//////////////////////////////////////////////////////////////////////////////// /// DISCLAIMER /// /// Copyright 2014-2016 ArangoDB GmbH, Cologne, Germany /// Copyright 2004-2014 triAGENS GmbH, Cologne, Germany /// /// Licensed under the Apache License, Version 2.0 (the "License"); /// you may not use this file except in compliance with the License. /// You may obtain a copy of the License at /// /// http://www.apache.org/licenses/LICENSE-2.0 /// /// Unless required by applicable law or agreed to in writing, software /// distributed under the License is distributed on an "AS IS" BASIS, /// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. /// See the License for the specific language governing permissions and /// limitations under the License. /// /// Copyright holder is ArangoDB GmbH, Cologne, Germany /// /// @author Dr. Frank Celler /// @author Martin Schoenert /// @author Max Neunhoeffer /// @author Daniel H. Larkin //////////////////////////////////////////////////////////////////////////////// #ifndef ARANGODB_BASICS_ASSOC_MULTI_H #define ARANGODB_BASICS_ASSOC_MULTI_H 1 // Activate for additional debugging: // #define TRI_CHECK_MULTI_POINTER_HASH 1 #include "Basics/AssocHelpers.h" #include "Basics/AssocMultiHelpers.h" #include "Basics/Common.h" #include "Basics/IndexBucket.h" #include "Basics/LocalTaskQueue.h" #include "Basics/Mutex.h" #include "Basics/MutexLocker.h" #include "Basics/PerformanceLogScope.h" #include "Basics/prime-numbers.h" #include "Logger/Logger.h" #include #include #include #ifdef TRI_CHECK_MULTI_POINTER_HASH #include #endif namespace arangodb { namespace basics { //////////////////////////////////////////////////////////////////////////////// /// @brief associative array of pointers, tolerating repeated keys. /// /// This is a data structure that can store pointers to elements. Each element /// has a unique key (for example a certain attribute) and multiple /// elements in the associative array can have the same key. Every element /// can be at most once in the array. /// We want to offer constant time complexity for the following /// operations: /// - insert pointer to a element into the array /// - lookup pointer to a element in the array /// - delete pointer to a element from the array /// - find one pointer to a element with a given key /// Furthermore, we want to offer O(n) complexity for the following /// operation: /// - find all pointers whose elements have a given key k, where n is /// the number of elements in the array with this key /// To this end, we use a hash table and ask the user to provide the following: /// - a way to hash elements by their keys, and to hash keys themselves, /// - a way to hash elements by their full identity /// - a way to compare a key to the key of a given element /// - a way to compare two elements, either by their keys or by their full /// identities. /// To avoid unnecessary comparisons the user can guarantee that s/he will /// only try to store non-identical elements into the array. This enables /// the code to skip comparisons which would otherwise be necessary to /// ensure uniqueness. /// The idea of the algorithm is as follows: Each slot in the hash table /// contains a pointer to the actual element, as well as two unsigned /// integers "prev" and "next" (being indices in the hash table) to /// organize a linked list of entries, *within the same hash table*. All /// elements with the same key are kept in a doubly linked list. The first /// element in such a linked list is kept at the position determined by /// its hash with respect to its key (or in the first free slot after this /// position). All further elements in such a linked list are kept at the /// position determined by its hash with respect to its full identity /// (or in the first free slot after this position). Provided the hash /// table is large enough and the hash functions distribute well enough, /// this gives the proposed complexity. /// //////////////////////////////////////////////////////////////////////////////// template class AssocMulti { private: typedef void UserData; public: static IndexType const INVALID_INDEX = ((IndexType)0) - 1; typedef std::function CallbackElementFuncType; private: typedef Entry EntryType; typedef arangodb::basics::IndexBucket Bucket; AssocMultiHelper _helper; std::vector _buckets; size_t _bucketsMask; #ifdef TRI_INTERNAL_STATS uint64_t _nrFinds; // statistics: number of lookup calls uint64_t _nrAdds; // statistics: number of insert calls uint64_t _nrRems; // statistics: number of remove calls uint64_t _nrResizes; // statistics: number of resizes uint64_t _nrProbes; // statistics: number of misses in FindElementPlace // and LookupByElement, used by insert, lookup and // remove uint64_t _nrProbesF; // statistics: number of misses while looking up uint64_t _nrProbesD; // statistics: number of misses while removing #endif std::function _contextCallback; IndexType _initialSize; public: AssocMulti(AssocMultiHelper&& helper, size_t numberBuckets = 1, IndexType initialSize = 64, std::function contextCallback = []() -> std::string { return ""; }) : _helper(std::move(helper)), #ifdef TRI_INTERNAL_STATS _nrFinds(0), _nrAdds(0), _nrRems(0), _nrResizes(0), _nrProbes(0), _nrProbesF(0), _nrProbesD(0), #endif _contextCallback(contextCallback), _initialSize(initialSize) { // Make the number of buckets a power of two: size_t ex = 0; size_t nr = 1; numberBuckets >>= 1; while (numberBuckets > 0) { ex += 1; numberBuckets >>= 1; nr <<= 1; } numberBuckets = nr; _bucketsMask = nr - 1; _buckets.resize(numberBuckets); try { for (size_t j = 0; j < numberBuckets; j++) { _buckets[j].allocate(_initialSize); } } catch (...) { _buckets.clear(); throw; } } ~AssocMulti() { _buckets.clear(); } ////////////////////////////////////////////////////////////////////////////// /// @brief return the memory used by the hash table ////////////////////////////////////////////////////////////////////////////// size_t memoryUsage() const { size_t res = 0; for (auto& b : _buckets) { res += b.memoryUsage(); } return res; } ////////////////////////////////////////////////////////////////////////////// /// @brief size(), return the number of items stored ////////////////////////////////////////////////////////////////////////////// size_t size() const { size_t res = 0; for (auto& b : _buckets) { res += static_cast(b._nrUsed); } return res; } ////////////////////////////////////////////////////////////////////////////// /// @brief Appends information about statistics in the given VPackBuilder ////////////////////////////////////////////////////////////////////////////// void appendToVelocyPack(VPackBuilder& builder) { builder.add("buckets", VPackValue(VPackValueType::Array)); for (auto& b : _buckets) { builder.openObject(); builder.add("nrAlloc", VPackValue(b._nrAlloc)); builder.add("nrUsed", VPackValue(b._nrUsed)); builder.close(); } builder.close(); // buckets builder.add("nrBuckets", VPackValue(_buckets.size())); builder.add("totalUsed", VPackValue(size())); } ////////////////////////////////////////////////////////////////////////////// /// @brief capacity(), return the number of allocated items ////////////////////////////////////////////////////////////////////////////// size_t capacity() const { size_t res = 0; for (auto& b : _buckets) { res += static_cast(b._nrAlloc); } return res; } ////////////////////////////////////////////////////////////////////////////// /// @brief return the element at position. /// this may return a default-constructed Element if not found ////////////////////////////////////////////////////////////////////////////// Element at(Bucket& b, size_t position) const { return b._table[position].value; } ////////////////////////////////////////////////////////////////////////////// /// @brief adds a key/element to the array ////////////////////////////////////////////////////////////////////////////// Element insert(UserData* userData, Element const& element, bool overwrite, bool checkEquality) { // if the checkEquality flag is not set, we do not check for element // equality we use this flag to speed up initial insertion into the // index, i.e. when the index is built for a collection and we know // for sure no duplicate elements will be inserted #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, true, true); #endif // compute the hash by the key only first uint64_t hashByKey = _helper.HashElement(element, true); Bucket& b = _buckets[hashByKey & _bucketsMask]; auto result = doInsert(userData, element, hashByKey, b, overwrite, checkEquality); #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, true, true); #endif return result; } ////////////////////////////////////////////////////////////////////////////// /// @brief adds multiple elements to the array ////////////////////////////////////////////////////////////////////////////// void batchInsert(std::function const& contextCreator, std::function const& contextDestroyer, std::shared_ptr const> data, std::shared_ptr queue) { if (data->empty()) { // nothing to do return; } std::vector const& elements = *(data.get()); // set the number of partitioners sensibly size_t numThreads = _buckets.size(); if (elements.size() < numThreads) { numThreads = elements.size(); } size_t const chunkSize = elements.size() / numThreads; typedef std::vector> DocumentsPerBucket; typedef MultiInserterTask Inserter; typedef MultiPartitionerTask Partitioner; // allocate working space and coordination tools for tasks std::shared_ptr> bucketMapLocker; bucketMapLocker.reset(new std::vector(_buckets.size())); std::shared_ptr>> bucketFlags; bucketFlags.reset(new std::vector>(_buckets.size())); for (size_t i = 0; i < bucketFlags->size(); i++) { (*bucketFlags)[i] = numThreads; } std::shared_ptr>> inserters; inserters.reset(new std::vector>); inserters->reserve(_buckets.size()); std::shared_ptr>> allBuckets; allBuckets.reset(new std::vector>(_buckets.size())); auto doInsertBinding = [&](UserData* userData, Element const& element, uint64_t hashByKey, Bucket& b, bool const overwrite, bool const checkEquality) -> Element { return doInsert(userData, element, hashByKey, b, overwrite, checkEquality); }; try { // create inserter tasks to be dispatched later by partitioners for (size_t i = 0; i < allBuckets->size(); i++) { std::shared_ptr worker; worker.reset(new Inserter(queue, contextDestroyer, &_buckets, doInsertBinding, i, contextCreator(), allBuckets)); inserters->emplace_back(worker); } // enqueue partitioner tasks for (size_t i = 0; i < numThreads; ++i) { size_t lower = i * chunkSize; size_t upper = (i + 1) * chunkSize; if (i + 1 == numThreads) { // last chunk. account for potential rounding errors upper = elements.size(); } else if (upper > elements.size()) { upper = elements.size(); } std::shared_ptr worker; worker.reset(new Partitioner(queue, AssocMultiHelper::HashElement, contextDestroyer, data, lower, upper, contextCreator(), bucketFlags, bucketMapLocker, allBuckets, inserters)); queue->enqueue(worker); } } catch (...) { queue->setStatus(TRI_ERROR_INTERNAL); } #ifdef TRI_CHECK_MULTI_POINTER_HASH { auto& checkFn = check; auto callback = [&contextCreator, &contextDestroyer, &checkFn]() -> void { if (queue->status() == TRI_ERROR_NO_ERROR) { void* userData = contextCreator(); checkFn(userData, true, true); contextDestroyer(userData); } }; std::shared_ptr cbTask; cbTask.reset(new arangodb::basics::LocalCallbackTask(queue, callback)); queue->enqueueCallback(cbTask); } #endif } void truncate(CallbackElementFuncType callback) { for (auto& b : _buckets) { invokeOnAllElements(callback, b); b.deallocate(); b.allocate(_initialSize); } } /// @brief a method to iterate over all elements in the hash void invokeOnAllElements(CallbackElementFuncType const& callback) { for (auto& b : _buckets) { if (b._table == nullptr || b._nrUsed == 0) { continue; } if (!invokeOnAllElements(callback, b)) { return; } } } /// @brief a method to iterate over all elements in the hash bool invokeOnAllElements(CallbackElementFuncType const& callback, Bucket& b) { for (size_t i = 0; i < b._nrAlloc; ++i) { if (!b._table[i].value) { continue; } if (!callback(b._table[i].value)) { return false; } } return true; } private: ////////////////////////////////////////////////////////////////////////////// /// @brief adds a key/element to the array ////////////////////////////////////////////////////////////////////////////// Element doInsert(UserData* userData, Element const& element, uint64_t hashByKey, Bucket& b, bool const overwrite, bool const checkEquality) { // if the checkEquality flag is not set, we do not check for element // equality we use this flag to speed up initial insertion into the // index, i.e. when the index is built for a collection and we know // for sure no duplicate elements will be inserted // if we were adding and the table is more than 2/3 full, extend it if (2 * b._nrAlloc < 3 * b._nrUsed) { resizeInternal(userData, b, 2 * b._nrAlloc + 1); } #ifdef TRI_INTERNAL_STATS // update statistics _nrAdds++; #endif IndexType hashIndex = hashToIndex(hashByKey); IndexType i = hashIndex % b._nrAlloc; // If this slot is free, just use it: if (!b._table[i].value) { b._table[i].value = element; b._table[i].next = INVALID_INDEX; b._table[i].prev = INVALID_INDEX; if (useHashCache) { b._table[i].writeHashCache(hashByKey); } b._nrUsed++; // no collision generated here! return Element(); } // Now find the first slot with an entry with the same key // that is the start of a linked list, or a free slot: while (b._table[i].value && (b._table[i].prev != INVALID_INDEX || (useHashCache && b._table[i].readHashCache() != hashByKey) || !