified = false; for (auto const& n : nodes) { auto inVars(n->getVariablesUsedHere()); TRI_ASSERT(inVars.size() == 1); auto setter = plan->getVarSetBy(inVars[0]->id); if (setter == nullptr || setter->getType() != EN::CALCULATION) { continue; } auto cn = static_cast(setter); auto const expression = cn->expression(); if (expression->canThrow() || !expression->isDeterministic() || expression->node()->type != NODE_TYPE_OPERATOR_BINARY_AND) { continue; } std::vector stack{expression->nodeForModification()}; while (!stack.empty()) { auto current = stack.back(); stack.pop_back(); if (current->type == NODE_TYPE_OPERATOR_BINARY_AND) { stack.emplace_back(current->getMember(0)); stack.emplace_back(current->getMember(1)); } else { modified = true; ExecutionNode* calculationNode = nullptr; auto outVar = plan->getAst()->variables()->createTemporaryVariable(); auto expression = new Expression(plan.get(), plan->getAst(), current); try { calculationNode = new CalculationNode(plan.get(), plan->nextId(), expression, outVar); } catch (...) { delete expression; throw; } plan->registerNode(calculationNode); plan->insertDependency(n, calculationNode); auto filterNode = new FilterNode(plan.get(), plan->nextId(), outVar); plan->registerNode(filterNode); plan->insertDependency(n, filterNode); } } if (modified) { plan->unlinkNode(n, false); } } opt->addPlan(std::move(plan), rule, modified); } /// @brief move filters up in the plan /// this rule modifies the plan in place /// filters are moved as far up in the plan as possible to make result sets /// as small as possible as early as possible /// filters are not pushed beyond limits void arangodb::aql::moveFiltersUpRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::FILTER, true); bool modified = false; for (auto const& n : nodes) { auto neededVars = n->getVariablesUsedHere(); TRI_ASSERT(neededVars.size() == 1); std::vector stack; n->addDependencies(stack); while (!stack.empty()) { auto current = stack.back(); stack.pop_back(); if (current->getType() == EN::LIMIT) { // cannot push a filter beyond a LIMIT node break; } if (current->canThrow()) { // must not move a filter beyond a node that can throw break; } if (current->isModificationNode()) { // must not move a filter beyond a modification node break; } if (current->getType() == EN::CALCULATION) { // must not move a filter beyond a node with a non-deterministic result auto calculation = static_cast(current); if (!calculation->expression()->isDeterministic()) { break; } } bool found = false; for (auto const& v : current->getVariablesSetHere()) { for (auto it = neededVars.begin(); it != neededVars.end(); ++it) { if ((*it)->id == v->id) { // shared variable, cannot move up any more found = true; break; } } } if (found) { // done with optimizing this calculation node break; } if (!current->hasDependency()) { // node either has no or more than one dependency. we don't know what to // do and must abort // note: this will also handle Singleton nodes break; } current->addDependencies(stack); // first, unlink the filter from the plan plan->unlinkNode(n); // and re-insert into plan in front of the current node plan->insertDependency(current, n); modified = true; } } opt->addPlan(std::move(plan), rule, modified); } class arangodb::aql::RedundantCalculationsReplacer final : public WalkerWorker { public: explicit RedundantCalculationsReplacer( std::unordered_map const& replacements) : _replacements(replacements) {} template void replaceStartTargetVariables(ExecutionNode* en) { auto node = static_cast(en); if (node->_inStartVariable != nullptr) { node->_inStartVariable = Variable::replace(node->_inStartVariable, _replacements); } if (node->_inTargetVariable != nullptr) { node->_inTargetVariable = Variable::replace(node->_inTargetVariable, _replacements); } } template void replaceInVariable(ExecutionNode* en) { auto node = static_cast(en); node->_inVariable = Variable::replace(node->_inVariable, _replacements); } void replaceInCalculation(ExecutionNode* en) { auto node = static_cast(en); std::unordered_set variables; node->expression()->variables(variables); // check if the calculation uses any of the variables that we want to // replace for (auto const& it : variables) { if (_replacements.find(it->id) != _replacements.end()) { // calculation uses a to-be-replaced variable node->expression()->replaceVariables(_replacements); return; } } } bool before(ExecutionNode* en) override final { switch (en->getType()) { case EN::ENUMERATE_LIST: { replaceInVariable(en); break; } case EN::RETURN: { replaceInVariable(en); break; } case EN::CALCULATION: { replaceInCalculation(en); break; } case EN::FILTER: { replaceInVariable(en); break; } case EN::TRAVERSAL: { replaceInVariable(en); break; } case EN::SHORTEST_PATH: { replaceStartTargetVariables(en); break; } case EN::COLLECT: { auto node = static_cast(en); for (auto& variable : node->_groupVariables) { variable.second = Variable::replace(variable.second, _replacements); } for (auto& variable : node->_keepVariables) { auto old = variable; variable = Variable::replace(old, _replacements); } for (auto& variable : node->_aggregateVariables) { variable.second.first = Variable::replace(variable.second.first, _replacements); } if (node->_expressionVariable != nullptr) { node->_expressionVariable = Variable::replace(node->_expressionVariable, _replacements); } for (auto const& it : _replacements) { node->_variableMap.emplace(it.second->id, it.second->name); } // node->_keepVariables does not need to be updated at the moment as the // "remove-redundant-calculations" rule will stop when it finds a // COLLECT with an INTO, and the "inline-subqueries" rule will abort // there as well break; } case EN::SORT: { auto node = static_cast(en); for (auto& variable : node->_elements) { variable.var = Variable::replace(variable.var, _replacements); } break; } case EN::GATHER: { auto node = static_cast(en); for (auto& variable : node->_elements) { auto v = Variable::replace(variable.var, _replacements); if (v != variable.var) { variable.var = v; } variable.attributePath.clear(); } break; } case EN::DISTRIBUTE: { auto node = static_cast(en); node->_variable = Variable::replace(node->_variable, _replacements); node->_alternativeVariable = Variable::replace(node->_alternativeVariable, _replacements); break; } case EN::REMOVE: { replaceInVariable(en); break; } case EN::INSERT: { replaceInVariable(en); break; } case EN::UPSERT: { auto node = static_cast(en); if (node->_inDocVariable != nullptr) { node->_inDocVariable = Variable::replace(node->_inDocVariable, _replacements); } if (node->_insertVariable != nullptr) { node->_insertVariable = Variable::replace(node->_insertVariable, _replacements); } if (node->_updateVariable != nullptr) { node->_updateVariable = Variable::replace(node->_updateVariable, _replacements); } break; } case EN::UPDATE: { auto node = static_cast(en); if (node->_inDocVariable != nullptr) { node->_inDocVariable = Variable::replace(node->_inDocVariable, _replacements); } if (node->_inKeyVariable != nullptr) { node->_inKeyVariable = Variable::replace(node->_inKeyVariable, _replacements); } break; } case EN::REPLACE: { auto node = static_cast(en); if (node->_inDocVariable != nullptr) { node->_inDocVariable = Variable::replace(node->_inDocVariable, _replacements); } if (node->_inKeyVariable != nullptr) { node->_inKeyVariable = Variable::replace(node->_inKeyVariable, _replacements); } break; } default: { // ignore all other types of nodes } } // always continue return false; } private: std::unordered_map const& _replacements; }; /// @brief remove CalculationNode(s) that are repeatedly used in a query /// (i.e. common expressions) void arangodb::aql::removeRedundantCalculationsRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::CALCULATION, true); if (nodes.size() < 2) { // quick exit opt->addPlan(std::move(plan), rule, false); return; } arangodb::basics::StringBuffer buffer(false); std::unordered_map replacements; for (auto const& n : nodes) { auto nn = static_cast(n); if (!nn->expression()->isDeterministic()) { // If this node is non-deterministic, we must not touch it! continue; } auto outvar = n->getVariablesSetHere(); TRI_ASSERT(outvar.size() == 1); try { nn->expression()->stringifyIfNotTooLong(&buffer); } catch (...) { // expression could not be stringified (maybe because not all node types // are supported). this is not an error, we just skip the optimization buffer.reset(); continue; } std::string const referenceExpression(buffer.c_str(), buffer.length()); buffer.reset(); std::vector stack; n->addDependencies(stack); while (!stack.empty()) { auto current = stack.back(); stack.pop_back(); if (current->getType() == EN::CALCULATION) { try { //static_cast(current)->expression()->node()->dump(0); static_cast(current) ->expression() ->stringifyIfNotTooLong(&buffer); } catch (...) { // expression could not be stringified (maybe because not all node // types are supported). this is not an error, we just skip the optimization buffer.reset(); continue; } bool const isEqual = (buffer.length() == referenceExpression.size() && memcmp(buffer.c_str(), referenceExpression.c_str(), buffer.length()) == 0); buffer.reset(); if (isEqual) { // expressions are identical auto outvars = current->getVariablesSetHere(); TRI_ASSERT(outvars.size() == 1); // check if target variable is already registered as a replacement // this covers the following case: // - replacements is set to B => C // - we're now inserting a replacement A => B // the goal now is to enter a replacement A => C instead of A => B auto target = outvars[0]; while (target != nullptr) { auto it = replacements.find(target->id); if (it != replacements.end()) { target = (*it).second; } else { break; } } replacements.emplace(outvar[0]->id, target); // also check if the insertion enables further shortcuts // this covers the following case: // - replacements is set to A => B // - we have just inserted a replacement B => C // the goal now is to change the replacement A => B to A => C for (auto it = replacements.begin(); it != replacements.end(); ++it) { if ((*it).second == outvar[0]) { (*it).second = target; } } } } if (current->getType() == EN::COLLECT) { if (static_cast(current)->hasOutVariable()) { // COLLECT ... INTO is evil (tm): it needs to keep all already defined // variables // we need to abort optimization here break; } } if (!current->hasDependency()) { // node either has no or more than one dependency. we don't know what to // do and must abort // note: this will also handle Singleton nodes break; } current->addDependencies(stack); } } if (!replacements.empty()) { // finally replace the variables RedundantCalculationsReplacer finder(replacements); plan->root()->walk(&finder); } opt->addPlan(std::move(plan), rule, !replacements.empty()); } /// @brief remove CalculationNodes and SubqueryNodes that are never needed /// this modifies an existing plan in place void arangodb::aql::removeUnnecessaryCalculationsRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { std::vector const types{EN::CALCULATION, EN::SUBQUERY}; SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, types, true); std::unordered_set toUnlink; for (auto const& n : nodes) { if (n->getType() == EN::CALCULATION) { auto nn = static_cast(n); if (nn->canThrow() && !nn->canRemoveIfThrows()) { // If this node can throw, we must not optimize it away! continue; } // will remove calculation when we get here } else if (n->getType() == EN::SUBQUERY) { auto nn = static_cast(n); if (nn->canThrow()) { // subqueries that can throw must not be optimized away continue; } if (nn->isModificationQuery()) { // subqueries that modify data must not be optimized away continue; } // will remove subquery when we get here } auto outvars = n->getVariablesSetHere(); TRI_ASSERT(outvars.size() == 1); auto varsUsedLater = n->getVarsUsedLater(); if (varsUsedLater.find(outvars[0]) == varsUsedLater.end()) { // The variable whose value is calculated here is not used at // all further down the pipeline! We remove the whole // calculation node, toUnlink.emplace(n); } else if (n->getType() == EN::CALCULATION) { // variable is still used later, but... // ...if it's used exactly once later by another calculation, // it's a temporary variable that we can fuse with the other // calculation easily if (n->canThrow() || !static_cast(n)->expression()->isDeterministic()) { continue; } AstNode const* rootNode = static_cast(n)->expression()->node(); if (rootNode->type == NODE_TYPE_REFERENCE) { // if the LET is a simple reference to another variable, e.g. LET a = b // then replace all references to a with references to b bool hasCollectWithOutVariable = false; auto current = n->getFirstParent(); // check first if we have a COLLECT with an INTO later in the query // in this case we must not perform the replacements while (current != nullptr) { if (current->getType() == EN::COLLECT) { if (static_cast(current)->hasOutVariableButNoCount()) { hasCollectWithOutVariable = true; break; } } current = current->getFirstParent(); } if (!hasCollectWithOutVariable) { // no COLLECT found, now replace std::unordered_map replacements; replacements.emplace(outvars[0]->id, static_cast( rootNode->getData())); RedundantCalculationsReplacer finder(replacements); plan->root()->walk(&finder); toUnlink.emplace(n); continue; } } std::unordered_set vars; size_t usageCount = 0; CalculationNode* other = nullptr; auto current = n->getFirstParent(); while (current != nullptr) { current->getVariablesUsedHere(vars); if (vars.find(outvars[0]) != vars.end()) { if (current->getType() == EN::COLLECT) { if (static_cast(current)->hasOutVariableButNoCount()) { // COLLECT with an INTO variable will collect all variables from // the scope, so we shouldn't try to remove or change the meaning // of variables usageCount = 0; break; } } if (current->getType() != EN::CALCULATION) { // don't know how to replace the variable in a non-LET node // abort the search usageCount = 0; break; } // got a LET. we can replace the variable reference in it by // something else ++usageCount; other = static_cast(current); } if (usageCount > 1) { break; } current = current->getFirstParent(); vars.clear(); } if (usageCount == 1) { // our variable is used by exactly one other calculation // now we can replace the reference to our variable in the other // calculation with the variable's expression directly auto otherExpression = other->expression(); TRI_ASSERT(otherExpression != nullptr); if (rootNode->type != NODE_TYPE_ATTRIBUTE_ACCESS && Ast::countReferences(otherExpression->node(), outvars[0]) > 1) { // used more than once... better give up continue; } if (rootNode->isSimple() != otherExpression->node()->isSimple()) { // expression types (V8 vs. non-V8) do not match. give up continue; } if (!n->isInInnerLoop() && rootNode->callsFunction() && other->isInInnerLoop()) { // original expression calls a function and is not contained in a loop // we're about to move this expression into a loop, but we don't want // to move (expensive) function calls into loops continue; } TRI_ASSERT(other != nullptr); otherExpression->replaceVariableReference(outvars[0], rootNode); toUnlink.emplace(n); } } } if (!toUnlink.empty()) { plan->unlinkNodes(toUnlink); } opt->addPlan(std::move(plan), rule, !toUnlink.empty()); } /// @brief useIndex, try to use an index for filtering void arangodb::aql::useIndexesRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { // These are all the nodes where we start traversing (including all // subqueries) SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findEndNodes(nodes, true); std::unordered_map changes; auto cleanupChanges = [&changes]() -> void { for (auto& v : changes) { delete v.second; } changes.clear(); }; TRI_DEFER(cleanupChanges()); bool hasEmptyResult = false; for (auto const& n : nodes) { ConditionFinder finder(plan.get(), &changes, &hasEmptyResult); n->walk(&finder); } if (!changes.empty()) { for (auto& it : changes) { plan->registerNode(it.second); plan->replaceNode(plan->getNodeById(it.first), it.second); // prevent double deletion by