/*jshint globalstrict:false, strict:false */ /*global assertTrue, assertEqual */ //////////////////////////////////////////////////////////////////////////////// /// @brief test the random document selector /// /// @file /// /// DISCLAIMER /// /// Copyright 2010-2012 triagens GmbH, Cologne, Germany /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, software /// distributed under the License is distributed on an "AS IS" BASIS, /// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. /// See the License for the specific language governing permissions and /// limitations under the License. /// /// Copyright holder is triAGENS GmbH, Cologne, Germany /// /// @author Jan Steemann /// @author Copyright 2012, triAGENS GmbH, Cologne, Germany //////////////////////////////////////////////////////////////////////////////// var jsunity = require("jsunity"); var arangodb = require("@arangodb"); var db = arangodb.db; //////////////////////////////////////////////////////////////////////////////// /// @brief test suite //////////////////////////////////////////////////////////////////////////////// function AnySuite () { 'use strict'; var cn = "example"; var c; var statsExpected = function (list, N) { // list is a list of numbers, we assume that we draw N times one number // from list with a uniform distribution, we compute the expected value // of the average and the variance, as well as the variance // of these two: // First the expected value and the standard deviation of the uniform // distribution: var E = 0; var n = list.length; var i; for (i = 0; i < n; i++) { E += list[i]; } E /= n; var V = 0; for (i = 0; i < n; i++) { V += Math.pow(list[i] - E, 2); } V = V / n; // Now we apply the central limit theorem to the random variable // Y = (X - E)^2, first compute its expected value and standard // deviation: var EY = V; var VY = 0; for (i = 0; i < n; i++) { VY += Math.pow(Math.pow(list[i] - E, 2) - EY, 2); } VY = VY / n; // Now EY is V and sY is its variance, by the central limit theorem // taking the average of a sample of size N of Y values will be close // to the normal distribution with expected value EY and variance // VY / N return { average: E, variance: V, averageStddev: Math.sqrt(V) / Math.sqrt(N), varianceStddev: Math.sqrt(VY) / Math.sqrt(N) }; }; var statsFound = function (dist) { var v; var sum = 0; var count = 0; for (v in dist) { if (dist.hasOwnProperty(v)) { sum += dist[v] * Number(v); count += dist[v]; } } var avg = sum / count; var sum2 = 0; for (v in dist) { if (dist.hasOwnProperty(v)) { var d = Number(v) - avg; sum2 += d * d * dist[v]; } } return { average: avg, count: count, variance : sum2 / (count-1) }; }; var getDistribution = function (n, rng) { var dist = { }; var i; for (i = 0; i < n; ++i) { var pick = rng(); if (dist.hasOwnProperty(pick)) { dist[pick]++; } else { dist[pick] = 1; } } return dist; }; return { //////////////////////////////////////////////////////////////////////////////// /// @brief set up //////////////////////////////////////////////////////////////////////////////// setUp : function () { db._drop(cn); c = db._create(cn); }, //////////////////////////////////////////////////////////////////////////////// /// @brief tear down //////////////////////////////////////////////////////////////////////////////// tearDown : function () { db._drop(cn); }, //////////////////////////////////////////////////////////////////////////////// /// @brief check entropy of Math.random() //////////////////////////////////////////////////////////////////////////////// testCheckEntropyNative : function () { var i, n, l; n = 100; l = []; for (i = 0; i < n; ++i) { c.save({ value: i }); l.push(i); } var dist = getDistribution(n * 100, function () { return parseInt(Math.random() * 100, 10); }); var statsExp = statsExpected(l, n * 100); var stats = statsFound(dist); assertEqual(stats.count, n * 100); assertTrue(Math.abs(stats.average - statsExp.average) < statsExp.averageStddev * 3); assertTrue(Math.abs(stats.variance - statsExp.variance) < statsExp.varianceStddev * 3); }, //////////////////////////////////////////////////////////////////////////////// /// @brief check entropy of any(), just one document //////////////////////////////////////////////////////////////////////////////// testCheckEntropyCollectionOne : function () { c.save({ value: 1 }); var dist = getDistribution(100, function () { return c.any().value; }); var statsExp = statsExpected([1], 100); var stats = statsFound(dist); assertEqual(stats.count, 100); assertTrue(Math.abs(stats.average - statsExp.average) < 0.000001); assertTrue(Math.abs(stats.variance - statsExp.variance) < 0.000001); }, //////////////////////////////////////////////////////////////////////////////// /// @brief check entropy of any(), few picks //////////////////////////////////////////////////////////////////////////////// testCheckEntropyCollectionFew1 : function () { var i, n, l; n = 3; l = []; for (i = 0; i < n; ++i) { c.save({ value: i }); l.push(i); } var dist = getDistribution(n * 200, function () { return c.any().value; }); var statsExp = statsExpected(l, n * 200); var stats = statsFound(dist); assertEqual(stats.count, n * 200); assertTrue(Math.abs(stats.average - statsExp.average) < statsExp.averageStddev * 4); assertTrue(Math.abs(stats.variance - statsExp.variance) < statsExp.varianceStddev * 4); }, //////////////////////////////////////////////////////////////////////////////// /// @brief check entropy of any(), few picks //////////////////////////////////////////////////////////////////////////////// testCheckEntropyCollectionFew2 : function () { var i, n, l; n = 10; l = []; for (i = 0; i < n; ++i) { c.save({ value: i }); l.push(i); } var dist = getDistribution(n * 100, function () { return c.any().value; }); var statsExp = statsExpected(l, n * 100); var stats = statsFound(dist); assertEqual(stats.count, n * 100); assertTrue(Math.abs(stats.average - statsExp.average) < statsExp.averageStddev * 4); assertTrue(Math.abs(stats.variance - statsExp.variance) < statsExp.varianceStddev * 4); }, //////////////////////////////////////////////////////////////////////////////// /// @brief check entropy of any(), more picks //////////////////////////////////////////////////////////////////////////////// testCheckEntropyCollectionMore : function () { var i, n, l; n = 500; l = []; for (i = 0; i < n; ++i) { c.save({ value: i }); l.push(i); } var dist = getDistribution(n * 100, function () { return c.any().value; }); var statsExp = statsExpected(l, n * 100); var stats = statsFound(dist); assertEqual(stats.count, n * 100); assertTrue(Math.abs(stats.average - statsExp.average) < statsExp.averageStddev * 3); assertTrue(Math.abs(stats.variance - statsExp.variance) < statsExp.varianceStddev * 3); }, //////////////////////////////////////////////////////////////////////////////// /// @brief check entropy of any(), with many documents deleted //////////////////////////////////////////////////////////////////////////////// testCheckEntropyCollectionHalf : function () { var i, n, l; n = 500; for (i = 0; i < n; ++i) { c.save({ value: i }); } // remove 50 % of entries var d = Math.round(n * 0.5); for (i = 0; i < d; ++i) { c.remove(c.any()); } l = db._query(`FOR d IN ${cn} RETURN d.value`).toArray(); var dist = getDistribution(n * 50, function () { return c.any().value; }); var statsExp = statsExpected(l, n * 50); var stats = statsFound(dist); assertEqual(stats.count, n * 50); assertTrue(Math.abs(stats.average - statsExp.average) < statsExp.averageStddev * 3); assertTrue(Math.abs(stats.variance - statsExp.variance) < statsExp.varianceStddev * 3); }, //////////////////////////////////////////////////////////////////////////////// /// @brief check entropy of any(), with most documents deleted //////////////////////////////////////////////////////////////////////////////// testCheckEntropyCollectionSparse : function () { var i, n, l; n = 500; for (i = 0; i < n; ++i) { c.save({ value: i }); } // remove 50 % of entries var d = Math.round(n * 0.95); for (i = 0; i < d; ++i) { c.remove(c.any()); } var dist = getDistribution(n * 5, function () { return c.any().value; }); l = db._query(`FOR d IN ${cn} RETURN d.value`).toArray(); var statsExp = statsExpected(l, n * 5); var stats = statsFound(dist); assertEqual(stats.count, n * 5); assertTrue(Math.abs(stats.average - statsExp.average) < statsExp.averageStddev * 3); assertTrue(Math.abs(stats.variance - statsExp.variance) < statsExp.varianceStddev * 3); } }; } //////////////////////////////////////////////////////////////////////////////// /// @brief executes the test suite //////////////////////////////////////////////////////////////////////////////// jsunity.run(AnySuite); return jsunity.done();