//////////////////////////////////////////////////////////////////////////////// /// DISCLAIMER /// /// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany /// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, software /// distributed under the License is distributed on an "AS IS" BASIS, /// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. /// See the License for the specific language governing permissions and /// limitations under the License. /// /// Copyright holder is ArangoDB GmbH, Cologne, Germany /// /// @author Dr. Frank Celler //////////////////////////////////////////////////////////////////////////////// #include "conversions.h" //YYY #ifdef ARANGODB_ENABLE_MAINTAINER_MODE //YYY #warning FRANK this files should be replaces by StringUtils and Co //YYY #endif #include "Basics/tri-strings.h" static char const* const HEX = "0123456789ABCDEF"; //////////////////////////////////////////////////////////////////////////////// /// @brief converts a single hex to an integer //////////////////////////////////////////////////////////////////////////////// int TRI_IntHex(char ch, int errorValue) { if ('0' <= ch && ch <= '9') { return ch - '0'; } else if ('A' <= ch && ch <= 'F') { return ch - 'A' + 10; } else if ('a' <= ch && ch <= 'f') { return ch - 'a' + 10; } return errorValue; } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to double from string //////////////////////////////////////////////////////////////////////////////// double TRI_DoubleString(char const* str) { TRI_set_errno(TRI_ERROR_NO_ERROR); char* endptr; double result = strtod(str, &endptr); while (isspace(*endptr)) { ++endptr; } if (*endptr != '\0') { TRI_set_errno(TRI_ERROR_ILLEGAL_NUMBER); } else if (errno == ERANGE && (result == HUGE_VAL || result == -HUGE_VAL || result == 0)) { TRI_set_errno(TRI_ERROR_NUMERIC_OVERFLOW); } return result; } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to int32 from string //////////////////////////////////////////////////////////////////////////////// int32_t TRI_Int32String(char const* str) { int32_t result; char* endptr; #if defined(TRI_HAVE_STRTOL_R) struct reent buffer; #elif defined(TRI_HAVE__STRTOL_R) struct reent buffer; #endif TRI_set_errno(TRI_ERROR_NO_ERROR); #if defined(TRI_HAVE_STRTOL_R) result = strtol_r(&buffer, str, &endptr, 10); #elif defined(TRI_HAVE__STRTOL_R) result = _strtol_r(&buffer, str, &endptr, 10); #else result = strtol(str, &endptr, 10); #endif while (isspace(*endptr)) { ++endptr; } if (*endptr != '\0') { TRI_set_errno(TRI_ERROR_ILLEGAL_NUMBER); } else if (errno == ERANGE && (result == INT32_MIN || result == INT32_MAX)) { TRI_set_errno(TRI_ERROR_NUMERIC_OVERFLOW); } return result; } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to int32 from string with given length //////////////////////////////////////////////////////////////////////////////// int32_t TRI_Int32String(char const* str, size_t length) { char tmp[1024]; if (str[length] != '\0') { if (length >= sizeof(tmp)) { length = sizeof(tmp) - 1; } memcpy(tmp, str, length); tmp[length] = '\0'; str = tmp; } return TRI_Int32String(str); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to uint32 from string //////////////////////////////////////////////////////////////////////////////// uint32_t TRI_UInt32String(char const* str) { uint32_t result; char* endptr; #if defined(TRI_HAVE_STRTOUL_R) struct reent buffer; #elif defined(TRI_HAVE__STRTOUL_R) struct reent buffer; #endif TRI_set_errno(TRI_ERROR_NO_ERROR); #if defined(TRI_HAVE_STRTOUL_R) result = strtoul_r(&buffer, str, &endptr, 10); #elif defined(TRI_HAVE__STRTOUL_R) result = _strtoul_r(&buffer, str, &endptr, 10); #else result = (uint32_t) strtoul(str, &endptr, 10); #endif while (isspace(*endptr)) { ++endptr; } if (*endptr != '\0') { TRI_set_errno(TRI_ERROR_ILLEGAL_NUMBER); } else if (errno == ERANGE && (result == 0 || result == UINT32_MAX)) { TRI_set_errno(TRI_ERROR_NUMERIC_OVERFLOW); } return result; } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to string from int8, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringInt8InPlace(int8_t attr, char* buffer) { if (attr == INT8_MIN) { static char const v[] = "-128\0"; static_assert(sizeof(v) == 6, "invalid size of char array"); memcpy(buffer, v, sizeof(v) - 1); return sizeof(v) - 2; } char* p = buffer; if (attr < 0) { *p++ = '-'; attr = -attr; } if (100 <= attr) { *p++ = (char)((attr / 100) % 10 + '0'); } if (10 <= attr) { *p++ = (char)((attr / 10) % 10 + '0'); } *p++ = (char)(attr % 10 + '0'); *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to string from uint8, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringUInt8InPlace(uint8_t attr, char* buffer) { char* p = buffer; if (100U <= attr) { *p++ = (char)((attr / 100U) % 10 + '0'); } if (10U <= attr) { *p++ = (char)((attr / 10U) % 10 + '0'); } *p++ = (char)(attr % 10 + '0'); *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to string from int16, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringInt16InPlace(int16_t attr, char* buffer) { if (attr == INT16_MIN) { memcpy(buffer, "-32768\0", 7); return 6; } char* p = buffer; if (attr < 0) { *p++ = '-'; attr = -attr; } if (10000 <= attr) { *p++ = (char)((attr / 10000) % 10 + '0'); } if (1000 <= attr) { *p++ = (char)((attr / 1000) % 10 + '0'); } if (100 <= attr) { *p++ = (char)((attr / 100) % 10 + '0'); } if (10 <= attr) { *p++ = (char)((attr / 10) % 10 + '0'); } *p++ = (char)(attr % 10 + '0'); *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to string from uint16, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringUInt16InPlace(uint16_t attr, char* buffer) { char* p = buffer; if (10000U <= attr) { *p++ = (char)((attr / 10000U) % 10 + '0'); } if (1000U <= attr) { *p++ = (char)((attr / 1000U) % 10 + '0'); } if (100U <= attr) { *p++ = (char)((attr / 100U) % 10 + '0'); } if (10U <= attr) { *p++ = (char)((attr / 10U) % 10 + '0'); } *p++ = (char)(attr % 10 + '0'); *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to string from int32, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringInt32InPlace(int32_t attr, char* buffer) { if (attr == INT32_MIN) { memcpy(buffer, "-2147483648\0", 12); return 11; } char* p = buffer; if (attr < 0) { *p++ = '-'; attr = -attr; } if (1000000000L <= attr) { *p++ = (char)((attr / 1000000000L) % 10 + '0'); } if (100000000L <= attr) { *p++ = (char)((attr / 100000000L) % 10 + '0'); } if (10000000L <= attr) { *p++ = (char)((attr / 10000000L) % 10 + '0'); } if (1000000L <= attr) { *p++ = (char)((attr / 1000000L) % 10 + '0'); } if (100000L <= attr) { *p++ = (char)((attr / 100000L) % 10 + '0'); } if (10000L <= attr) { *p++ = (char)((attr / 10000L) % 10 + '0'); } if (1000L <= attr) { *p++ = (char)((attr / 1000L) % 10 + '0'); } if (100L <= attr) { *p++ = (char)((attr / 100L) % 10 + '0'); } if (10L <= attr) { *p++ = (char)((attr / 10L) % 10 + '0'); } *p++ = (char)(attr % 10 + '0'); *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to string from uint32, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringUInt32InPlace(uint32_t attr, char* buffer) { char* p = buffer; if (1000000000UL <= attr) { *p++ = (char)((attr / 1000000000UL) % 10 + '0'); } if (100000000UL <= attr) { *p++ = (char)((attr / 100000000UL) % 10 + '0'); } if (10000000UL <= attr) { *p++ = (char)((attr / 10000000UL) % 10 + '0'); } if (1000000UL <= attr) { *p++ = (char)((attr / 1000000UL) % 10 + '0'); } if (100000UL <= attr) { *p++ = (char)((attr / 100000UL) % 10 + '0'); } if (10000UL <= attr) { *p++ = (char)((attr / 10000UL) % 10 + '0'); } if (1000UL <= attr) { *p++ = (char)((attr / 1000UL) % 10 + '0'); } if (100UL <= attr) { *p++ = (char)((attr / 100UL) % 10 + '0'); } if (10UL <= attr) { *p++ = (char)((attr / 10UL) % 10 + '0'); } *p++ = (char)(attr % 10 + '0'); *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to string from int64, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringInt64InPlace(int64_t attr, char* buffer) { if (attr == INT64_MIN) { memcpy(buffer, "-9223372036854775808\0", 21); return 20; } if (attr >= 0 && (attr >> 32) == 0) { // shortcut return TRI_StringUInt32InPlace((uint32_t)attr, buffer); } char* p = buffer; if (attr < 0) { *p++ = '-'; attr = -attr; if ((attr >> 32) == 0) { // shortcut return TRI_StringUInt32InPlace((uint32_t)attr, p) + 1; } } if (1000000000000000000LL <= attr) { *p++ = (char)((attr / 1000000000000000000LL) % 10 + '0'); } if (100000000000000000LL <= attr) { *p++ = (char)((attr / 100000000000000000LL) % 10 + '0'); } if (10000000000000000LL <= attr) { *p++ = (char)((attr / 10000000000000000LL) % 10 + '0'); } if (1000000000000000LL <= attr) { *p++ = (char)((attr / 1000000000000000LL) % 10 + '0'); } if (100000000000000LL <= attr) { *p++ = (char)((attr / 100000000000000LL) % 10 + '0'); } if (10000000000000LL <= attr) { *p++ = (char)((attr / 10000000000000LL) % 10 + '0'); } if (1000000000000LL <= attr) { *p++ = (char)((attr / 1000000000000LL) % 10 + '0'); } if (100000000000LL <= attr) { *p++ = (char)((attr / 100000000000LL) % 10 + '0'); } if (10000000000LL <= attr) { *p++ = (char)((attr / 10000000000LL) % 10 + '0'); } if (1000000000LL <= attr) { *p++ = (char)((attr / 1000000000LL) % 10 + '0'); } if (100000000LL <= attr) { *p++ = (char)((attr / 100000000LL) % 10 + '0'); } if (10000000LL <= attr) { *p++ = (char)((attr / 10000000LL) % 10 + '0'); } if (1000000LL <= attr) { *p++ = (char)((attr / 1000000LL) % 10 + '0'); } if (100000LL <= attr) { *p++ = (char)((attr / 100000LL) % 10 + '0'); } if (10000LL <= attr) { *p++ = (char)((attr / 10000LL) % 10 + '0'); } if (1000LL <= attr) { *p++ = (char)((attr / 1000LL) % 10 + '0'); } if (100LL <= attr) { *p++ = (char)((attr / 100LL) % 10 + '0'); } if (10LL <= attr) { *p++ = (char)((attr / 10LL) % 10 + '0'); } *p++ = (char)(attr % 10 + '0'); *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to string from uint64, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringUInt64InPlace(uint64_t attr, char* buffer) { if ((attr >> 32) == 0) { // shortcut return TRI_StringUInt32InPlace((uint32_t)attr, buffer); } char* p = buffer; if (10000000000000000000ULL <= attr) { *p++ = (char)((attr / 10000000000000000000ULL) % 10 + '0'); } if (1000000000000000000ULL <= attr) { *p++ = (char)((attr / 1000000000000000000ULL) % 10 + '0'); } if (100000000000000000ULL <= attr) { *p++ = (char)((attr / 100000000000000000ULL) % 10 + '0'); } if (10000000000000000ULL <= attr) { *p++ = (char)((attr / 10000000000000000ULL) % 10 + '0'); } if (1000000000000000ULL <= attr) { *p++ = (char)((attr / 1000000000000000ULL) % 10 + '0'); } if (100000000000000ULL <= attr) { *p++ = (char)((attr / 100000000000000ULL) % 10 + '0'); } if (10000000000000ULL <= attr) { *p++ = (char)((attr / 10000000000000ULL) % 10 + '0'); } if (1000000000000ULL <= attr) { *p++ = (char)((attr / 1000000000000ULL) % 10 + '0'); } if (100000000000ULL <= attr) { *p++ = (char)((attr / 100000000000ULL) % 10 + '0'); } if (10000000000ULL <= attr) { *p++ = (char)((attr / 10000000000ULL) % 10 + '0'); } if (1000000000ULL <= attr) { *p++ = (char)((attr / 1000000000ULL) % 10 + '0'); } if (100000000ULL <= attr) { *p++ = (char)((attr / 100000000ULL) % 10 + '0'); } if (10000000ULL <= attr) { *p++ = (char)((attr / 10000000ULL) % 10 + '0'); } if (1000000ULL <= attr) { *p++ = (char)((attr / 1000000ULL) % 10 + '0'); } if (100000ULL <= attr) { *p++ = (char)((attr / 100000ULL) % 10 + '0'); } if (10000ULL <= attr) { *p++ = (char)((attr / 10000ULL) % 10 + '0'); } if (1000ULL <= attr) { *p++ = (char)((attr / 1000ULL) % 10 + '0'); } if (100ULL <= attr) { *p++ = (char)((attr / 100ULL) % 10 + '0'); } if (10ULL <= attr) { *p++ = (char)((attr / 10ULL) % 10 + '0'); } *p++ = (char)(attr % 10 + '0'); *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to string from uint32 //////////////////////////////////////////////////////////////////////////////// char* TRI_StringUInt32(uint32_t attr) { char buffer[11]; size_t len = TRI_StringUInt32InPlace(attr, (char*)&buffer); return TRI_DuplicateString(buffer, len); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to string from uint64 //////////////////////////////////////////////////////////////////////////////// char* TRI_StringUInt64(uint64_t attr) { char buffer[21]; size_t len = TRI_StringUInt64InPlace(attr, (char*)&buffer); return TRI_DuplicateString(buffer, len); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to hex string from uint32, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringUInt32HexInPlace(uint32_t attr, char* buffer) { char* p = buffer; if (0x10000000U <= attr) { *p++ = HEX[(attr / 0x10000000U) % 0x10]; } if (0x1000000U <= attr) { *p++ = HEX[(attr / 0x1000000U) % 0x10]; } if (0x100000U <= attr) { *p++ = HEX[(attr / 0x100000U) % 0x10]; } if (0x10000U <= attr) { *p++ = HEX[(attr / 0x10000U) % 0x10]; } if (0x1000U <= attr) { *p++ = HEX[(attr / 0x1000U) % 0x10]; } if (0x100U <= attr) { *p++ = HEX[(attr / 0x100U) % 0x10]; } if (0x10U <= attr) { *p++ = HEX[(attr / 0x10U) % 0x10]; } *p++ = HEX[attr % 0x10]; *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to hex string from uint64, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringUInt64HexInPlace(uint64_t attr, char* buffer) { char* p = buffer; if (0x1000000000000000ULL <= attr) { *p++ = HEX[(attr / 0x1000000000000000ULL) % 0x10]; } if (0x100000000000000ULL <= attr) { *p++ = HEX[(attr / 0x100000000000000ULL) % 0x10]; } if (0x10000000000000ULL <= attr) { *p++ = HEX[(attr / 0x10000000000000ULL) % 0x10]; } if (0x1000000000000ULL <= attr) { *p++ = HEX[(attr / 0x1000000000000ULL) % 0x10]; } if (0x100000000000ULL <= attr) { *p++ = HEX[(attr / 0x100000000000ULL) % 0x10]; } if (0x10000000000ULL <= attr) { *p++ = HEX[(attr / 0x10000000000ULL) % 0x10]; } if (0x1000000000ULL <= attr) { *p++ = HEX[(attr / 0x1000000000ULL) % 0x10]; } if (0x100000000ULL <= attr) { *p++ = HEX[(attr / 0x100000000ULL) % 0x10]; } if (0x10000000ULL <= attr) { *p++ = HEX[(attr / 0x10000000ULL) % 0x10]; } if (0x1000000ULL <= attr) { *p++ = HEX[(attr / 0x1000000ULL) % 0x10]; } if (0x100000ULL <= attr) { *p++ = HEX[(attr / 0x100000ULL) % 0x10]; } if (0x10000ULL <= attr) { *p++ = HEX[(attr / 0x10000ULL) % 0x10]; } if (0x1000ULL <= attr) { *p++ = HEX[(attr / 0x1000ULL) % 0x10]; } if (0x100ULL <= attr) { *p++ = HEX[(attr / 0x100ULL) % 0x10]; } if (0x10ULL <= attr) { *p++ = HEX[(attr / 0x10ULL) % 0x10]; } *p++ = HEX[attr % 0x10]; *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to octal string from uint32, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringUInt32OctalInPlace(uint32_t attr, char* buffer) { char* p = buffer; if (010000000000UL <= attr) { *p++ = (char)((attr / 010000000000UL) % 010 + '0'); } if (01000000000UL <= attr) { *p++ = (char)((attr / 01000000000UL) % 010 + '0'); } if (0100000000UL <= attr) { *p++ = (char)((attr / 0100000000UL) % 010 + '0'); } if (010000000UL <= attr) { *p++ = (char)((attr / 010000000UL) % 010 + '0'); } if (01000000UL <= attr) { *p++ = (char)((attr / 01000000UL) % 010 + '0'); } if (0100000UL <= attr) { *p++ = (char)((attr / 0100000UL) % 010 + '0'); } if (010000UL <= attr) { *p++ = (char)((attr / 010000UL) % 010 + '0'); } if (01000UL <= attr) { *p++ = (char)((attr / 01000UL) % 010 + '0'); } if (0100UL <= attr) { *p++ = (char)((attr / 0100UL) % 010 + '0'); } if (010UL <= attr) { *p++ = (char)((attr / 010UL) % 010 + '0'); } *p++ = (char)(attr % 010 + '0'); *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief convert to octal string from uint64, using the specified buffer. /// A NUL-byte will be appended at the end. /// It is the caller's responsibility to ensure the buffer is big enough to /// contain the result string and the NUL byte. /// The length of the string number in characters without the NUL byte is /// returned. //////////////////////////////////////////////////////////////////////////////// size_t TRI_StringUInt64OctalInPlace(uint64_t attr, char* buffer) { char* p = buffer; if (01000000000000000000000ULL <= attr) { *p++ = (char)((attr / 01000000000000000000000ULL) % 010 + '0'); } if (0100000000000000000000ULL <= attr) { *p++ = (char)((attr / 0100000000000000000000ULL) % 010 + '0'); } if (010000000000000000000ULL <= attr) { *p++ = (char)((attr / 010000000000000000000ULL) % 010 + '0'); } if (01000000000000000000ULL <= attr) { *p++ = (char)((attr / 01000000000000000000ULL) % 010 + '0'); } if (0100000000000000000ULL <= attr) { *p++ = (char)((attr / 0100000000000000000ULL) % 010 + '0'); } if (010000000000000000ULL <= attr) { *p++ = (char)((attr / 010000000000000000ULL) % 010 + '0'); } if (01000000000000000ULL <= attr) { *p++ = (char)((attr / 01000000000000000ULL) % 010 + '0'); } if (0100000000000000ULL <= attr) { *p++ = (char)((attr / 0100000000000000ULL) % 010 + '0'); } if (010000000000000ULL <= attr) { *p++ = (char)((attr / 010000000000000ULL) % 010 + '0'); } if (01000000000000ULL <= attr) { *p++ = (char)((attr / 01000000000000ULL) % 010 + '0'); } if (0100000000000ULL <= attr) { *p++ = (char)((attr / 0100000000000ULL) % 010 + '0'); } if (010000000000ULL <= attr) { *p++ = (char)((attr / 010000000000ULL) % 010 + '0'); } if (01000000000ULL <= attr) { *p++ = (char)((attr / 01000000000ULL) % 010 + '0'); } if (0100000000ULL <= attr) { *p++ = (char)((attr / 0100000000ULL) % 010 + '0'); } if (010000000ULL <= attr) { *p++ = (char)((attr / 010000000ULL) % 010 + '0'); } if (01000000ULL <= attr) { *p++ = (char)((attr / 01000000ULL) % 010 + '0'); } if (0100000ULL <= attr) { *p++ = (char)((attr / 0100000ULL) % 010 + '0'); } if (010000ULL <= attr) { *p++ = (char)((attr / 010000ULL) % 010 + '0'); } if (01000ULL <= attr) { *p++ = (char)((attr / 01000ULL) % 010 + '0'); } if (0100ULL <= attr) { *p++ = (char)((attr / 0100ULL) % 010 + '0'); } if (010ULL <= attr) { *p++ = (char)((attr / 010ULL) % 010 + '0'); } *p++ = (char)(attr % 010 + '0'); *p = '\0'; return (p - buffer); } //////////////////////////////////////////////////////////////////////////////// /// @brief converts a time stamp to a string //////////////////////////////////////////////////////////////////////////////// std::string TRI_StringTimeStamp(double stamp, bool useLocalTime) { char buffer[32]; size_t len; struct tm tb; time_t tt = static_cast(stamp); if (useLocalTime) { TRI_localtime(tt, &tb); } else { TRI_gmtime(tt, &tb); } len = strftime(buffer, sizeof(buffer), "%Y-%m-%dT%H:%M:%SZ", &tb); return std::string(buffer, len); }