cleanupChanges() it.second = nullptr; } opt->addPlan(std::move(plan), rule, true); } else { opt->addPlan(std::move(plan), rule, hasEmptyResult); } } struct SortToIndexNode final : public WalkerWorker { ExecutionPlan* _plan; SortNode* _sortNode; std::vector> _sorts; std::unordered_map _variableDefinitions; bool _modified; public: explicit SortToIndexNode(ExecutionPlan* plan) : _plan(plan), _sortNode(nullptr), _sorts(), _variableDefinitions(), _modified(false) {} bool handleEnumerateCollectionNode( EnumerateCollectionNode* enumerateCollectionNode) { if (_sortNode == nullptr) { return true; } if (enumerateCollectionNode->isInInnerLoop()) { // index node contained in an outer loop. must not optimize away the sort! return true; } SortCondition sortCondition( _sorts, std::vector>(), _variableDefinitions); if (!sortCondition.isEmpty() && sortCondition.isOnlyAttributeAccess() && sortCondition.isUnidirectional()) { // we have found a sort condition, which is unidirectionl // now check if any of the collection's indexes covers it Variable const* outVariable = enumerateCollectionNode->outVariable(); std::vector usedIndexes; auto trx = _plan->getAst()->query()->trx(); size_t coveredAttributes = 0; auto resultPair = trx->getIndexForSortCondition( enumerateCollectionNode->collection()->getName(), &sortCondition, outVariable, enumerateCollectionNode->collection()->count(trx), usedIndexes, coveredAttributes); if (resultPair.second) { // If this bit is set, then usedIndexes has length exactly one // and contains the best index found. auto condition = std::make_unique(_plan->getAst()); condition->normalize(_plan); std::unique_ptr newNode(new IndexNode( _plan, _plan->nextId(), enumerateCollectionNode->vocbase(), enumerateCollectionNode->collection(), outVariable, usedIndexes, condition.get(), sortCondition.isDescending())); condition.release(); auto n = newNode.release(); _plan->registerNode(n); _plan->replaceNode(enumerateCollectionNode, n); _modified = true; if (coveredAttributes == sortCondition.numAttributes()) { // if the index covers the complete sort condition, we can also remove // the sort node _plan->unlinkNode(_plan->getNodeById(_sortNode->id())); } } } return true; // always abort further searching here } bool handleIndexNode(IndexNode* indexNode) { if (_sortNode == nullptr) { return true; } if (indexNode->isInInnerLoop()) { // index node contained in an outer loop. must not optimize away the sort! return true; } auto const& indexes = indexNode->getIndexes(); auto cond = indexNode->condition(); TRI_ASSERT(cond != nullptr); Variable const* outVariable = indexNode->outVariable(); TRI_ASSERT(outVariable != nullptr); auto index = indexes[0]; transaction::Methods* trx = _plan->getAst()->query()->trx(); bool isSorted = false; bool isSparse = false; std::vector> fields = trx->getIndexFeatures(index, isSorted, isSparse); if (indexes.size() != 1) { // can only use this index node if it uses exactly one index or multiple // indexes on exactly the same attributes if (!cond->isSorted()) { // index conditions do not guarantee sortedness return true; } if (isSparse) { return true; } for (auto& idx : indexes) { if (idx != index) { // Can only be sorted iff only one index is used. return true; } } // all indexes use the same attributes and index conditions guarantee // sorted output } TRI_ASSERT(indexes.size() == 1 || cond->isSorted()); // if we get here, we either have one index or multiple indexes on the same // attributes bool handled = false; if (indexes.size() == 1 && isSorted) { // if we have just a single index and we can use it for the filtering // condition, then we can use the index for sorting, too. regardless of it // the index is sparse or not. because the index would only return // non-null attributes anyway, so we do not need to care about null values // when sorting here isSparse = false; } SortCondition sortCondition( _sorts, cond->getConstAttributes(outVariable, !isSparse), _variableDefinitions); bool const isOnlyAttributeAccess = (!sortCondition.isEmpty() && sortCondition.isOnlyAttributeAccess()); if (isOnlyAttributeAccess && isSorted && !isSparse && sortCondition.isUnidirectional() && sortCondition.isDescending() == indexNode->reverse()) { // we have found a sort condition, which is unidirectional and in the same // order as the IndexNode... // now check if the sort attributes match the ones of the index size_t const numCovered = sortCondition.coveredAttributes(outVariable, fields); if (numCovered >= sortCondition.numAttributes()) { // sort condition is fully covered by index... now we can remove the // sort node from the plan _plan->unlinkNode(_plan->getNodeById(_sortNode->id())); // we need to have a sorted result later on, so we will need a sorted // GatherNode in the cluster indexNode->needsGatherNodeSort(true); _modified = true; handled = true; } } if (!handled && isOnlyAttributeAccess && indexes.size() == 1) { // special case... the index cannot be used for sorting, but we only // compare with equality // lookups. now check if the equality lookup attributes are the same as // the index attributes auto root = cond->root(); if (root != nullptr) { auto condNode = root->getMember(0); if (condNode->isOnlyEqualityMatch()) { // now check if the index fields are the same as the sort condition fields // e.g. FILTER c.value1 == 1 && c.value2 == 42 SORT c.value1, c.value2 auto i = index.getIndex(); // some special handling for the MMFiles edge index here, which to the outside // world is an index on attributes _from and _to at the same time, but only one // can be queried at a time // this special handling is required in order to prevent lookups by one of the index // attributes (e.g. _from) and a sort clause on the other index attribte (e.g. _to) // to be treated as the same index attribute, e.g. // FOR doc IN edgeCol FILTER doc._from == ... SORT doc._to ... // can use the index either for lookup or for sorting, but not for both at the same // time. this is because if we do the lookup by _from, the results will be sorted // by _from, and not by _to. if (i->type() == arangodb::Index::IndexType::TRI_IDX_TYPE_EDGE_INDEX && fields.size() == 2) { // looks like MMFiles edge index if (condNode->type == NODE_TYPE_OPERATOR_NARY_AND) { // check all conditions of the index node, and check if we can find _from or _to for (size_t j = 0; j < condNode->numMembers(); ++j) { auto sub = condNode->getMemberUnchecked(j); if (sub->type != NODE_TYPE_OPERATOR_BINARY_EQ) { continue; } auto lhs = sub->getMember(0); if (lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS && lhs->getMember(0)->type == NODE_TYPE_REFERENCE && lhs->getMember(0)->getData() == outVariable) { // check if this is either _from or _to std::string attr = lhs->getString(); if (attr == StaticStrings::FromString || attr == StaticStrings::ToString) { // reduce index fields to just the attribute we found in the index lookup condition fields = {{arangodb::basics::AttributeName(attr, false)} }; } } auto rhs = sub->getMember(1); if (rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS && rhs->getMember(0)->type == NODE_TYPE_REFERENCE && rhs->getMember(0)->getData() == outVariable) { // check if this is either _from or _to std::string attr = rhs->getString(); if (attr == StaticStrings::FromString || attr == StaticStrings::ToString) { // reduce index fields to just the attribute we found in the index lookup condition fields = {{arangodb::basics::AttributeName(attr, false)} }; } } } } } size_t const numCovered = sortCondition.coveredAttributes(outVariable, fields); if (numCovered == sortCondition.numAttributes() && sortCondition.isUnidirectional() && (isSorted || fields.size() >= sortCondition.numAttributes())) { // no need to sort _plan->unlinkNode(_plan->getNodeById(_sortNode->id())); indexNode->reverse(sortCondition.isDescending()); // we need to have a sorted result later on, so we will need a sorted // GatherNode in the cluster indexNode->needsGatherNodeSort(true); _modified = true; } else if (numCovered > 0 && sortCondition.isUnidirectional()) { // remove the first few attributes if they are constant SortNode* sortNode = static_cast(_plan->getNodeById(_sortNode->id())); sortNode->removeConditions(numCovered); _modified = true; } } } } return true; // always abort after we found an IndexNode } bool enterSubquery(ExecutionNode*, ExecutionNode*) override final { return false; } bool before(ExecutionNode* en) override final { switch (en->getType()) { case EN::TRAVERSAL: case EN::SHORTEST_PATH: case EN::ENUMERATE_LIST: case EN::SUBQUERY: case EN::FILTER: return false; // skip. we don't care. case EN::CALCULATION: { auto outvars = en->getVariablesSetHere(); TRI_ASSERT(outvars.size() == 1); _variableDefinitions.emplace( outvars[0]->id, static_cast(en)->expression()->node()); return false; } case EN::SINGLETON: case EN::COLLECT: case EN::INSERT: case EN::REMOVE: case EN::REPLACE: case EN::UPDATE: case EN::UPSERT: case EN::RETURN: case EN::NORESULTS: case EN::SCATTER: case EN::DISTRIBUTE: case EN::GATHER: case EN::REMOTE: case EN::LIMIT: // LIMIT is criterion to stop return true; // abort. case EN::SORT: // pulling two sorts together is done elsewhere. if (!_sorts.empty() || _sortNode != nullptr) { return true; // a different SORT node. abort } _sortNode = static_cast(en); for (auto& it : _sortNode->elements()) { _sorts.emplace_back((it.var)->id, it.ascending); } return false; case EN::INDEX: return handleIndexNode(static_cast(en)); case EN::ENUMERATE_COLLECTION: return handleEnumerateCollectionNode( static_cast(en)); } return true; } }; void arangodb::aql::useIndexForSortRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::SORT, true); bool modified = false; for (auto const& n : nodes) { auto sortNode = static_cast(n); SortToIndexNode finder(plan.get()); sortNode->walk(&finder); if (finder._modified) { modified = true; } } opt->addPlan(std::move(plan), rule, modified); } /// @brief try to remove filters which are covered by indexes void arangodb::aql::removeFiltersCoveredByIndexRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::FILTER, true); std::unordered_set toUnlink; bool modified = false; // this rule may modify the plan in place, but the new plan // may not yet be optimal. so we may pass it into this same // rule again. the default is to continue with the next rule // however int newLevel = 0; for (auto const& node : nodes) { auto fn = static_cast(node); // find the node with the filter expression auto inVar = fn->getVariablesUsedHere(); TRI_ASSERT(inVar.size() == 1); auto setter = plan->getVarSetBy(inVar[0]->id); if (setter == nullptr || setter->getType() != EN::CALCULATION) { continue; } auto calculationNode = static_cast(setter); auto conditionNode = calculationNode->expression()->node(); // build the filter condition auto condition = std::make_unique(plan->getAst()); condition->andCombine(conditionNode); condition->normalize(plan.get()); if (condition->root() == nullptr) { continue; } size_t const n = condition->root()->numMembers(); if (n != 1) { // either no condition or multiple ORed conditions... continue; } bool handled = false; auto current = node; while (current != nullptr) { if (current->getType() == EN::INDEX) { auto indexNode = static_cast(current); // found an index node, now check if the expression is covered by the // index auto indexCondition = indexNode->condition(); if (indexCondition != nullptr && !indexCondition->isEmpty()) { auto const& indexesUsed = indexNode->getIndexes(); if (indexesUsed.size() == 1) { // single index. this is something that we can handle auto newNode = condition->removeIndexCondition( plan.get(), indexNode->outVariable(), indexCondition->root()); if (newNode == nullptr) { // no condition left... // FILTER node can be completely removed toUnlink.emplace(node); // note: we must leave the calculation node intact, in case it is // still used by other nodes in the plan modified = true; handled = true; } else if (newNode != condition->root()) { // some condition is left, but it is a different one than // the one from the FILTER node auto expr = std::make_unique(plan.get(), plan->getAst(), newNode); CalculationNode* cn = new CalculationNode(plan.get(), plan->nextId(), expr.get(), calculationNode->outVariable()); expr.release(); plan->registerNode(cn); plan->replaceNode(setter, cn); modified = true; handled = true; // pass the new plan into this rule again, to optimize even further newLevel = static_cast(rule->level - 1); } } } if (handled) { break; } } if (handled || current->getType() == EN::LIMIT || !current->hasDependency()) { break; } current = current->getFirstDependency(); } } if (!toUnlink.empty()) { plan->unlinkNodes(toUnlink); } opt->addPlan(std::move(plan), rule, modified, newLevel); } /// @brief helper to compute lots of permutation tuples /// a permutation tuple is represented as a single vector together with /// another vector describing the boundaries of the tuples. /// Example: /// data: 0,1,2, 3,4, 5,6 /// starts: 0, 3, 5, (indices of starts of sections) /// means a tuple of 3 permutations of 3, 2 and 2 points respectively /// This function computes the next permutation tuple among the /// lexicographically sorted list of all such tuples. It returns true /// if it has successfully computed this and false if the tuple is already /// the lexicographically largest one. If false is returned, the permutation /// tuple is back to the beginning. static bool NextPermutationTuple(std::vector& data, std::vector& starts) { auto begin = data.begin(); // a random access iterator for (size_t i = starts.size(); i-- != 0;) { std::vector::iterator from = begin + starts[i]; std::vector::iterator to; if (i == starts.size() - 1) { to = data.end(); } else { to = begin + starts[i + 1]; } if (std::next_permutation(from, to)) { return true; } } return false; } /// @brief interchange adjacent EnumerateCollectionNodes in all possible ways void arangodb::aql::interchangeAdjacentEnumerationsRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; std::vector const types = { ExecutionNode::ENUMERATE_COLLECTION, ExecutionNode::ENUMERATE_LIST}; plan->findNodesOfType(nodes, types, true); std::unordered_set nodesSet; for (auto const& n : nodes) { TRI_ASSERT(nodesSet.find(n) == nodesSet.end()); nodesSet.emplace(n); } std::vector nodesToPermute; std::vector permTuple; std::vector starts; // We use that the order of the nodes is such that a node B that is among the // recursive dependencies of a node A is later in the vector. for (auto const& n : nodes) { if (nodesSet.find(n) != nodesSet.end()) { std::vector nn{n}; nodesSet.erase(n); // Now follow the dependencies as long as we see further such nodes: auto nwalker = n; while (true) { if (!nwalker->hasDependency()) { break; } auto dep = nwalker->getFirstDependency(); if (dep->getType() != EN::ENUMERATE_COLLECTION && dep->getType() != EN::ENUMERATE_LIST) { break; } if (n->getType() == EN::ENUMERATE_LIST && dep->getType() == EN::ENUMERATE_LIST) { break; } nwalker = dep; nn.emplace_back(nwalker); nodesSet.erase(nwalker); } if (nn.size() > 1) { // Move it into the permutation tuple: starts.emplace_back(permTuple.size()); for (auto const& nnn : nn) { nodesToPermute.emplace_back(nnn); permTuple.emplace_back(permTuple.size()); } } } } // Now we have collected all the runs of EnumerateCollectionNodes in the // plan, we need to compute all possible permutations of all of them, // independently. This is why we need to compute all permutation tuples. if (!starts.empty()) { NextPermutationTuple(permTuple, starts); // will never return false do { // check if we already have enough plans (plus the one plan that we will // add at the end of this function) if (opt->runOnlyRequiredRules(1)) { // have enough plans. stop permutations break; } // Clone the plan: std::unique_ptr newPlan(plan->clone()); // Find the nodes in the new plan corresponding to the ones in the // old plan that we want to permute: std::vector newNodes; for (size_t j = 0; j < nodesToPermute.size(); j++) { newNodes.emplace_back(newPlan->getNodeById(nodesToPermute[j]->id())); } // Now get going