arangosh> db.geoSort.ensureIndex({ type: "geo", fields: [ "latitude", "longitude" ] }); { "bestIndexedLevel" : 17, "fields" : [ "latitude", "longitude" ], "geoJson" : false, "id" : "geoSort/128312", "isNewlyCreated" : true, "maxNumCoverCells" : 8, "sparse" : true, "type" : "geo", "unique" : false, "worstIndexedLevel" : 4, "code" : 201 } arangosh> for (i = -90; i <= 90; i += 10) { ........> for (j = -180; j <= 180; j += 10) { ........> db.geoSort.save({ name : "Name/" + i + "/" + j, latitude : i, longitude : j }); ........> } ........> } arangosh> var query = "FOR doc in geoSort SORT DISTANCE(doc.latitude, doc.longitude, 0, 0) LIMIT 5 RETURN doc" arangosh> db._explain(query, {}, {colors: false}); Query String: FOR doc in geoSort SORT DISTANCE(doc.latitude, doc.longitude, 0, 0) LIMIT 5 RETURN doc Execution plan: Id NodeType Est. Comment 1 SingletonNode 1 * ROOT 7 IndexNode 703 - FOR doc IN geoSort /* geo index scan */ 5 LimitNode 5 - LIMIT 0, 5 6 ReturnNode 5 - RETURN doc Indexes used: By Type Collection Unique Sparse Selectivity Fields Ranges 7 geo geoSort false true n/a [ `latitude`, `longitude` ] (GEO_DISTANCE([ 0, 0 ], [ doc.`longitude`, doc.`latitude` ]) < "unlimited") Optimization rules applied: Id RuleName 1 geo-index-optimizer 2 remove-unnecessary-calculations-2 arangosh> db._query(query); [ { "_key" : "129369", "_id" : "geoSort/129369", "_rev" : "_Y2g7EDS--F", "name" : "Name/0/0", "latitude" : 0, "longitude" : 0 }, { "_key" : "129258", "_id" : "geoSort/129258", "_rev" : "_Y2g7EC2--D", "name" : "Name/-10/0", "latitude" : -10, "longitude" : 0 }, { "_key" : "129366", "_id" : "geoSort/129366", "_rev" : "_Y2g7EDS--D", "name" : "Name/0/-10", "latitude" : 0, "longitude" : -10 }, { "_key" : "129480", "_id" : "geoSort/129480", "_rev" : "_Y2g7EDy--F", "name" : "Name/10/0", "latitude" : 10, "longitude" : 0 }, { "_key" : "129372", "_id" : "geoSort/129372", "_rev" : "_Y2g7EDS--H", "name" : "Name/0/10", "latitude" : 0, "longitude" : 10 } ] [object ArangoQueryCursor, count: 5, cached: false, hasMore: false]