with the permutations: for (size_t i = 0; i < starts.size(); i++) { size_t lowBound = starts[i]; size_t highBound = (i < starts.size() - 1) ? starts[i + 1] : permTuple.size(); // We need to remove the nodes // newNodes[lowBound..highBound-1] in newPlan and replace // them by the same ones in a different order, given by // permTuple[lowBound..highBound-1]. auto parent = newNodes[lowBound]->getFirstParent(); TRI_ASSERT(parent != nullptr); // Unlink all those nodes: for (size_t j = lowBound; j < highBound; j++) { newPlan->unlinkNode(newNodes[j]); } // And insert them in the new order: for (size_t j = highBound; j-- != lowBound;) { newPlan->insertDependency(parent, newNodes[permTuple[j]]); } } // OK, the new plan is ready, let's report it: opt->addPlan(std::move(newPlan), rule, true); } while (NextPermutationTuple(permTuple, starts)); } opt->addPlan(std::move(plan), rule, false); } /// @brief optimize queries in the cluster so that the entire query gets pushed to a single server void arangodb::aql::optimizeClusterSingleShardRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { TRI_ASSERT(arangodb::ServerState::instance()->isCoordinator()); bool wasModified = false; bool done = false; std::unordered_set responsibleServers; auto collections = plan->getAst()->query()->collections(); for (auto const& it : *(collections->collections())) { Collection* c = it.second; TRI_ASSERT(c != nullptr); if (c->numberOfShards() != 1) { // more than one shard for this collection done = true; break; } size_t n = c->responsibleServers(responsibleServers); if (n != 1) { // more than one responsible server for this collection done = true; break; } } if (done || responsibleServers.size() != 1) { opt->addPlan(std::move(plan), rule, wasModified); return; } // we only found a single responsible server, and all collections involved // have exactly one shard // that means we can move the entire query onto that server // TODO: handle Traversals and ShortestPaths here! // TODO: properly handle subqueries here SmallVector::allocator_type::arena_type s; SmallVector nodes{s}; // std::vector types = {ExecutionNode::TRAVERSAL, ExecutionNode::SHORTEST_PATH, ExecutionNode::SUBQUERY}; std::vector types = {ExecutionNode::SHORTEST_PATH, ExecutionNode::SUBQUERY}; plan->findNodesOfType(nodes, types, true); bool hasIncompatibleNodes = !nodes.empty(); nodes.clear(); types = {ExecutionNode::INDEX, ExecutionNode::ENUMERATE_COLLECTION, ExecutionNode::TRAVERSAL}; plan->findNodesOfType(nodes, types, false); if (!nodes.empty() && !hasIncompatibleNodes) { // turn off all other cluster optimization rules now as they are superfluous opt->disableRule(OptimizerRule::optimizeClusterJoinsRule_pass10); opt->disableRule(OptimizerRule::distributeInClusterRule_pass10); opt->disableRule(OptimizerRule::scatterInClusterRule_pass10); opt->disableRule(OptimizerRule::distributeFilternCalcToClusterRule_pass10); opt->disableRule(OptimizerRule::distributeSortToClusterRule_pass10); opt->disableRule(OptimizerRule::removeUnnecessaryRemoteScatterRule_pass10); #ifdef USE_ENTERPRISE opt->disableRule(OptimizerRule::removeSatelliteJoinsRule_pass10); #endif opt->disableRule(OptimizerRule::undistributeRemoveAfterEnumCollRule_pass10); // get first collection from query Collection const* c = getCollection(nodes[0]); TRI_ASSERT(c != nullptr); TRI_vocbase_t* vocbase = plan->getAst()->query()->vocbase(); ExecutionNode* rootNode = plan->root(); // insert a remote node ExecutionNode* remoteNode = new RemoteNode(plan.get(), plan->nextId(), vocbase, c, "", "", ""); plan->registerNode(remoteNode); remoteNode->addDependency(rootNode); // insert a gather node ExecutionNode* gatherNode = new GatherNode(plan.get(), plan->nextId(), vocbase, c); plan->registerNode(gatherNode); gatherNode->addDependency(remoteNode); plan->root(gatherNode, true); wasModified = true; } opt->addPlan(std::move(plan), rule, wasModified); } void arangodb::aql::optimizeClusterJoinsRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { TRI_ASSERT(arangodb::ServerState::instance()->isCoordinator()); bool wasModified = false; SmallVector::allocator_type::arena_type s; SmallVector nodes{s}; std::vector const types = {ExecutionNode::ENUMERATE_COLLECTION, ExecutionNode::INDEX}; plan->findNodesOfType(nodes, types, true); for (auto& n : nodes) { ExecutionNode* current = n->getFirstDependency(); while (current != nullptr) { if (current->getType() == ExecutionNode::ENUMERATE_COLLECTION || current->getType() == ExecutionNode::INDEX) { Collection const* c1 = getCollection(n); Collection const* c2 = getCollection(current); bool qualifies = false; // check how many (different) responsible servers we have for this // collection std::unordered_set responsibleServers; size_t n1 = c1->responsibleServers(responsibleServers); size_t n2 = c2->responsibleServers(responsibleServers); if (responsibleServers.size() == 1 && c1->numberOfShards() == 1 && c2->numberOfShards() == 1) { // a single responsible server. so we can use a shard-local access qualifies = true; } else if ((c1->isSatellite() && (c2->numberOfShards() == 1 || n2 == 1)) || (c2->isSatellite() && (c1->numberOfShards() == 1 || n1 == 1))) { // a satellite collection and another collection with a single shard or single responsible server qualifies = true; } if (!qualifies && n->getType() == EN::INDEX) { Variable const* indexVariable = getVariable(n); Variable const* otherVariable = getVariable(current); std::string dist1 = c1->distributeShardsLike(); std::string dist2 = c2->distributeShardsLike(); // convert cluster collection names into proper collection names if (!dist1.empty()) { auto trx = plan->getAst()->query()->trx(); dist1 = trx->resolver()->getCollectionNameCluster( static_cast(basics::StringUtils::uint64(dist1))); } if (!dist2.empty()) { auto trx = plan->getAst()->query()->trx(); dist2 = trx->resolver()->getCollectionNameCluster( static_cast(basics::StringUtils::uint64(dist2))); } if (dist1 == c2->getName() || dist2 == c1->getName() || (!dist1.empty() && dist1 == dist2)) { // collections have the same "distributeShardsLike" values // so their shards are distributed to the same servers for the // same shardKey values // now check if the number of shardKeys match auto keys1 = c1->shardKeys(); auto keys2 = c2->shardKeys(); if (keys1.size() == keys2.size()) { // same number of shard keys... now check if the shard keys are all used // and whether we only have equality joins Condition const* condition = static_cast(n)->condition(); if (condition != nullptr) { AstNode const* root = condition->root(); if (root != nullptr && root->type == NODE_TYPE_OPERATOR_NARY_OR) { size_t found = 0; size_t numAnds = root->numMembers(); for (size_t i = 0; i < numAnds; ++i) { AstNode const* andNode = root->getMember(i); if (andNode == nullptr) { continue; } TRI_ASSERT(andNode->type == NODE_TYPE_OPERATOR_NARY_AND); std::unordered_set shardKeysFound; size_t numConds = andNode->numMembers(); if (numConds < keys1.size()) { // too few join conditions, so we will definitely not cover all shardKeys break; } for (size_t j = 0; j < numConds; ++j) { AstNode const* condNode = andNode->getMember(j); if (condNode == nullptr || condNode->type != NODE_TYPE_OPERATOR_BINARY_EQ) { // something other than an equality join. we do not support this continue; } // equality comparison // now check if this comparison has the pattern // . == // . auto const* lhs = condNode->getMember(0); auto const* rhs = condNode->getMember(1); if (lhs->type != NODE_TYPE_ATTRIBUTE_ACCESS || rhs->type != NODE_TYPE_ATTRIBUTE_ACCESS) { // something else continue; } AstNode const* lhsData = lhs->getMember(0); AstNode const* rhsData = rhs->getMember(0); if (lhsData->type != NODE_TYPE_REFERENCE || rhsData->type != NODE_TYPE_REFERENCE) { // something else continue; } Variable const* lhsVar = static_cast(lhsData->getData()); Variable const* rhsVar = static_cast(rhsData->getData()); std::string leftString = lhs->getString(); std::string rightString = rhs->getString(); int pos = -1; if (lhsVar == indexVariable && rhsVar == otherVariable && indexOf(keys1, leftString) == indexOf(keys2, rightString)) { pos = indexOf(keys1, leftString); // indexedCollection.shardKeyAttribute == otherCollection.shardKeyAttribute } else if (lhsVar == otherVariable && rhsVar == indexVariable && indexOf(keys2, leftString) == indexOf(keys1, rightString)) { // otherCollection.shardKeyAttribute == indexedCollection.shardKeyAttribute pos = indexOf(keys2, leftString); } // we found a shardKeys match if (pos != -1) { shardKeysFound.emplace(pos); } } // conditions match if (shardKeysFound.size() >= keys1.size()) { // all shard keys covered ++found; } else { // not all shard keys covered break; } } qualifies = (found > 0 && found == numAnds); } } } } } // everything else does not qualify if (qualifies) { wasModified = true; plan->excludeFromScatterGather(current); break; // done for this pair } } else if (current->getType() != ExecutionNode::FILTER && current->getType() != ExecutionNode::CALCULATION && current->getType() != ExecutionNode::LIMIT) { // we allow just these nodes in between and ignore them // we need to stop for all other types of nodes break; } current = current->getFirstDependency(); } } opt->addPlan(std::move(plan), rule, wasModified); } /// @brief scatter operations in cluster /// this rule inserts scatter, gather and remote nodes so operations on sharded /// collections actually work /// it will change plans in place void arangodb::aql::scatterInClusterRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { TRI_ASSERT(arangodb::ServerState::instance()->isCoordinator()); bool wasModified = false; // find subqueries std::unordered_map subqueries; SmallVector::allocator_type::arena_type s; SmallVector subs{s}; plan->findNodesOfType(subs, ExecutionNode::SUBQUERY, true); for (auto& it : subs) { subqueries.emplace(static_cast(it)->getSubquery(), it); } // we are a coordinator. now look in the plan for nodes of type // EnumerateCollectionNode, IndexNode and modification nodes std::vector const types = { ExecutionNode::ENUMERATE_COLLECTION, ExecutionNode::INDEX, ExecutionNode::INSERT, ExecutionNode::UPDATE, ExecutionNode::REPLACE, ExecutionNode::REMOVE, ExecutionNode::UPSERT }; SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, types, true); for (auto& node : nodes) { // found a node we need to replace in the plan auto const& parents = node->getParents(); auto const& deps = node->getDependencies(); TRI_ASSERT(deps.size() == 1); // don't do this if we are already distributing! if (deps[0]->getType() == ExecutionNode::REMOTE && deps[0]->getFirstDependency()->getType() == ExecutionNode::DISTRIBUTE) { continue; } if (plan->shouldExcludeFromScatterGather(node)) { continue; } bool const isRootNode = plan->isRoot(node); plan->unlinkNode(node, true); auto const nodeType = node->getType(); // extract database and collection from plan node TRI_vocbase_t* vocbase = nullptr; Collection const* collection = nullptr; SortElementVector elements; if (nodeType == ExecutionNode::ENUMERATE_COLLECTION) { vocbase = static_cast(node)->vocbase(); collection = static_cast(node)->collection(); } else if (nodeType == ExecutionNode::INDEX) { auto idxNode = static_cast(node); vocbase = idxNode->vocbase(); collection = idxNode->collection(); TRI_ASSERT(collection != nullptr); auto outVars = idxNode->getVariablesSetHere(); TRI_ASSERT(outVars.size() == 1); Variable const* sortVariable = outVars[0]; bool isSortReverse = idxNode->reverse(); auto allIndexes = idxNode->getIndexes(); TRI_ASSERT(!allIndexes.empty()); // Using Index for sort only works if all indexes are equal. auto first = allIndexes[0].getIndex(); // also check if we actually need to bother about the sortedness of the // result, or if we use the index for filtering only if (first->isSorted() && idxNode->needsGatherNodeSort()) { for (auto const& path : first->fieldNames()) { elements.emplace_back(sortVariable, !isSortReverse, path); } for (auto const& it : allIndexes) { if (first != it.getIndex()) { elements.clear(); break; } } } } else if (nodeType == ExecutionNode::INSERT || nodeType == ExecutionNode::UPDATE || nodeType == ExecutionNode::REPLACE || nodeType == ExecutionNode::REMOVE || nodeType == ExecutionNode::UPSERT) { vocbase = static_cast(node)->vocbase(); collection = static_cast(node)->collection(); if (nodeType == ExecutionNode::REMOVE || nodeType == ExecutionNode::UPDATE) { // Note that in the REPLACE or UPSERT case we are not getting here, // since the distributeInClusterRule fires and a DistributionNode is // used. auto* modNode = static_cast(node); modNode->getOptions().ignoreDocumentNotFound = true; } } else { TRI_ASSERT(false); } // insert a scatter node ExecutionNode* scatterNode = new ScatterNode(plan.get(), plan->nextId(), vocbase, collection); plan->registerNode(scatterNode); TRI_ASSERT(!deps.empty()); scatterNode->addDependency(deps[0]); // insert a remote node ExecutionNode* remoteNode = new RemoteNode( plan.get(), plan->nextId(), vocbase, collection, "", "", ""); plan->registerNode(remoteNode); TRI_ASSERT(scatterNode); remoteNode->addDependency(scatterNode); // re-link with the remote node node->addDependency(remoteNode); // insert another remote node remoteNode = new RemoteNode(plan.get(), plan->nextId(), vocbase, collection, "", "", ""); plan->registerNode(remoteNode); TRI_ASSERT(node); remoteNode->addDependency(node); // insert a gather node GatherNode* gatherNode = new GatherNode(plan.get(), plan->nextId(), vocbase, collection); plan->registerNode(gatherNode); TRI_ASSERT(remoteNode); gatherNode->addDependency(remoteNode); // On SmartEdge collections we have 0 shards and we need the elements // to be injected here as well. So do not replace it with > 1 if (!elements.empty() && gatherNode->collection()->numberOfShards() != 1) { gatherNode->elements(elements); } // and now link the gather node with the rest of the plan if (parents.size() == 1) { parents[0]->replaceDependency(deps[0], gatherNode); } // check if the node that we modified was at the end of a subquery auto it = subqueries.find(node); if (it != subqueries.end()) { static_cast((*it).second)->setSubquery(gatherNode, true); } if (isRootNode) { // if we replaced the root node, set a new root node plan->root(gatherNode); } wasModified = true; } opt->addPlan(std::move(plan), rule, wasModified); } /// @brief distribute operations in cluster /// /// this rule inserts distribute, remote nodes so operations on sharded /// collections actually work, this differs from scatterInCluster in that every /// incoming row is only sent to one shard and not all as in scatterInCluster /// /// it will change plans in place void arangodb::aql::distributeInClusterRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { TRI_ASSERT(arangodb::ServerState::instance()->isCoordinator()); bool wasModified = false; // we are a coordinator, we replace the root if it is a modification node // only replace if it is the last node in the plan SmallVector::allocator_type::arena_type a; SmallVector subqueryNodes{a}; // inspect each return node and work upwards to SingletonNode subqueryNodes.push_back(plan->root()); plan->findNodesOfType(subqueryNodes, ExecutionNode::SUBQUERY, true); for (ExecutionNode* subqueryNode : subqueryNodes) { SubqueryNode* snode = nullptr; ExecutionNode* root = nullptr; //only used for asserts bool reachedEnd = false; if (subqueryNode == plan->root()) { snode = nullptr; root = plan->root(); } else { snode = static_cast(subqueryNode); root = snode->getSubquery(); } ExecutionNode* node = root; TRI_ASSERT(node != nullptr); while (node != nullptr) { // loop until we find a modification node or the end of the plan auto nodeType = node->getType(); while (node != nullptr) { // check if there is a node type that needs distribution nodeType = node->getType(); if (nodeType == ExecutionNode::INSERT || nodeType == ExecutionNode::REMOVE || nodeType == ExecutionNode::UPDATE || nodeType == ExecutionNode::REPLACE || nodeType == ExecutionNode::UPSERT) { // found a node! break; } // there is nothing above us if (!node->hasDependency()) { reachedEnd = true; break; } //go further up the tree node = node->getFirstDependency(); } if (reachedEnd){ break; } TRI_ASSERT(node != nullptr); if (node == nullptr) { THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL, "logic error"); } ExecutionNode* originalParent = nullptr; if (node->hasParent()) { auto const& parents = node->getParents(); originalParent = parents[0]; TRI_ASSERT(originalParent != nullptr); TRI_ASSERT(node != root); } else { TRI_ASSERT(node == root); } // when we get here, we have found a matching data-modification node! TRI_ASSERT(nodeType == ExecutionNode::INSERT || nodeType == ExecutionNode::REMOVE || nodeType == ExecutionNode::UPDATE || nodeType == ExecutionNode::REPLACE || nodeType == ExecutionNode::UPSERT); Collection const* collection = static_cast(node)->collection(); #ifdef USE_ENTERPRISE auto ci = ClusterInfo::instance(); auto collInfo = ci->getCollection(collection->vocbase->name(), collection->name); // Throws if collection is not found! if (collInfo->isSmart() && collInfo->type() == TRI_COL_TYPE_EDGE) { node = distributeInClusterRuleSmartEdgeCollection( plan.get(), snode, node, originalParent, wasModified); continue; } #endif bool const defaultSharding = collection->usesDefaultSharding(); if (nodeType == ExecutionNode::REMOVE || nodeType == ExecutionNode::UPDATE) { if (!defaultSharding) { // We have to use a ScatterNode. node = node->getFirstDependency(); continue; } } // In the INSERT and REPLACE cases we use a DistributeNode... TRI_ASSERT(node->hasDependency()); auto const& deps = node->getDependencies(); bool haveAdjusted = false; if (originalParent != nullptr) { // nodes below removed node originalParent->removeDependency(node); //auto planRoot = plan->root(); plan->unlinkNode(node, true); if (snode) { if (snode->getSubquery() == node) { snode->setSubquery(originalParent, true); haveAdjusted = true; } } } else { // no nodes below unlinked node plan->unlinkNode(node, true); if (snode) { snode->setSubquery(deps[0], true); haveAdjusted = true; } else { plan->root(deps[0], true); } } // extract database from plan node TRI_vocbase_t* vocbase = static_cast(node)->vocbase(); // insert a distribute node ExecutionNode* distNode = nullptr; Variable const* inputVariable; if (nodeType == ExecutionNode::INSERT || nodeType == ExecutionNode::REMOVE) { TRI_ASSERT(node->getVariablesUsedHere().size() == 1); // in case of an INSERT, the DistributeNode is responsible for generating // keys if none present bool const createKeys = (nodeType == ExecutionNode::INSERT); inputVariable = node->getVariablesUsedHere()[0]; distNode = new DistributeNode(plan.get(), plan->nextId(), vocbase, collection, inputVariable, inputVariable, createKeys, true); } else if (nodeType == ExecutionNode::REPLACE) { std::vector v = node->getVariablesUsedHere(); if (defaultSharding && v.size() > 1) { // We only look into _inKeyVariable inputVariable = v[1]; } else { // We only look into _inDocVariable inputVariable = v[0]; } distNode = new DistributeNode(plan.get(), plan->nextId(), vocbase, collection, inputVariable, inputVariable, false, v.size() > 1); } else if (nodeType == ExecutionNode::UPDATE) { std::vector v = node->getVariablesUsedHere(); if (v.size() > 1) { // If there is a key variable: inputVariable = v[1]; // This is the _inKeyVariable! This works, since we use a ScatterNode // for non-default-sharding attributes. } else { // was only UPDATE IN inputVariable = v[0]; } distNode = new DistributeNode(plan.get(), plan->nextId(), vocbase, collection, inputVariable, inputVariable, false, v.size() > 1); } else if (nodeType == ExecutionNode::UPSERT) { // an UPSERT node has two input variables! std::vector v(node->getVariablesUsedHere()); TRI_ASSERT(v.size() >= 2); auto d = new DistributeNode(plan.get(), plan->nextId(), vocbase, collection, v[0], v[1], true, true); d->setAllowSpecifiedKeys(true); distNode = static_cast(d); } else { TRI_ASSERT(false); THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL, "logic error"); } TRI_ASSERT(distNode != nullptr); plan->registerNode(distNode); distNode->addDependency(deps[0]); // insert a remote node ExecutionNode* remoteNode = new RemoteNode(plan.get(), plan->nextId(), vocbase, collection, "", "", ""); plan->registerNode(remoteNode); remoteNode->addDependency(distNode); // re-link with the remote node node->addDependency(remoteNode); // insert another remote node remoteNode = new RemoteNode(plan.get(), plan->nextId(), vocbase, collection, "", "", ""); plan->registerNode(remoteNode); remoteNode->addDependency(node); // insert a gather node ExecutionNode* gatherNode = new GatherNode(plan.get(), plan->nextId(), vocbase, collection); plan->registerNode(gatherNode); gatherNode->addDependency(remoteNode); if (originalParent != nullptr) { // we did not replace the root node TRI_ASSERT(gatherNode); originalParent->addDependency(gatherNode); } else { // we replaced the root node, set a new root node if (snode) { if (snode->getSubquery() == node || haveAdjusted) { snode->setSubquery(gatherNode, true); } } else { plan->root(gatherNode, true); } } wasModified = true; node = distNode; } } // for end nodes in plan opt->addPlan(std::move(plan), rule, wasModified); } void arangodb::aql::collectInClusterRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { TRI_ASSERT(arangodb::ServerState::instance()->isCoordinator()); bool wasModified = false; SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::COLLECT, true); std::unordered_set allUsed; for (auto& node : nodes) { allUsed.clear(); auto used = node->getVariablesUsedHere(); // found a node we need to replace in the plan auto const& deps = node->getDependencies(); TRI_ASSERT(deps.size() == 1); auto collectNode = static_cast(node); // look for next remote node GatherNode* gatherNode = nullptr; auto current = node->getFirstDependency(); while (current != nullptr) { bool eligible = true; // check if any of the nodes we pass use a variable that will not be // available after we insert a new COLLECT on top of it (note: COLLECT // will eliminate all variables from the scope but its own) for (auto const& it : current->getVariablesUsedHere()) { if (current->getType() != EN::GATHER) { // Gather nodes are taken care of separately below allUsed.emplace(it); } } for (auto const& it : current->getVariablesSetHere()) { if (std::find(used.begin(), used.end(), it) != used.end()) { eligible = false; break; } } if (!eligible) { break; } if (current->getType() == ExecutionNode::GATHER) { gatherNode = static_cast(current); } else if (current->getType() == ExecutionNode::REMOTE) { auto previous = current->getFirstDependency(); // now we are on a DB server // we may have moved another CollectNode here already. if so, we need to // move the new CollectNode to the front of multiple CollectNodes ExecutionNode* target = current; while (previous != nullptr && previous->getType() == ExecutionNode::COLLECT) { target = previous; previous = previous->getFirstDependency(); } if (previous != nullptr) { for (auto const& otherVariable : allUsed) { auto const setHere = collectNode->getVariablesSetHere(); if (std::find(setHere.begin(), setHere.end(), otherVariable) == setHere.end()) { eligible = false; break; } } if (!eligible) { break; } bool removeGatherNodeSort = false; if (collectNode->aggregationMethod() == CollectOptions::CollectMethod::COUNT) { // clone a COLLECT WITH COUNT operation from the coordinator to the DB server(s), and // leave an aggregate COLLECT node on the coordinator for total aggregation // add a new CollectNode on the DB server to do the actual counting auto outVariable = plan->getAst()->variables()->createTemporaryVariable(); auto dbCollectNode = new CollectNode(plan.get(), plan->nextId(), collectNode->getOptions(), collectNode->groupVariables(), collectNode->aggregateVariables(), nullptr, outVariable, std::vector(), collectNode->variableMap(), true, false); plan->registerNode(dbCollectNode); dbCollectNode->addDependency(previous); target->replaceDependency(previous, dbCollectNode); dbCollectNode->aggregationMethod(collectNode->aggregationMethod()); dbCollectNode->specialized(); // re-use the existing CollectNode on the coordinator to aggregate the // counts of the DB servers std::vector>> aggregateVariables; aggregateVariables.emplace_back(std::make_pair(collectNode->outVariable(), std::make_pair(outVariable, "SUM"))); collectNode->aggregationMethod(CollectOptions::CollectMethod::SORTED); collectNode->count(false); collectNode->setAggregateVariables(aggregateVariables); collectNode->clearOutVariable(); removeGatherNodeSort = true; } else if (collectNode->aggregationMethod() == CollectOptions::CollectMethod::DISTINCT) { // clone a COLLECT DISTINCT operation from the coordinator to the DB server(s), and // leave an aggregate COLLECT node on the coordinator for total aggregation // create a new result variable auto const& groupVars = collectNode->groupVariables(); TRI_ASSERT(!groupVars.empty()); auto out = plan->getAst()->variables()->createTemporaryVariable(); std::vector> const groupVariables{std::make_pair(out, groupVars[0].second)}; auto dbCollectNode = new CollectNode(plan.get(), plan->nextId(), collectNode->getOptions(), groupVariables, collectNode->aggregateVariables(), nullptr, nullptr, std::vector(), collectNode->variableMap(), false, true); plan->registerNode(dbCollectNode); dbCollectNode->addDependency(previous); target->replaceDependency(previous, dbCollectNode); dbCollectNode->aggregationMethod(collectNode->aggregationMethod()); dbCollectNode->specialized(); // will set the input of the coordinator's collect node to the new variable produced on the DB servers auto copy = collectNode->groupVariables(); TRI_ASSERT(!copy.empty()); copy[0].second = out; collectNode->groupVariables(copy); removeGatherNodeSort = true; } else if (!collectNode->groupVariables().empty() && (!collectNode->hasOutVariable() || collectNode->count())) { // clone a COLLECT v1 = expr, v2 = expr ... operation from the coordinator to the DB server(s), // and leave an aggregate COLLECT node on the coordinator for total aggregation std::vector>> aggregateVariables; if (!collectNode->aggregateVariables().empty()) { for (auto const& it : collectNode->aggregateVariables()) { if (it.second.second == "SUM" || it.second.second == "MAX" || it.second.second == "MIN" || it.second.second == "COUNT" || it.second.second == "LENGTH") { auto outVariable = plan->getAst()->variables()->createTemporaryVariable(); aggregateVariables.emplace_back(std::make_pair(outVariable, std::make_pair(it.second.first, it.second.second))); } else { eligible = false; break; } } } if (!eligible) { break; } Variable const* outVariable = nullptr; if (collectNode->count()) { outVariable = plan->getAst()->variables()->createTemporaryVariable(); } // create new group variables auto const& groupVars = collectNode->groupVariables(); std::vector> outVars; outVars.reserve(groupVars.size()); std::unordered_map replacements; for (auto const& it : groupVars) { // create new out variables auto out = plan->getAst()->variables()->createTemporaryVariable(); replacements.emplace(it.second, out); outVars.emplace_back(out, it.second); } auto dbCollectNode = new CollectNode(plan.get(), plan->nextId(), collectNode->getOptions(), outVars, aggregateVariables, nullptr, outVariable, std::vector(), collectNode->variableMap(), collectNode->count(), false); plan->registerNode(dbCollectNode); dbCollectNode->addDependency(previous); target->replaceDependency(previous, dbCollectNode); dbCollectNode->aggregationMethod(collectNode->aggregationMethod()); dbCollectNode->specialized(); std::vector> copy; size_t i = 0; for (auto const& it : collectNode->groupVariables()) { // replace input variables copy.emplace_back(std::make_pair(it.first, outVars[i].first)); ++i; } collectNode->groupVariables(copy); if (collectNode->count()) { std::vector>> aggregateVariables; aggregateVariables.emplace_back(std::make_pair(collectNode->outVariable(), std::make_pair(outVariable, "SUM"))); collectNode->count(false); collectNode->setAggregateVariables(aggregateVariables); collectNode->clearOutVariable(); } else { size_t i = 0; for (auto& it : collectNode->aggregateVariables()) { it.second.first = aggregateVariables[i].first; if (it.second.second == "COUNT" || it.second.second == "LENGTH") { // COUNT/LENGTH need to be converted to SUM on coordinator it.second.second = "SUM"; } ++i; } } removeGatherNodeSort = (dbCollectNode->aggregationMethod() != CollectOptions::CollectMethod::SORTED); // in case we need to keep the sortedness of the GatherNode, // we may need to replace some variable references in it due // to the changes we made to the COLLECT node if (gatherNode != nullptr) { SortElementVector& elements = gatherNode->elements(); if (!removeGatherNodeSort && !replacements.empty() && !elements.empty()) { std::string cmp; std::string other; basics::StringBuffer buffer(128, false); // look for all sort elements in the GatherNode and replace them if they // match what we have changed for (auto& it : elements) { // replace variables auto it2 = replacements.find(it.var); if (it2 != replacements.end()) { // match with our replacement table it.var = (*it2).second; it.attributePath.clear(); } else { // no match. now check all our replacements and compare how their // sources are actually calculated (e.g. #2 may mean "foo.bar") cmp = it.toString(); for (auto const& it3 : replacements) { auto setter = plan->getVarSetBy(it3.first->id); if (setter == nullptr || setter->getType() != EN::CALCULATION) { continue; } auto* expr = static_cast(setter)->expression(); if (expr == nullptr) { continue; } other.clear(); try { buffer.clear(); expr->stringify(&buffer); other = std::string(buffer.c_str(), buffer.size()); } catch (...) { } if (other == cmp) { // finally a match! it.var = it3.second; it.attributePath.clear(); break; } } } } } } } else { // all other cases cannot be optimized break; } if (gatherNode != nullptr && removeGatherNodeSort) { // remove sort(s) from GatherNode if we can gatherNode->clearElements(); } wasModified = true; } break; } current = current->getFirstDependency(); } } opt->addPlan(std::move(plan), rule, wasModified); } /// @brief move filters up into the cluster distribution part of the plan /// this rule modifies the plan in place /// filters are moved as far up in the plan as possible to make result sets /// as small as possible as early as possible void arangodb::aql::distributeFilternCalcToClusterRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { bool modified = false; SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::GATHER, true); for (auto& n : nodes) { auto const& remoteNodeList = n->getDependencies(); TRI_ASSERT(remoteNodeList.size() > 0); auto rn = remoteNodeList[0]; if (!n->hasParent()) { continue; } std::unordered_set varsSetHere; auto parents = n->getParents(); TRI_ASSERT(!parents.empty()); while (true) { TRI_ASSERT(!parents.empty()); bool stopSearching = false; auto inspectNode = parents[0]; TRI_ASSERT(inspectNode != nullptr); switch (inspectNode->getType()) { case EN::ENUMERATE_LIST: case EN::SINGLETON: case EN::INSERT: case EN::REMOVE: case EN::REPLACE: case EN::UPDATE: case EN::UPSERT: { for (auto& v : inspectNode->getVariablesSetHere()) { varsSetHere.emplace(v); } parents = inspectNode->getParents(); continue; } case EN::COLLECT: case EN::SUBQUERY: case EN::RETURN: case EN::NORESULTS: case EN::SCATTER: case EN::DISTRIBUTE: case EN::GATHER: case EN::REMOTE: case EN::LIMIT: case EN::SORT: case EN::INDEX: case EN::ENUMERATE_COLLECTION: case EN::TRAVERSAL: case EN::SHORTEST_PATH: // do break stopSearching = true; break; case EN::CALCULATION: // check if the expression can be executed on a DB server safely if (!static_cast(inspectNode)->expression()->canRunOnDBServer()) { stopSearching = true; break; } // intentionally falls through case EN::FILTER: for (auto& v : inspectNode->getVariablesUsedHere()) { if (varsSetHere.find(v) != varsSetHere.end()) { // do not move over the definition of variables that we need stopSearching = true; break; } } if (!stopSearching) { // remember our cursor... parents = inspectNode->getParents(); // then unlink the filter/calculator from the plan plan->unlinkNode(inspectNode); // and re-insert into plan in front of the remoteNode plan->insertDependency(rn, inspectNode); modified = true; // ready to rumble! } break; } if (stopSearching) { break; } } } opt->addPlan(std::move(plan), rule, modified); } /// @brief move sorts up into the cluster distribution part of the plan /// this rule modifies the plan in place /// sorts are moved as far up in the plan as possible to make result sets /// as small as possible as early as possible /// /// filters are not pushed beyond limits void arangodb::aql::distributeSortToClusterRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::GATHER, true); bool modified = false; for (auto& n : nodes) { auto const& remoteNodeList = n->getDependencies(); auto gatherNode = static_cast(n); TRI_ASSERT(remoteNodeList.size() > 0); auto rn = remoteNodeList[0]; if (!n->hasParent()) { continue; } auto parents = n->getParents(); while (true) { TRI_ASSERT(!parents.empty()); bool stopSearching = false; auto inspectNode = parents[0]; TRI_ASSERT(inspectNode != nullptr); switch (inspectNode->getType()) { case EN::ENUMERATE_LIST: case EN::SINGLETON: case EN::COLLECT: case EN::INSERT: case EN::REMOVE: case EN::REPLACE: case EN::UPDATE: case EN::UPSERT: case EN::CALCULATION: case EN::FILTER: case EN::SUBQUERY: case EN::RETURN: case EN::NORESULTS: case EN::SCATTER: case EN::DISTRIBUTE: case EN::GATHER: case EN::REMOTE: case EN::LIMIT: case EN::INDEX: case EN::TRAVERSAL: case EN::SHORTEST_PATH: case EN::ENUMERATE_COLLECTION: // For all these, we do not want to pull a SortNode further down // out to the DBservers, note that potential FilterNodes and // CalculationNodes that can be moved to the DBservers have // already been moved over by the distribute-filtercalc-to-cluster // rule which is done first. stopSearching = true; break; case EN::SORT: auto thisSortNode = static_cast(inspectNode); // remember our cursor... parents = inspectNode->getParents(); // then unlink the filter/calculator from the plan plan->unlinkNode(inspectNode); // and re-insert into plan in front of the remoteNode if (thisSortNode->_reinsertInCluster) { plan->insertDependency(rn, inspectNode); } // On SmartEdge collections we have 0 shards and we need the elements // to be injected here as well. So do not replace it with > 1 if (gatherNode->collection()->numberOfShards() != 1) { gatherNode->elements(thisSortNode->elements()); } modified = true; // ready to rumble! } if (stopSearching) { break; } } } opt->addPlan(std::move(plan), rule, modified); } /// @brief try to get rid of a RemoteNode->ScatterNode combination which has /// only a SingletonNode and possibly some CalculationNodes as dependencies void arangodb::aql::removeUnnecessaryRemoteScatterRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::REMOTE, true); std::unordered_set toUnlink; for (auto& n : nodes) { // check if the remote node is preceeded by a scatter node and any number of // calculation and singleton nodes. if yes, remove remote and scatter if (!n->hasDependency()) { continue; } auto const dep = n->getFirstDependency(); if (dep->getType() != EN::SCATTER) { continue; } bool canOptimize = true; auto node = dep; while (node != nullptr) { auto const& d = node->getDependencies(); if (d.size() != 1) { break; } node = d[0]; if (!plan->shouldExcludeFromScatterGather(node)) { if (node->getType() != EN::SINGLETON && node->getType() != EN::CALCULATION && node->getType() != EN::FILTER) { // found some other node type... // this disqualifies the optimization canOptimize = false; break; } if (node->getType() == EN::CALCULATION) { auto calc = static_cast(node); // check if the expression can be executed on a DB server safely if (!calc->expression()->canRunOnDBServer()) { canOptimize = false; break; } } } } if (canOptimize) { toUnlink.emplace(n); toUnlink.emplace(dep); } } if (!toUnlink.empty()) { plan->unlinkNodes(toUnlink); } opt->addPlan(std::move(plan), rule, !toUnlink.empty()); } /// WalkerWorker for restrictToSingleShard class RestrictToSingleShardChecker final : public WalkerWorker { ExecutionPlan* _plan; std::unordered_map> _shardsUsed; bool _stop; public: explicit RestrictToSingleShardChecker(ExecutionPlan* plan) : _plan(plan), _stop(false) {} bool isSafeForOptimization() const { // we have found something in the execution plan that will // render the optimization unsafe return (!_stop && !_plan->getAst()->functionsMayAccessDocuments()); } bool isSafeForOptimization(aql::Collection const* collection, std::string const& shardId) const { // check how often the collection was used in the query auto it = _shardsUsed.find(collection); if (it != _shardsUsed.end()) { auto const& it2 = (*it).second; if (it2.size() != 1) { // unsafe, more than a single shard found! return false; } if (it2.find(shardId) != it2.end()) { // we only have one shard, and it is the shard we are looking for! return true; } // unsafe for optimization return false; } // oops, getting asked for a collection that we have not tracked // seems like an internal error TRI_ASSERT(false); return false; } bool enterSubquery(ExecutionNode*, ExecutionNode*) override final { return true; } bool before(ExecutionNode* en) override final { switch (en->getType()) { case EN::TRAVERSAL: case EN::SHORTEST_PATH: { _stop = true; return true; // abort enumerating, we are done already! } case EN::INDEX: { // track usage of the collection auto collection = static_cast(en)->collection(); std::string shardId = getSingleShardId(_plan, en, collection); if (shardId.empty()) { _shardsUsed[collection].emplace("all"); } else { _shardsUsed[collection].emplace(shardId); } break; } case EN::ENUMERATE_COLLECTION: { // track usage of the collection auto collection = static_cast(en)->collection(); _shardsUsed[collection].emplace("all"); break; } case EN::UPSERT: { // track usage of the collection auto collection = static_cast(en)->collection(); _shardsUsed[collection].emplace("all"); break; } case EN::INSERT: case EN::REPLACE: case EN::UPDATE: case EN::REMOVE: { auto collection = static_cast(en)->collection(); std::string shardId = getSingleShardId(_plan, en, collection); if (shardId.empty()) { _shardsUsed[collection].emplace("all"); } else { _shardsUsed[collection].emplace(shardId); } break; } default: { // we don't care about other execution node types here break; } } return false; // go on } }; /// @brief try to restrict fragments to a single shard if possible void arangodb::aql::restrictToSingleShardRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { TRI_ASSERT(arangodb::ServerState::instance()->isCoordinator()); bool wasModified = false; RestrictToSingleShardChecker finder(plan.get()); plan->root()->walk(&finder); if (!finder.isSafeForOptimization()) { // found something in the execution plan that renders the optimization // unsafe, so do not optimize opt->addPlan(std::move(plan), rule, wasModified); return; } SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::REMOTE, true); std::unordered_set toUnlink; for (auto& node : nodes) { TRI_ASSERT(node->getType() == ExecutionNode::REMOTE); ExecutionNode* current = node->getFirstDependency(); while (current != nullptr) { auto const currentType = current->getType(); if (currentType == ExecutionNode::INSERT || currentType == ExecutionNode::UPDATE || currentType == ExecutionNode::REPLACE || currentType == ExecutionNode::REMOVE) { auto collection = static_cast(current)->collection(); std::string shardId = getSingleShardId(plan.get(), current, collection); if (!shardId.empty() && finder.isSafeForOptimization(collection, shardId)) { wasModified = true; static_cast(node)->ownName(shardId); // we are on a single shard. we must not ignore not-found documents now auto* modNode = static_cast(current); modNode->getOptions().ignoreDocumentNotFound = false; auto deps = current->getDependencies(); if (deps.size() && deps[0]->getType() == ExecutionNode::REMOTE) { // if we can apply the single-shard optimization, but still have a // REMOTE node in front of us, we can probably move the remote parts // of the query to our side. this is only the case if the remote part // does not call any remote parts itself std::unordered_set toRemove; auto c = deps[0]; toRemove.emplace(c); while (true) { if (c->getType() == EN::SCATTER || c->getType() == EN::DISTRIBUTE) { toRemove.emplace(c); } c = c->getFirstDependency(); if (c == nullptr) { // reached the end break; } if (c->getType() == EN::REMOTE || c->getType() == EN::SUBQUERY) { toRemove.clear(); break; } if (c->getType() == EN::CALCULATION) { auto cn = static_cast(c); auto expr = cn->expression(); if (expr != nullptr && !expr->canRunOnDBServer()) { // found something that must not run on a DB server, // but that must run on a coordinator. stop optimization here! toRemove.clear(); break; } } } for (auto const& it : toRemove) { toUnlink.emplace(it); } } } break; } else if (currentType == ExecutionNode::INDEX) { auto collection = static_cast(current)->collection(); std::string shardId = getSingleShardId(plan.get(), current, collection); if (!shardId.empty() && finder.isSafeForOptimization(collection, shardId)) { wasModified = true; static_cast(node)->ownName(shardId); } break; } else if (currentType == ExecutionNode::UPSERT || currentType == ExecutionNode::REMOTE || currentType == ExecutionNode::DISTRIBUTE || currentType == ExecutionNode::SINGLETON) { // we reached a new snippet or the end of the plan - we can abort searching now // additionally, we cannot yet handle UPSERT well break; } current = current->getFirstDependency(); } } if (!toUnlink.empty()) { TRI_ASSERT(wasModified); plan->unlinkNodes(toUnlink); } opt->addPlan(std::move(plan), rule, wasModified); } /// WalkerWorker for undistributeRemoveAfterEnumColl class RemoveToEnumCollFinder final : public WalkerWorker { ExecutionPlan* _plan; std::unordered_set& _toUnlink; bool _remove; bool _scatter; bool _gather; ExecutionNode* _enumColl; ExecutionNode* _setter; const Variable* _variable; ExecutionNode* _lastNode; public: RemoveToEnumCollFinder(ExecutionPlan* plan, std::unordered_set& toUnlink) : _plan(plan), _toUnlink(toUnlink), _remove(false), _scatter(false), _gather(false), _enumColl(nullptr), _setter(nullptr), _variable(nullptr), _lastNode(nullptr) {} ~RemoveToEnumCollFinder() {} bool before(ExecutionNode* en) override final { switch (en->getType()) { case EN::REMOVE: { if (_remove) { break; } // find the variable we are removing . . . auto rn = static_cast(en); auto varsToRemove = rn->getVariablesUsedHere(); // remove nodes always have one input variable TRI_ASSERT(varsToRemove.size() == 1); _setter = _plan->getVarSetBy(varsToRemove[0]->id); TRI_ASSERT(_setter != nullptr); auto enumColl = _setter; if (_setter->getType() == EN::CALCULATION) { // this should be an attribute access for _key auto cn = static_cast(_setter); auto expr = cn->expression(); if (expr->isAttributeAccess()) { // check the variable is the same as the remove variable auto vars = cn->getVariablesSetHere(); if (vars.size() != 1 || vars[0]->id != varsToRemove[0]->id) { break; // abort . . . } // check the remove node's collection is sharded over _key std::vector shardKeys = rn->collection()->shardKeys(); if (shardKeys.size() != 1 || shardKeys[0] != StaticStrings::KeyString) { break; // abort . . . } // set the varsToRemove to the variable in the expression of this // node and also define enumColl varsToRemove = cn->getVariablesUsedHere(); TRI_ASSERT(varsToRemove.size() == 1); enumColl = _plan->getVarSetBy(varsToRemove[0]->id); TRI_ASSERT(_setter != nullptr); } else if (expr->node() && expr->node()->isObject()) { auto n = expr->node(); if (n == nullptr) { break; } // note for which shard keys we need to look for auto shardKeys = rn->collection()->shardKeys(); std::unordered_set toFind; for (auto const& it : shardKeys) { toFind.emplace(it); } // for REMOVE, we must also know the _key value, otherwise // REMOVE will not work toFind.emplace(StaticStrings::KeyString); // go through the input object attribute by attribute // and look for our shard keys Variable const* lastVariable = nullptr; bool doOptimize = true; for (size_t i = 0; i < n->numMembers(); ++i) { auto sub = n->getMember(i); if (sub->type != NODE_TYPE_OBJECT_ELEMENT) { continue; } auto it = toFind.find(sub->getString()); if (it != toFind.end()) { // we found one of the shard keys! // remove the attribute from our to-do list auto value = sub->getMember(0); if (value->type == NODE_TYPE_ATTRIBUTE_ACCESS) { // check if all values for the shard keys are referring to the same // FOR loop variable auto var = value->getMember(0); if (var->type == NODE_TYPE_REFERENCE) { auto accessedVariable = static_cast(var->getData()); if (lastVariable == nullptr) { lastVariable = accessedVariable; } else if (lastVariable != accessedVariable) { doOptimize = false; break; } toFind.erase(it); } } } } if (!toFind.empty() || !doOptimize || lastVariable == nullptr) { // not all shard keys covered, or different source variables in use break; } TRI_ASSERT(lastVariable != nullptr); enumColl = _plan->getVarSetBy(lastVariable->id); } else { // cannot optimize this type of input break; } } if (enumColl->getType() != EN::ENUMERATE_COLLECTION && enumColl->getType() != EN::INDEX) { break; // abort . . . } if (enumColl->getType() == EN::ENUMERATE_COLLECTION && !dynamic_cast(enumColl)->projections().empty()) { // cannot handle projections yet break; } _enumColl = enumColl; if (getCollection(_enumColl) != rn->collection()) { break; // abort . . . } _variable = varsToRemove[0]; // the variable we'll remove _remove = true; _lastNode = en; return false; // continue . . . } case EN::REMOTE: { _toUnlink.emplace(en); _lastNode = en; return false; // continue . . . } case EN::DISTRIBUTE: case EN::SCATTER: { if (_scatter) { // met more than one scatter node break; // abort . . . } _scatter = true; _toUnlink.emplace(en); _lastNode = en; return false; // continue . . . } case EN::GATHER: { if (_gather) { // met more than one gather node break; // abort . . . } _gather = true; _toUnlink.emplace(en); _lastNode = en; return false; // continue . . . } case EN::FILTER: { _lastNode = en; return false; // continue . . . } case EN::CALCULATION: { TRI_ASSERT(_setter != nullptr); if (_setter->getType() == EN::CALCULATION && _setter->id() == en->id()) { _lastNode = en; return false; // continue . . . } if (_lastNode == nullptr || _lastNode->getType() != EN::FILTER) { // doesn't match the last filter node break; // abort . . . } auto cn = static_cast(en); auto fn = static_cast(_lastNode); // check these are a Calc-Filter pair if (cn->getVariablesSetHere()[0]->id != fn->getVariablesUsedHere()[0]->id) { break; // abort . . . } // check that we are filtering/calculating something with the variable // we are to remove auto varsUsedHere = cn->getVariablesUsedHere(); if (varsUsedHere.size() != 1) { break; // abort . . . } if (varsUsedHere[0]->id != _variable->id) { break; } _lastNode = en; return false; // continue . . . } case EN::ENUMERATE_COLLECTION: case EN::INDEX: { // check that we are enumerating the variable we are to remove // and that we have already seen a remove node TRI_ASSERT(_enumColl != nullptr); if (en->id() != _enumColl->id()) { break; } return true; // reached the end! } case EN::SINGLETON: case EN::ENUMERATE_LIST: case EN::SUBQUERY: case EN::COLLECT: case EN::INSERT: case EN::REPLACE: case EN::UPDATE: case EN::UPSERT: case EN::RETURN: case EN::NORESULTS: case EN::LIMIT: case EN::SORT: case EN::TRAVERSAL: case EN::SHORTEST_PATH: { // if we meet any of the above, then we abort . . . } } _toUnlink.clear(); return true; } }; /// @brief recognizes that a RemoveNode can be moved to the shards. void arangodb::aql::undistributeRemoveAfterEnumCollRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::REMOVE, true); std::unordered_set toUnlink; for (auto& n : nodes) { RemoveToEnumCollFinder finder(plan.get(), toUnlink); n->walk(&finder); } bool modified = false; if (!toUnlink.empty()) { plan->unlinkNodes(toUnlink); modified = true; } opt->addPlan(std::move(plan), rule, modified); } /// @brief auxilliary struct for finding common nodes in OR conditions struct CommonNodeFinder { std::vector possibleNodes; bool find(AstNode const* node, AstNodeType condition, AstNode const*& commonNode, std::string& commonName) { if (node->type == NODE_TYPE_OPERATOR_BINARY_OR) { return (find(node->getMember(0), condition, commonNode, commonName) && find(node->getMember(1), condition, commonNode, commonName)); } if (node->type == NODE_TYPE_VALUE) { possibleNodes.clear(); return true; } if (node->type == condition || (condition != NODE_TYPE_OPERATOR_BINARY_EQ && (node->type == NODE_TYPE_OPERATOR_BINARY_LE || node->type == NODE_TYPE_OPERATOR_BINARY_LT || node->type == NODE_TYPE_OPERATOR_BINARY_GE || node->type == NODE_TYPE_OPERATOR_BINARY_GT || node->type == NODE_TYPE_OPERATOR_BINARY_IN))) { auto lhs = node->getMember(0); auto rhs = node->getMember(1); bool const isIn = (node->type == NODE_TYPE_OPERATOR_BINARY_IN && rhs->isArray()); if (node->type == NODE_TYPE_OPERATOR_BINARY_IN && rhs->type == NODE_TYPE_EXPANSION) { // ooh, cannot optimize this (yet) possibleNodes.clear(); return false; } if (!isIn && lhs->isConstant()) { commonNode = rhs; commonName = commonNode->toString(); possibleNodes.clear(); return true; } if (rhs->isConstant()) { commonNode = lhs; commonName = commonNode->toString(); possibleNodes.clear(); return true; } if (rhs->type == NODE_TYPE_FCALL || rhs->type == NODE_TYPE_FCALL_USER || rhs->type == NODE_TYPE_REFERENCE) { commonNode = lhs; commonName = commonNode->toString(); possibleNodes.clear(); return true; } if (!isIn && (lhs->type == NODE_TYPE_FCALL || lhs->type == NODE_TYPE_FCALL_USER || lhs->type == NODE_TYPE_REFERENCE)) { commonNode = rhs; commonName = commonNode->toString(); possibleNodes.clear(); return true; } if (!isIn && (lhs->type == NODE_TYPE_ATTRIBUTE_ACCESS || lhs->type == NODE_TYPE_INDEXED_ACCESS)) { if (possibleNodes.size() == 2) { for (size_t i = 0; i < 2; i++) { if (lhs->toString() == possibleNodes[i]->toString()) { commonNode = possibleNodes[i]; commonName = commonNode->toString(); possibleNodes.clear(); return true; } } // don't return, must consider the other side of the condition } else { possibleNodes.emplace_back(lhs); } } if (rhs->type == NODE_TYPE_ATTRIBUTE_ACCESS || rhs->type == NODE_TYPE_INDEXED_ACCESS) { if (possibleNodes.size() == 2) { for (size_t i = 0; i < 2; i++) { if (rhs->toString() == possibleNodes[i]->toString()) { commonNode = possibleNodes[i]; commonName = commonNode->toString(); possibleNodes.clear(); return true; } } return false; } else { possibleNodes.emplace_back(rhs); return true; } } } possibleNodes.clear(); return (!commonName.empty()); } }; /// @brief auxilliary struct for the OR-to-IN conversion struct OrSimplifier { Ast* ast; ExecutionPlan* plan; OrSimplifier(Ast* ast, ExecutionPlan* plan) : ast(ast), plan(plan) {} std::string stringifyNode(AstNode const* node) const { try { return node->toString(); } catch (...) { } return std::string(); } bool qualifies(AstNode const* node, std::string& attributeName) const { if (node->isConstant()) { return false; } if (node->type == NODE_TYPE_ATTRIBUTE_ACCESS || node->type == NODE_TYPE_INDEXED_ACCESS || node->type == NODE_TYPE_REFERENCE) { attributeName = stringifyNode(node); return true; } return false; } bool detect(AstNode const* node, bool preferRight, std::string& attributeName, AstNode const*& attr, AstNode const*& value) const { attributeName.clear(); if (node->type == NODE_TYPE_OPERATOR_BINARY_EQ) { auto lhs = node->getMember(0); auto rhs = node->getMember(1); if (!preferRight && qualifies(lhs, attributeName)) { if (rhs->isDeterministic() && !rhs->canThrow()) { attr = lhs; value = rhs; return true; } } if (qualifies(rhs, attributeName)) { if (lhs->isDeterministic() && !lhs->canThrow()) { attr = rhs; value = lhs; return true; } } // intentionally falls through } else if (node->type == NODE_TYPE_OPERATOR_BINARY_IN) { auto lhs = node->getMember(0); auto rhs = node->getMember(1); if (rhs->isArray() && qualifies(lhs, attributeName)) { if (rhs->isDeterministic() && !rhs->canThrow()) { attr = lhs; value = rhs; return true; } } // intentionally falls through } return false; } AstNode* buildValues(AstNode const* attr, AstNode const* lhs, bool leftIsArray, AstNode const* rhs, bool rightIsArray) const { auto values = ast->createNodeArray(); if (leftIsArray) { size_t const n = lhs->numMembers(); for (size_t i = 0; i < n; ++i) { values->addMember(lhs->getMemberUnchecked(i)); } } else { values->addMember(lhs); } if (rightIsArray) { size_t const n = rhs->numMembers(); for (size_t i = 0; i < n; ++i) { values->addMember(rhs->getMemberUnchecked(i)); } } else { values->addMember(rhs); } return ast->createNodeBinaryOperator(NODE_TYPE_OPERATOR_BINARY_IN, attr, values); } AstNode* simplify(AstNode const* node) const { if (node == nullptr) { return nullptr; } if (node->type == NODE_TYPE_OPERATOR_BINARY_OR) { auto lhs = node->getMember(0); auto rhs = node->getMember(1); auto lhsNew = simplify(lhs); auto rhsNew = simplify(rhs); if (lhs != lhsNew || rhs != rhsNew) { // create a modified node node = ast->createNodeBinaryOperator(node->type, lhsNew, rhsNew); } if ((lhsNew->type == NODE_TYPE_OPERATOR_BINARY_EQ || lhsNew->type == NODE_TYPE_OPERATOR_BINARY_IN) && (rhsNew->type == NODE_TYPE_OPERATOR_BINARY_EQ || rhsNew->type == NODE_TYPE_OPERATOR_BINARY_IN)) { std::string leftName; std::string rightName; AstNode const* leftAttr = nullptr; AstNode const* rightAttr = nullptr; AstNode const* leftValue = nullptr; AstNode const* rightValue = nullptr; for (size_t i = 0; i < 4; ++i) { if (detect(lhsNew, i >= 2, leftName, leftAttr, leftValue) && detect(rhsNew, i % 2 == 0, rightName, rightAttr, rightValue) && leftName == rightName) { std::pair> tmp1; if (leftValue->isAttributeAccessForVariable(tmp1)) { bool qualifies = false; auto setter = plan->getVarSetBy(tmp1.first->id); if (setter != nullptr && setter->getType() == EN::ENUMERATE_COLLECTION) { qualifies = true; } std::pair> tmp2; if (qualifies && rightValue->isAttributeAccessForVariable(tmp2)) { auto setter = plan->getVarSetBy(tmp2.first->id); if (setter != nullptr && setter->getType() == EN::ENUMERATE_COLLECTION) { if (tmp1.first != tmp2.first || tmp1.second != tmp2.second) { continue; } } } } return buildValues(leftAttr, leftValue, lhsNew->type == NODE_TYPE_OPERATOR_BINARY_IN, rightValue, rhsNew->type == NODE_TYPE_OPERATOR_BINARY_IN); } } } // return node as is return const_cast(node); } if (node->type == NODE_TYPE_OPERATOR_BINARY_AND) { auto lhs = node->getMember(0); auto rhs = node->getMember(1); auto lhsNew = simplify(lhs); auto rhsNew = simplify(rhs); if (lhs != lhsNew || rhs != rhsNew) { // return a modified node return ast->createNodeBinaryOperator(node->type, lhsNew, rhsNew); } // intentionally falls through } return const_cast(node); } }; /// @brief this rule replaces expressions of the type: /// x.val == 1 || x.val == 2 || x.val == 3 // with // x.val IN [1,2,3] // when the OR conditions are present in the same FILTER node, and refer to the // same (single) attribute. void arangodb::aql::replaceOrWithInRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::FILTER, true); bool modified = false; for (auto const& n : nodes) { TRI_ASSERT(n->hasDependency()); auto const dep = n->getFirstDependency(); if (dep->getType() != EN::CALCULATION) { continue; } auto fn = static_cast(n); auto inVar = fn->getVariablesUsedHere(); auto cn = static_cast(dep); auto outVar = cn->getVariablesSetHere(); if (outVar.size() != 1 || outVar[0]->id != inVar[0]->id) { continue; } auto root = cn->expression()->node(); OrSimplifier simplifier(plan->getAst(), plan.get()); auto newRoot = simplifier.simplify(root); if (newRoot != root) { ExecutionNode* newNode = nullptr; Expression* expr = new Expression(plan.get(), plan->getAst(), newRoot); try { TRI_IF_FAILURE("OptimizerRules::replaceOrWithInRuleOom") { THROW_ARANGO_EXCEPTION(TRI_ERROR_DEBUG); } newNode = new CalculationNode(plan.get(), plan->nextId(), expr, outVar[0]); } catch (...) { delete expr; throw; } plan->registerNode(newNode); plan->replaceNode(cn, newNode); modified = true; } } opt->addPlan(std::move(plan), rule, modified); } struct RemoveRedundantOr { AstNode const* bestValue = nullptr; AstNodeType comparison; bool inclusive; bool isComparisonSet = false; CommonNodeFinder finder; AstNode const* commonNode = nullptr; std::string commonName; bool hasRedundantCondition(AstNode const* node) { try { if (finder.find(node, NODE_TYPE_OPERATOR_BINARY_LT, commonNode, commonName)) { return hasRedundantConditionWalker(node); } } catch (...) { // ignore errors and simply return false } return false; } AstNode* createReplacementNode(Ast* ast) { TRI_ASSERT(commonNode != nullptr); TRI_ASSERT(bestValue != nullptr); TRI_ASSERT(isComparisonSet == true); return ast->createNodeBinaryOperator(comparison, commonNode->clone(ast), bestValue); } private: bool isInclusiveBound(AstNodeType type) { return (type == NODE_TYPE_OPERATOR_BINARY_GE || type == NODE_TYPE_OPERATOR_BINARY_LE); } int isCompatibleBound(AstNodeType type, AstNode const* value) { if ((comparison == NODE_TYPE_OPERATOR_BINARY_LE || comparison == NODE_TYPE_OPERATOR_BINARY_LT) && (type == NODE_TYPE_OPERATOR_BINARY_LE || type == NODE_TYPE_OPERATOR_BINARY_LT)) { return -1; // high bound } else if ((comparison == NODE_TYPE_OPERATOR_BINARY_GE || comparison == NODE_TYPE_OPERATOR_BINARY_GT) && (type == NODE_TYPE_OPERATOR_BINARY_GE || type == NODE_TYPE_OPERATOR_BINARY_GT)) { return 1; // low bound } return 0; // incompatible bounds } // returns false if the existing value is better and true if the input value // is better bool compareBounds(AstNodeType type, AstNode const* value, int lowhigh) { int cmp = CompareAstNodes(bestValue, value, true); if (cmp == 0 && (isInclusiveBound(comparison) != isInclusiveBound(type))) { return (isInclusiveBound(type) ? true : false); } return (cmp * lowhigh == 1); } bool hasRedundantConditionWalker(AstNode const* node) { AstNodeType type = node->type; if (type == NODE_TYPE_OPERATOR_BINARY_OR) { return (hasRedundantConditionWalker(node->getMember(0)) && hasRedundantConditionWalker(node->getMember(1))); } if (type == NODE_TYPE_OPERATOR_BINARY_LE || type == NODE_TYPE_OPERATOR_BINARY_LT || type == NODE_TYPE_OPERATOR_BINARY_GE || type == NODE_TYPE_OPERATOR_BINARY_GT) { auto lhs = node->getMember(0); auto rhs = node->getMember(1); if (hasRedundantConditionWalker(rhs) && !hasRedundantConditionWalker(lhs) && lhs->isConstant()) { if (!isComparisonSet) { comparison = Ast::ReverseOperator(type); bestValue = lhs; isComparisonSet = true; return true; } int lowhigh = isCompatibleBound(Ast::ReverseOperator(type), lhs); if (lowhigh == 0) { return false; } if (compareBounds(type, lhs, lowhigh)) { comparison = Ast::ReverseOperator(type); bestValue = lhs; } return true; } if (hasRedundantConditionWalker(lhs) && !hasRedundantConditionWalker(rhs) && rhs->isConstant()) { if (!isComparisonSet) { comparison = type; bestValue = rhs; isComparisonSet = true; return true; } int lowhigh = isCompatibleBound(type, rhs); if (lowhigh == 0) { return false; } if (compareBounds(type, rhs, lowhigh)) { comparison = type; bestValue = rhs; } return true; } // if hasRedundantConditionWalker(lhs) and // hasRedundantConditionWalker(rhs), then one of the conditions in the OR // statement is of the form x == x intentionally falls through } else if (type == NODE_TYPE_REFERENCE || type == NODE_TYPE_ATTRIBUTE_ACCESS || type == NODE_TYPE_INDEXED_ACCESS) { // get a string representation of the node for comparisons return (node->toString() == commonName); } return false; } }; void arangodb::aql::removeRedundantOrRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::FILTER, true); bool modified = false; for (auto const& n : nodes) { TRI_ASSERT(n->hasDependency()); auto const dep = n->getFirstDependency(); if (dep->getType() != EN::CALCULATION) { continue; } auto fn = static_cast(n); auto inVar = fn->getVariablesUsedHere(); auto cn = static_cast(dep); auto outVar = cn->getVariablesSetHere(); if (outVar.size() != 1 || outVar[0]->id != inVar[0]->id) { continue; } if (cn->expression()->node()->type != NODE_TYPE_OPERATOR_BINARY_OR) { continue; } RemoveRedundantOr remover; if (remover.hasRedundantCondition(cn->expression()->node())) { ExecutionNode* newNode = nullptr; auto astNode = remover.createReplacementNode(plan->getAst()); Expression* expr = new Expression(plan.get(), plan->getAst(), astNode); try { newNode = new CalculationNode(plan.get(), plan->nextId(), expr, outVar[0]); } catch (...) { delete expr; throw; } plan->registerNode(newNode); plan->replaceNode(cn, newNode); modified = true; } } opt->addPlan(std::move(plan), rule, modified); } /// @brief remove $OLD and $NEW variables from data-modification statements /// if not required void arangodb::aql::removeDataModificationOutVariablesRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { bool modified = false; std::vector const types = { EN::REMOVE, EN::INSERT, EN::UPDATE, EN::REPLACE, EN::UPSERT}; SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, types, true); for (auto const& n : nodes) { auto node = static_cast(n); TRI_ASSERT(node != nullptr); auto varsUsedLater = n->getVarsUsedLater(); if (varsUsedLater.find(node->getOutVariableOld()) == varsUsedLater.end()) { // "$OLD" is not used later node->clearOutVariableOld(); modified = true; } if (varsUsedLater.find(node->getOutVariableNew()) == varsUsedLater.end()) { // "$NEW" is not used later node->clearOutVariableNew(); modified = true; } } opt->addPlan(std::move(plan), rule, modified); } /// @brief patch UPDATE statement on single collection that iterates over the /// entire collection to operate in batches void arangodb::aql::patchUpdateStatementsRule( Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { // no need to dive into subqueries here, as UPDATE needs to be on the top // level SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::UPDATE, false); bool modified = false; for (auto const& n : nodes) { // we should only get through here a single time auto node = static_cast(n); TRI_ASSERT(node != nullptr); auto& options = node->getOptions(); if (!options.readCompleteInput) { // already ok continue; } auto const collection = node->collection(); auto dep = n->getFirstDependency(); while (dep != nullptr) { auto const type = dep->getType(); if (type == EN::ENUMERATE_LIST || type == EN::INDEX || type == EN::SUBQUERY) { // not suitable modified = false; break; } if (type == EN::ENUMERATE_COLLECTION) { auto collectionNode = static_cast(dep); if (collectionNode->collection() != collection) { // different collection, not suitable modified = false; break; } else { if (modified) { // already saw the collection... that means we have seen the same // collection two times in two FOR loops modified = false; // abort break; } // saw the same collection in FOR as in UPDATE if (n->isVarUsedLater(collectionNode->outVariable())) { // must abort, because the variable produced by the FOR loop is // read after it is updated break; } modified = true; } } else if (type == EN::TRAVERSAL || type == EN::SHORTEST_PATH) { // unclear what will be read by the traversal modified = false; break; } dep = dep->getFirstDependency(); } if (modified) { options.readCompleteInput = false; } } // always re-add the original plan, be it modified or not // only a flag in the plan will be modified opt->addPlan(std::move(plan), rule, modified); } /// @brief optimizes away unused traversal output variables and /// merges filter nodes into graph traversal nodes void arangodb::aql::optimizeTraversalsRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector tNodes{a}; plan->findNodesOfType(tNodes, EN::TRAVERSAL, true); if (tNodes.empty()) { // no traversals present opt->addPlan(std::move(plan), rule, false); return; } bool modified = false; // first make a pass over all traversal nodes and remove unused // variables from them for (auto const& n : tNodes) { TraversalNode* traversal = static_cast(n); auto varsUsedLater = n->getVarsUsedLater(); // note that we can NOT optimize away the vertex output variable // yet, as many traversal internals depend on the number of vertices // found/built auto outVariable = traversal->edgeOutVariable(); if (outVariable != nullptr && varsUsedLater.find(outVariable) == varsUsedLater.end()) { // traversal edge outVariable not used later traversal->setEdgeOutput(nullptr); modified = true; } outVariable = traversal->pathOutVariable(); if (outVariable != nullptr && varsUsedLater.find(outVariable) == varsUsedLater.end()) { // traversal path outVariable not used later traversal->setPathOutput(nullptr); modified = true; } } if (!tNodes.empty()) { // These are all the end nodes where we start SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findEndNodes(nodes, true); for (auto const& n : nodes) { TraversalConditionFinder finder(plan.get(), &modified); n->walk(&finder); } } opt->addPlan(std::move(plan), rule, modified); } // remove filter nodes already covered by a traversal void arangodb::aql::removeFiltersCoveredByTraversal(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector fNodes{a}; plan->findNodesOfType(fNodes, EN::FILTER, true); if (fNodes.empty()) { // no filters present opt->addPlan(std::move(plan), rule, false); return; } bool modified = false; std::unordered_set toUnlink; for (auto const& node : fNodes) { auto fn = static_cast(node); // find the node with the filter expression auto inVar = fn->getVariablesUsedHere(); TRI_ASSERT(inVar.size() == 1); auto setter = plan->getVarSetBy(inVar[0]->id); if (setter == nullptr || setter->getType() != EN::CALCULATION) { continue; } auto calculationNode = static_cast(setter); auto conditionNode = calculationNode->expression()->node(); // build the filter condition auto condition = std::make_unique(plan->getAst()); condition->andCombine(conditionNode); condition->normalize(plan.get()); if (condition->root() == nullptr) { continue; } size_t const n = condition->root()->numMembers(); if (n != 1) { // either no condition or multiple ORed conditions... continue; } bool handled = false; auto current = node; while (current != nullptr) { if (current->getType() == EN::TRAVERSAL) { auto traversalNode = static_cast(current); // found a traversal node, now check if the expression // is covered by the traversal auto traversalCondition = traversalNode->condition(); if (traversalCondition != nullptr && !traversalCondition->isEmpty()) { /*auto const& indexesUsed = traversalNode->get //indexNode->getIndexes(); if (indexesUsed.size() == 1) {*/ // single index. this is something that we can handle Variable const* outVariable = traversalNode->pathOutVariable(); std::unordered_set varsUsedByCondition; Ast::getReferencedVariables(condition->root(), varsUsedByCondition); if (outVariable != nullptr && varsUsedByCondition.find(outVariable) != varsUsedByCondition.end()) { auto newNode = condition->removeTraversalCondition(plan.get(), outVariable, traversalCondition->root()); if (newNode == nullptr) { // no condition left... // FILTER node can be completely removed toUnlink.emplace(node); // note: we must leave the calculation node intact, in case it is // still used by other nodes in the plan modified = true; handled = true; } else if (newNode != condition->root()) { // some condition is left, but it is a different one than // the one from the FILTER node auto expr = std::make_unique(plan.get(), plan->getAst(), newNode); CalculationNode* cn = new CalculationNode(plan.get(), plan->nextId(), expr.get(), calculationNode->outVariable()); expr.release(); plan->registerNode(cn); plan->replaceNode(setter, cn); modified = true; handled = true; } } } if (handled) { break; } } if (handled || current->getType() == EN::LIMIT || !current->hasDependency()) { break; } current = current->getFirstDependency(); } } if (!toUnlink.empty()) { plan->unlinkNodes(toUnlink); } opt->addPlan(std::move(plan), rule, modified); } /// @brief removes redundant path variables, after applying /// `removeFiltersCoveredByTraversal`. Should significantly reduce overhead void arangodb::aql::removeTraversalPathVariable(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector tNodes{a}; plan->findNodesOfType(tNodes, EN::TRAVERSAL, true); bool modified = false; // first make a pass over all traversal nodes and remove unused // variables from them for (auto const& n : tNodes) { TraversalNode* traversal = static_cast(n); auto varsUsedLater = n->getVarsUsedLater(); auto outVariable = traversal->pathOutVariable(); if (outVariable != nullptr && varsUsedLater.find(outVariable) == varsUsedLater.end()) { // traversal path outVariable not used later traversal->setPathOutput(nullptr); modified = true; } } opt->addPlan(std::move(plan), rule, modified); } /// @brief prepares traversals for execution (hidden rule) void arangodb::aql::prepareTraversalsRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector tNodes{a}; plan->findNodesOfType(tNodes, EN::TRAVERSAL, true); plan->findNodesOfType(tNodes, EN::SHORTEST_PATH, true); if (tNodes.empty()) { // no traversals present opt->addPlan(std::move(plan), rule, false); return; } // first make a pass over all traversal nodes and remove unused // variables from them for (auto const& n : tNodes) { if (n->getType() == EN::TRAVERSAL) { TraversalNode* traversal = static_cast(n); traversal->prepareOptions(); } else { TRI_ASSERT(n->getType() == EN::SHORTEST_PATH); ShortestPathNode* spn = static_cast(n); spn->prepareOptions(); } } opt->addPlan(std::move(plan), rule, true); } /// @brief pulls out simple subqueries and merges them with the level above /// /// For example, if we have the input query /// /// FOR x IN ( /// FOR y IN collection FILTER y.value >= 5 RETURN y.test /// ) /// RETURN x.a /// /// then this rule will transform it into: /// /// FOR tmp IN collection /// FILTER tmp.value >= 5 /// LET x = tmp.test /// RETURN x.a void arangodb::aql::inlineSubqueriesRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; plan->findNodesOfType(nodes, EN::SUBQUERY, true); if (nodes.empty()) { opt->addPlan(std::move(plan), rule, false); return; } bool modified = false; for (auto const& n : nodes) { auto subqueryNode = static_cast(n); if (subqueryNode->isModificationQuery()) { // can't modify modifying subqueries continue; } if (subqueryNode->canThrow()) { // can't inline throwing subqueries continue; } // check if subquery contains a COLLECT node with an INTO variable bool eligible = true; bool containsLimitOrSort = false; auto current = subqueryNode->getSubquery(); TRI_ASSERT(current != nullptr); while (current != nullptr) { if (current->getType() == EN::COLLECT) { if (static_cast(current)->hasOutVariable()) { eligible = false; break; } } else if (current->getType() == EN::LIMIT || current->getType() == EN::SORT) { containsLimitOrSort = true; } current = current->getFirstDependency(); } if (!eligible) { continue; } Variable const* out = subqueryNode->outVariable(); TRI_ASSERT(out != nullptr); std::unordered_set varsUsed; current = n; // now check where the subquery is used while (current->hasParent()) { if (current->getType() == EN::ENUMERATE_LIST) { if (current->isInInnerLoop() && containsLimitOrSort) { // exit the loop current = nullptr; break; } // we're only interested in FOR loops... auto listNode = static_cast(current); // ...that use our subquery as its input if (listNode->inVariable() == out) { // bingo! auto queryVariables = plan->getAst()->variables(); std::vector subNodes( subqueryNode->getSubquery()->getDependencyChain(true)); // check if the subquery result variable is used after the FOR loop as // well std::unordered_set varsUsedLater( listNode->getVarsUsedLater()); if (varsUsedLater.find(listNode->inVariable()) != varsUsedLater.end()) { // exit the loop current = nullptr; break; } TRI_ASSERT(!subNodes.empty()); auto returnNode = static_cast(subNodes[0]); TRI_ASSERT(returnNode->getType() == EN::RETURN); modified = true; auto previous = n->getFirstDependency(); auto insert = n->getFirstParent(); TRI_ASSERT(insert != nullptr); // unlink the original SubqueryNode plan->unlinkNode(n, false); for (auto& it : subNodes) { // first unlink them all plan->unlinkNode(it, true); if (it->getType() == EN::SINGLETON) { // reached the singleton node already. that means we can stop break; } // and now insert them one level up if (it != returnNode) { // we skip over the subquery's return node. we don't need it // anymore insert->removeDependencies(); TRI_ASSERT(it != nullptr); insert->addDependency(it); insert = it; // additionally rename the variables from the subquery so they // cannot conflict with the ones from the top query for (auto const& variable : it->getVariablesSetHere()) { queryVariables->renameVariable(variable->id); } } } // link the top node in the subquery with the original plan if (previous != nullptr) { insert->addDependency(previous); } // remove the list node from the plan plan->unlinkNode(listNode, false); queryVariables->renameVariable(returnNode->inVariable()->id, listNode->outVariable()->name); // finally replace the variables std::unordered_map replacements; replacements.emplace(listNode->outVariable()->id, returnNode->inVariable()); RedundantCalculationsReplacer finder(replacements); plan->root()->walk(&finder); plan->clearVarUsageComputed(); plan->invalidateCost(); plan->findVarUsage(); // abort optimization current = nullptr; } } if (current == nullptr) { break; } varsUsed.clear(); current->getVariablesUsedHere(varsUsed); if (varsUsed.find(out) != varsUsed.end()) { // we found another node that uses the subquery variable // we need to stop the optimization attempts here break; } current = current->getFirstParent(); } } opt->addPlan(std::move(plan), rule, modified); } static bool isValueTypeString(AstNode const* node) { return (node->type == NODE_TYPE_VALUE && node->value.type == VALUE_TYPE_STRING); } static bool isValueTypeCollection(AstNode const* node) { return node->type == NODE_TYPE_COLLECTION || isValueTypeString(node); } static bool isValueTypeNumber(AstNode* node) { return (node->type == NODE_TYPE_VALUE && (node->value.type == VALUE_TYPE_INT || node->value.type == VALUE_TYPE_DOUBLE)); } static ExecutionNode* applyFulltextOptimization(EnumerateListNode* elnode, LimitNode* limitNode, ExecutionPlan* plan) { std::vector varsUsedHere = elnode->getVariablesUsedHere(); TRI_ASSERT(varsUsedHere.size() == 1); // now check who introduced our variable ExecutionNode* node = plan->getVarSetBy(varsUsedHere[0]->id); if (node->getType() != EN::CALCULATION) { return nullptr; } CalculationNode* calcNode = static_cast(node); Expression* expr = calcNode->expression(); // the expression must exist and it must have an astNode if (expr->node() == nullptr) { return nullptr;// not the right type of node } AstNode* flltxtNode = expr->nodeForModification(); if (flltxtNode->type != NODE_TYPE_FCALL) { return nullptr; } // get the ast node of the expression auto func = static_cast(flltxtNode->getData()); // we're looking for "FULLTEXT()", which is a function call // with a parameters array with collection, attribute, query, limit if (func->name != "FULLTEXT" || flltxtNode->numMembers() != 1) { return nullptr; } AstNode* fargs = flltxtNode->getMember(0); if (fargs->numMembers() != 3 && fargs->numMembers() != 4) { return nullptr; } AstNode* collArg = fargs->getMember(0); AstNode* attrArg = fargs->getMember(1); AstNode* queryArg = fargs->getMember(2); AstNode* limitArg = fargs->numMembers() == 4 ? fargs->getMember(3) : nullptr; if (!isValueTypeCollection(collArg) || !isValueTypeString(attrArg) || !isValueTypeString(queryArg) || // (... || queryArg->type == NODE_TYPE_REFERENCE) (limitArg != nullptr && !isValueTypeNumber(limitArg))) { return nullptr; } std::string name = collArg->getString(); TRI_vocbase_t* vocbase = plan->getAst()->query()->vocbase(); std::vector field; TRI_ParseAttributeString(attrArg->getString(), field, /*allowExpansion*/false); if (field.empty()) { return nullptr; } // check for suitable indexes std::shared_ptr index; methods::Collections::lookup(vocbase, name, [&](LogicalCollection* logical) { for (auto idx : logical->getIndexes()) { if (idx->type() == arangodb::Index::IndexType::TRI_IDX_TYPE_FULLTEXT_INDEX) { TRI_ASSERT(idx->fields().size() == 1); if (basics::AttributeName::isIdentical(idx->fields()[0], field, false)) { index = idx; break; } } } }); if (!index) { // no index found return nullptr; } Ast* ast = plan->getAst(); AstNode* args = ast->createNodeArray(3 + (limitArg != nullptr ? 0 : 1)); args->addMember(ast->clone(collArg)); // only so createNodeFunctionCall doesn't throw args->addMember(attrArg); args->addMember(queryArg); if (limitArg != nullptr) { args->addMember(limitArg); } AstNode* cond = ast->createNodeFunctionCall("FULLTEXT", args); TRI_ASSERT(cond != nullptr); auto condition = std::make_unique(ast); condition->andCombine(cond); condition->normalize(plan); // we assume by now that collection `name` exists aql::Collections* colls = plan->getAst()->query()->collections(); aql::Collection* coll = colls->get(name); if (coll == nullptr) { // TODO: cleanup this mess coll = colls->add(name, AccessMode::Type::READ); if (!ServerState::instance()->isCoordinator()) { TRI_ASSERT(coll != nullptr); coll->setCollection(vocbase->lookupCollection(name)); // FIXME: does this need to happen in the coordinator? plan->getAst()->query()->trx()->addCollectionAtRuntime(name); } } auto indexNode = new IndexNode(plan, plan->nextId(), vocbase, coll, elnode->outVariable(), std::vector{ transaction::Methods::IndexHandle{index}}, condition.get(), false); plan->registerNode(indexNode); condition.release(); plan->replaceNode(elnode, indexNode); // mark removable, because it will not throw for most params // FIXME: technically we need to validate the query parameter calcNode->canRemoveIfThrows(true); if (limitArg != nullptr && limitNode == nullptr) { // add LIMIT size_t limit = static_cast(limitArg->getIntValue()); limitNode = new LimitNode(plan, plan->nextId(), 0, limit); plan->registerNode(limitNode); auto parents = indexNode->getParents(); // Intentional copy for (ExecutionNode* parent : parents) { if (!parent->replaceDependency(indexNode, limitNode)) { THROW_ARANGO_EXCEPTION_MESSAGE(TRI_ERROR_INTERNAL, "Could not replace dependencies of an old node"); } } limitNode->addDependency(indexNode); } return indexNode; } void arangodb::aql::fulltextIndexRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; bool modified = false; // inspect each return node and work upwards to SingletonNode plan->findEndNodes(nodes, true); for (ExecutionNode* node : nodes) { ExecutionNode* current = node; LimitNode* limit = nullptr; // maybe we have an existing LIMIT x,y while (current) { if (current->getType() == EN::ENUMERATE_LIST) { EnumerateListNode* elnode = static_cast(current); auto indexNode = applyFulltextOptimization(elnode, limit, plan.get()); if (indexNode != nullptr) { modified = true; limit = nullptr; current = indexNode; // resume iteration at new node } } else if (current->getType() == EN::LIMIT) { limit = static_cast(current); } current = current->getFirstDependency(); // inspect next node } } opt->addPlan(std::move(plan), rule, modified); } struct GeoIndexInfo { operator bool() const { return distanceNode && valid; } void invalidate() { valid = false; } GeoIndexInfo() : collectionNode(nullptr), executionNode(nullptr), indexNode(nullptr), setter(nullptr), expressionParent(nullptr), expressionNode(nullptr), distanceNode(nullptr), index(nullptr), range(nullptr), executionNodeType(EN::NORESULTS), within(false), lessgreaterequal(false), valid(true), constantPair{nullptr, nullptr} {} EnumerateCollectionNode* collectionNode; // node that will be replaced by (geo) IndexNode ExecutionNode* executionNode; // start node that is a sort or filter IndexNode* indexNode; // AstNode that is the parent of the Node CalculationNode* setter; // node that has contains the condition for filter or sort AstNode* expressionParent; // AstNode that is the parent of the Node AstNode* expressionNode; // AstNode that contains the sort/filter condition AstNode* distanceNode; // AstNode that contains the distance parameters std::shared_ptr index; // pointer to geoindex AstNode const* range; // range for within ExecutionNode::NodeType executionNodeType; // type of execution node sort or filter bool within; // is this a within lookup bool lessgreaterequal; // is this a check for le/ge (true) or lt/gt (false) bool valid; // contains this node a valid condition std::vector longitude; // access path to longitude std::vector latitude; // access path to latitude std::pair constantPair; }; // candidate checking // contains the AstNode* distanceNode a distance function? // if so return a valid GeoIndexInfo object GeoIndexInfo isDistanceFunction(AstNode* distanceNode, AstNode* expressionParent) { // the expression must exist and it must be a function call auto rv = GeoIndexInfo{}; if (distanceNode->type != NODE_TYPE_FCALL) { return rv; } // get the ast node of the expression auto func = static_cast(distanceNode->getData()); // we're looking for "DISTANCE()", which is a function call // with an empty parameters array if (func->name != "DISTANCE" || distanceNode->numMembers() != 1) { return rv; } rv.distanceNode = distanceNode; rv.expressionNode = distanceNode; rv.expressionParent = expressionParent; return rv; } // checks if a node contanis a geo index function a valid operator to from // a filter condition! GeoIndexInfo isGeoFilterExpression(AstNode* node, AstNode* expressionParent) { // binary compare must be on top bool dist_first = true; bool lessEqual = true; auto rv = GeoIndexInfo{}; if (node->type != NODE_TYPE_OPERATOR_BINARY_GE && node->type != NODE_TYPE_OPERATOR_BINARY_GT && node->type != NODE_TYPE_OPERATOR_BINARY_LE && node->type != NODE_TYPE_OPERATOR_BINARY_LT) { return rv; } if (node->type == NODE_TYPE_OPERATOR_BINARY_GE || node->type == NODE_TYPE_OPERATOR_BINARY_GT) { dist_first = false; } if (node->type == NODE_TYPE_OPERATOR_BINARY_GT || node->type == NODE_TYPE_OPERATOR_BINARY_LT) { lessEqual = false; } if (node->numMembers() != 2) { return rv; } AstNode* first = node->getMember(0); AstNode* second = node->getMember(1); auto eval_stuff = [](bool dist_first, bool lessEqual, GeoIndexInfo&& dist_fun, AstNode* value_node) { if (dist_first && dist_fun && value_node) { dist_fun.within = true; dist_fun.range = value_node; dist_fun.lessgreaterequal = lessEqual; } else { dist_fun.invalidate(); } return dist_fun; }; if (dist_first) { rv = eval_stuff(dist_first, lessEqual, isDistanceFunction(first, expressionParent), second); } if (!rv && !dist_first) { rv = eval_stuff(dist_first, lessEqual, isDistanceFunction(second, expressionParent), first); } if (rv) { // this must be set after checking if the node contains a distance node. rv.expressionNode = node; } return rv; } GeoIndexInfo iterativePreorderWithCondition( EN::NodeType type, AstNode* root, GeoIndexInfo (*condition)(AstNode*, AstNode*)) { // returns on first hit if (!root) { return GeoIndexInfo{}; } std::vector> nodestack; nodestack.push_back({root, nullptr}); while (nodestack.size()) { auto current = nodestack.back(); nodestack.pop_back(); GeoIndexInfo rv = condition(current.first, current.second); if (rv) { return rv; } if (type == EN::FILTER) { if (current.first->type == NODE_TYPE_OPERATOR_BINARY_AND || current.first->type == NODE_TYPE_OPERATOR_NARY_AND) { for (std::size_t i = 0; i < current.first->numMembers(); ++i) { nodestack.push_back({current.first->getMember(i), current.first}); } } } else if (type == EN::SORT) { // must be the only sort condition } } return GeoIndexInfo{}; } GeoIndexInfo geoDistanceFunctionArgCheck(std::pair const& pair ,ExecutionPlan* plan, GeoIndexInfo info) { // checks 2 parameters of distance function if they represent a valid access to // latitude and longitude attribute of the geo index. // // disance(a,b,c,d) - possible pairs are (a,b) and (c,d) std::pair> attributeAccess1; std::pair> attributeAccess2; // first and second should be based on the same document - need to provide the // document in order to see which collection is bound to it and if that // collections supports geo-index if (!pair.first->isAttributeAccessForVariable(attributeAccess1, true) || !pair.second->isAttributeAccessForVariable(attributeAccess2, true)) { info.invalidate(); return info; } TRI_ASSERT(attributeAccess1.first != nullptr); TRI_ASSERT(attributeAccess2.first != nullptr); // expect access of the for doc.attribute auto setter1 = plan->getVarSetBy(attributeAccess1.first->id); auto setter2 = plan->getVarSetBy(attributeAccess2.first->id); if (setter1 != nullptr && setter2 != nullptr && setter1 == setter2 && setter1->getType() == EN::ENUMERATE_COLLECTION) { //get logical collection auto collNode = reinterpret_cast(setter1); auto coll = collNode->collection(); auto logicalColl = coll->getCollection(); //check for suitiable indexes for (auto indexShardPtr : logicalColl->getIndexes()) { // get real index arangodb::Index& index = *indexShardPtr.get(); // check if current index is a geo-index std::size_t fieldNum = index.fields().size(); bool isGeo1 = (index.type() == arangodb::Index::IndexType::TRI_IDX_TYPE_GEO1_INDEX) && fieldNum == 1; bool isGeo2 = (index.type() == arangodb::Index::IndexType::TRI_IDX_TYPE_GEO2_INDEX) && fieldNum == 2; if (!isGeo1 && !isGeo2) { continue; } if(isGeo2){ // check access paths of attributes in ast and those in index match if (index.fields()[0] == attributeAccess1.second && index.fields()[1] == attributeAccess2.second) { info.collectionNode = collNode; info.index = indexShardPtr; TRI_AttributeNamesJoinNested(attributeAccess1.second, info.longitude, true); TRI_AttributeNamesJoinNested(attributeAccess2.second, info.latitude, true); return info; } } else if (isGeo1){ std::vector fields1 = index.fields()[0]; std::vector fields2 = index.fields()[0]; VPackBuilder builder; indexShardPtr->toVelocyPack(builder,true,false); bool geoJson = builder.slice().get("geoJson").getBool(); if(geoJson) { fields1.back().name += "[1]"; fields2.back().name += "[0]"; } else { fields1.back().name += "[0]"; fields2.back().name += "[1]"; } if (fields1 == attributeAccess1.second && fields2 == attributeAccess2.second) { info.collectionNode = collNode; info.index = indexShardPtr; TRI_AttributeNamesJoinNested(attributeAccess1.second, info.longitude, true); TRI_AttributeNamesJoinNested(attributeAccess2.second, info.latitude, true); return info; } } // if isGeo 1 or 2 } // for index in collection } // if setters (enumerate collection) info.invalidate(); return info; } bool checkDistanceArguments(GeoIndexInfo& info, ExecutionPlan* plan) { if (!info) { return false; } auto const& functionArguments = info.distanceNode->getMember(0); if (functionArguments->numMembers() < 4) { return false; } std::pair argPair1 = {functionArguments->getMember(0), functionArguments->getMember(1)}; std::pair argPair2 = {functionArguments->getMember(2), functionArguments->getMember(3)}; GeoIndexInfo result1 = geoDistanceFunctionArgCheck(argPair1, plan, info /*copy*/); GeoIndexInfo result2 = geoDistanceFunctionArgCheck(argPair2, plan, info /*copy*/); // info now conatins access path to collection // xor only one argument pair shall have a geoIndex if ((!result1 && !result2) || (result1 && result2)) { info.invalidate(); return false; } GeoIndexInfo res; if (result1) { info = std::move(result1); info.constantPair = std::move(argPair2); } else { info = std::move(result2); info.constantPair = std::move(argPair1); } return true; } // checks a single sort or filter node GeoIndexInfo identifyGeoOptimizationCandidate(ExecutionNode::NodeType type, ExecutionPlan* plan, ExecutionNode* n) { ExecutionNode* setter = nullptr; auto rv = GeoIndexInfo{}; switch (type) { case EN::SORT: { auto node = static_cast(n); auto& elements = node->elements(); // we're looking for "SORT DISTANCE(x,y,a,b) ASC", which has just one sort // criterion if (!(elements.size() == 1 && elements[0].ascending)) { // test on second makes sure the SORT is ascending return rv; } // variable of sort expression auto variable = elements[0].var; TRI_ASSERT(variable != nullptr); //// find the expression that is bound to the variable // get the expression node that holds the calculation setter = plan->getVarSetBy(variable->id); } break; case EN::FILTER: { auto node = static_cast(n); // filter nodes always have one input variable auto varsUsedHere = node->getVariablesUsedHere(); TRI_ASSERT(varsUsedHere.size() == 1); // now check who introduced our variable auto variable = varsUsedHere[0]; setter = plan->getVarSetBy(variable->id); } break; default: return rv; } // common part - extract astNode from setter witch is a calculation node if (setter == nullptr || setter->getType() != EN::CALCULATION) { return rv; } auto expression = static_cast(setter)->expression(); // the expression must exist and it must have an astNode if (expression == nullptr || expression->node() == nullptr) { // not the right type of node return rv; } AstNode* node = expression->nodeForModification(); // FIXME -- technical debt -- code duplication / not all cases covered switch (type) { case EN::SORT: { // check comma separated parts of condition cond0, cond1, cond2 rv = isDistanceFunction(node, nullptr); } break; case EN::FILTER: { rv = iterativePreorderWithCondition(type, node, &isGeoFilterExpression); } break; default: rv.invalidate(); // not required but make sure the result is invalid } rv.executionNode = n; rv.executionNodeType = type; rv.setter = static_cast(setter); checkDistanceArguments(rv, plan); return rv; }; // modify plan // builds a condition that can be used with the index interface and // contains all parameters required by the MMFilesGeoIndex std::unique_ptr buildGeoCondition(ExecutionPlan* plan, GeoIndexInfo& info) { AstNode* lat = info.constantPair.first; AstNode* lon = info.constantPair.second; auto ast = plan->getAst(); auto varAstNode = ast->createNodeReference(info.collectionNode->outVariable()); auto args = ast->createNodeArray(info.within ? 4 : 3); args->addMember(varAstNode); // collection args->addMember(lat); // latitude args->addMember(lon); // longitude AstNode* cond = nullptr; if (info.within) { // WITHIN args->addMember(info.range); auto lessValue = ast->createNodeValueBool(info.lessgreaterequal); args->addMember(lessValue); cond = ast->createNodeFunctionCall(TRI_CHAR_LENGTH_PAIR("WITHIN"), args); } else { // NEAR cond = ast->createNodeFunctionCall(TRI_CHAR_LENGTH_PAIR("NEAR"), args); } TRI_ASSERT(cond != nullptr); auto condition = std::make_unique(ast); condition->andCombine(cond); condition->normalize(plan); return condition; } void replaceGeoCondition(ExecutionPlan* plan, GeoIndexInfo& info) { if (info.expressionParent && info.executionNodeType == EN::FILTER) { auto ast = plan->getAst(); CalculationNode* newNode = nullptr; Expression* expr = new Expression(plan, ast, static_cast(info.setter) ->expression() ->nodeForModification() ->clone(ast)); try { newNode = new CalculationNode( plan, plan->nextId(), expr, static_cast(info.setter)->outVariable()); } catch (...) { delete expr; throw; } plan->registerNode(newNode); plan->replaceNode(info.setter, newNode); bool done = false; // Modifies the node in the following way: checks if a binary and node has // a child that is a filter condition. if so it replaces the node with the // other child effectively deleting the filter condition. AstNode* modified = ast->traverseAndModify( newNode->expression()->nodeForModification(), [&done, &info](AstNode* node, void* data) { if (done) { return node; } if (node->type == NODE_TYPE_OPERATOR_BINARY_AND) { for (std::size_t i = 0; i < node->numMembers(); i++) { if (node == info.expressionNode && isGeoFilterExpression(node->getMemberUnchecked(i), node)) { done = true; //select the other node - not the member containing the error message return node->getMemberUnchecked(i ? 0 : 1); } } } return node; }, nullptr); if (modified != newNode->expression()->node()){ newNode->expression()->replaceNode(modified); } if (done) { return; } auto replaceInfo = iterativePreorderWithCondition( EN::FILTER, newNode->expression()->nodeForModification(), &isGeoFilterExpression); if (newNode->expression()->nodeForModification() == replaceInfo.expressionParent) { if (replaceInfo.expressionParent->type == NODE_TYPE_OPERATOR_BINARY_AND) { for (std::size_t i = 0; i < replaceInfo.expressionParent->numMembers(); ++i) { if (replaceInfo.expressionParent->getMember(i) != replaceInfo.expressionNode) { newNode->expression()->replaceNode( replaceInfo.expressionParent->getMember(i)); return; } } } } // else { // // COULD BE IMPROVED // if(replaceInfo.expressionParent->type == NODE_TYPE_OPERATOR_BINARY_AND){ // // delete ast node - we would need the parent of expression parent to // delete the node // // we do not have it available here so we just replace the node // with true return; // } //} // fallback auto replacement = ast->createNodeValueBool(true); for (std::size_t i = 0; i < replaceInfo.expressionParent->numMembers(); ++i) { if (replaceInfo.expressionParent->getMember(i) == replaceInfo.expressionNode) { replaceInfo.expressionParent->removeMemberUnchecked(i); replaceInfo.expressionParent->addMember(replacement); } } } } // applys the optimization for a candidate bool applyGeoOptimization(bool near, ExecutionPlan* plan, GeoIndexInfo& first, GeoIndexInfo& second) { if (!first && !second) { return false; } if (!first) { first = std::move(second); second.invalidate(); } // We are not allowed to be a inner loop if (first.collectionNode->isInInnerLoop() && first.executionNodeType == EN::SORT) { return false; } std::unique_ptr condition(buildGeoCondition(plan, first)); auto inode = new IndexNode( plan, plan->nextId(), first.collectionNode->vocbase(), first.collectionNode->collection(), first.collectionNode->outVariable(), std::vector{ transaction::Methods::IndexHandle{first.index}}, condition.get(), false); plan->registerNode(inode); condition.release(); plan->replaceNode(first.collectionNode, inode); replaceGeoCondition(plan, first); replaceGeoCondition(plan, second); // if executionNode is sort OR a filter without further sub conditions // the node can be unlinked auto unlinkNode = [&](GeoIndexInfo& info) { if (info && !info.expressionParent) { if (!arangodb::ServerState::instance()->isCoordinator() || info.executionNodeType == EN::FILTER) { plan->unlinkNode(info.executionNode); } else if (info.executionNodeType == EN::SORT) { // make sure sort is not reinserted in cluster static_cast(info.executionNode)->_reinsertInCluster = false; } } }; unlinkNode(first); unlinkNode(second); // signal that plan has been changed return true; } void arangodb::aql::geoIndexRule(Optimizer* opt, std::unique_ptr plan, OptimizerRule const* rule) { SmallVector::allocator_type::arena_type a; SmallVector nodes{a}; bool modified = false; // inspect each return node and work upwards to SingletonNode plan->findEndNodes(nodes, true); for (auto& node : nodes) { GeoIndexInfo sortInfo{}; GeoIndexInfo filterInfo{}; auto current = node; while (current) { switch (current->getType()) { case EN::SORT: { sortInfo = identifyGeoOptimizationCandidate(EN::SORT, plan.get(), current); break; } case EN::FILTER: { if (filterInfo) { // do not overwrite an already found condition, but test first if the // new condition is actually valid GeoIndexInfo test; test = identifyGeoOptimizationCandidate(EN::FILTER, plan.get(), current); if (test) { filterInfo = test; } } else { filterInfo = identifyGeoOptimizationCandidate(EN::FILTER, plan.get(), current); } break; } case EN::ENUMERATE_COLLECTION: { EnumerateCollectionNode* collnode = static_cast(current); if ((sortInfo && sortInfo.collectionNode != collnode) || (filterInfo && filterInfo.collectionNode != collnode)) { filterInfo.invalidate(); sortInfo.invalidate(); break; } if (applyGeoOptimization(true, plan.get(), filterInfo, sortInfo)) { modified = true; filterInfo.invalidate(); sortInfo.invalidate(); } break; } case EN::INDEX: case EN::COLLECT: { filterInfo.invalidate(); sortInfo.invalidate(); break; } default: { // skip - do nothing break; } } current = current->getFirstDependency(); // inspect next node } } opt->addPlan(std::move(plan), rule, modified); }