_helper.IsEqualElementElementByKey(userData, element, b._table[i].value))) { i = incr(b, i); #ifdef TRI_INTERNAL_STATS // update statistics _ProbesA++; #endif } // If this is free, we are the first with this key: if (!b._table[i].value) { b._table[i].value = element; b._table[i].next = INVALID_INDEX; b._table[i].prev = INVALID_INDEX; if (useHashCache) { b._table[i].writeHashCache(hashByKey); } b._nrUsed++; // no collision generated here either! return Element(); } // Otherwise, entry i points to the beginning of the linked // list of which we want to make element a member. Perhaps an // equal element is right here: if (checkEquality && _helper.IsEqualElementElement(userData, element, b._table[i].value)) { Element old = b._table[i].value; if (overwrite) { TRI_ASSERT(!useHashCache || b._table[i].readHashCache() == hashByKey); b._table[i].value = element; } return old; } // Now find a new home for element in this linked list: uint64_t hashByElm; IndexType j = findElementPlace(userData, b, element, checkEquality, hashByElm); Element old = b._table[j].value; // if we found an element, return if (old) { if (overwrite) { if (useHashCache) { b._table[j].writeHashCache(hashByElm); } b._table[j].value = element; } return old; } // add a new element to the associative array and linked list (in pos 2): b._table[j].value = element; b._table[j].next = b._table[i].next; b._table[j].prev = i; if (useHashCache) { b._table[j].writeHashCache(hashByElm); } b._table[i].next = j; // Finally, we need to find the successor to patch it up: if (b._table[j].next != INVALID_INDEX) { b._table[b._table[j].next].prev = j; } b._nrUsed++; b._nrCollisions++; return Element(); } ////////////////////////////////////////////////////////////////////////////// /// @brief insertFirst, special version of insert, when it is known that the /// element is the first in the hash with its key, and the hash of the key /// is already known. This is for example the case when resizing. ////////////////////////////////////////////////////////////////////////////// IndexType insertFirst(UserData* userData, Bucket& b, Element const& element, uint64_t hashByKey) { #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, true, true); #endif #ifdef TRI_INTERNAL_STATS // update statistics _nrAdds++; #endif IndexType hashIndex = hashToIndex(hashByKey); IndexType i = hashIndex % b._nrAlloc; // If this slot is free, just use it: if (!b._table[i].value) { b._table[i].value = element; b._table[i].next = INVALID_INDEX; b._table[i].prev = INVALID_INDEX; if (useHashCache) { b._table[i].writeHashCache(hashByKey); } b._nrUsed++; // no collision generated here! #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, true, true); #endif return i; } // Now find the first slot with an entry with the same key // that is the start of a linked list, or a free slot: while (b._table[i].value) { i = incr(b, i); #ifdef TRI_INTERNAL_STATS // update statistics _ProbesA++; #endif } // We are the first with this key: b._table[i].value = element; b._table[i].next = INVALID_INDEX; b._table[i].prev = INVALID_INDEX; if (useHashCache) { b._table[i].writeHashCache(hashByKey); } b._nrUsed++; // no collision generated here either! #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, true, true); #endif return i; } ////////////////////////////////////////////////////////////////////////////// /// @brief insertFurther, special version of insert, when it is known /// that the element is not the first in the hash with its key, and /// the hash of the key and the element is already known. This is for /// example the case when resizing. ////////////////////////////////////////////////////////////////////////////// void insertFurther(UserData* userData, Bucket& b, Element const& element, uint64_t hashByKey, uint64_t hashByElm, IndexType firstPosition) { #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, true, true); #endif #ifdef TRI_INTERNAL_STATS // update statistics _nrAdds++; #endif // We already know the beginning of the doubly linked list: // Now find a new home for element in this linked list: IndexType hashIndex = hashToIndex(hashByElm); IndexType j = hashIndex % b._nrAlloc; while (b._table[j].value) { j = incr(b, j); #ifdef TRI_INTERNAL_STATS _nrProbes++; #endif } // add the element to the hash and linked list (in pos 2): b._table[j].value = element; b._table[j].next = b._table[firstPosition].next; b._table[j].prev = firstPosition; if (useHashCache) { b._table[j].writeHashCache(hashByElm); } b._table[firstPosition].next = j; // Finally, we need to find the successor to patch it up: if (b._table[j].next != INVALID_INDEX) { b._table[b._table[j].next].prev = j; } b._nrUsed++; b._nrCollisions++; #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, true, true); #endif } ////////////////////////////////////////////////////////////////////////////// /// @brief lookups an element given an element ////////////////////////////////////////////////////////////////////////////// public: Element lookup(UserData* userData, Element const& element) const { IndexType i; #ifdef TRI_INTERNAL_STATS // update statistics _nrFinds++; #endif Bucket* b; i = lookupByElement(userData, element, b); return b->_table[i].value; } ////////////////////////////////////////////////////////////////////////////// /// @brief lookups an element given a key ////////////////////////////////////////////////////////////////////////////// std::vector* lookupByKey(UserData* userData, Key const* key, size_t limit = 0) const { auto result = std::make_unique>(); lookupByKey(userData, key, *result, limit); return result.release(); } ////////////////////////////////////////////////////////////////////////////// /// @brief lookups an element given a key /// Accepts a result vector as input. The result of this lookup will /// be appended to the given vector. /// This function returns as soon as limit many elements are inside /// the given vector, no matter if the come from this lookup or /// have been in the result before. ////////////////////////////////////////////////////////////////////////////// void lookupByKey(UserData* userData, Key const* key, std::vector& result, size_t limit = 0) const { if (limit > 0 && result.size() >= limit) { return; } // compute the hash uint64_t hashByKey = _helper.HashKey(key); Bucket const& b = _buckets[hashByKey & _bucketsMask]; IndexType hashIndex = hashToIndex(hashByKey); IndexType i = hashIndex % b._nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics _nrFinds++; #endif // search the table while (b._table[i].value && (b._table[i].prev != INVALID_INDEX || (useHashCache && b._table[i].readHashCache() != hashByKey) || !_helper.IsEqualKeyElement(userData, key, b._table[i].value))) { i = incr(b, i); #ifdef TRI_INTERNAL_STATS _nrProbesF++; #endif } if (b._table[i].value) { // We found the beginning of the linked list: do { result.push_back(b._table[i].value); i = b._table[i].next; } while (i != INVALID_INDEX && (limit == 0 || result.size() < limit)); } // return whatever we found } ////////////////////////////////////////////////////////////////////////////// /// @brief looks up all elements with the same key as a given element ////////////////////////////////////////////////////////////////////////////// std::vector* lookupWithElementByKey(UserData* userData, Element const& element, size_t limit = 0) const { auto result = std::make_unique>(); lookupWithElementByKey(userData, element, *result, limit); return result.release(); } ////////////////////////////////////////////////////////////////////////////// /// @brief looks up all elements with the same key as a given element /// Accepts a result vector as input. The result of this lookup will /// be appended to the given vector. /// This function returns as soon as limit many elements are inside /// the given vector, no matter if the come from this lookup or /// have been in the result before. ////////////////////////////////////////////////////////////////////////////// void lookupWithElementByKey(UserData* userData, Element const& element, std::vector& result, size_t limit = 0) const { if (limit > 0 && result.size() >= limit) { // The vector is full, nothing to do. return; } // compute the hash uint64_t hashByKey = _helper.HashElement(element, true); Bucket const& b = _buckets[hashByKey & _bucketsMask]; IndexType hashIndex = hashToIndex(hashByKey); IndexType i = hashIndex % b._nrAlloc; #ifdef TRI_INTERNAL_STATS // update statistics _nrFinds++; #endif // search the table while (b._table[i].value && (b._table[i].prev != INVALID_INDEX || (useHashCache && b._table[i].readHashCache() != hashByKey) || !_helper.IsEqualElementElementByKey(userData, element, b._table[i].value))) { i = incr(b, i); #ifdef TRI_INTERNAL_STATS _nrProbesF++; #endif } if (b._table[i].value) { // We found the beginning of the linked list: do { result.push_back(b._table[i].value); i = b._table[i].next; } while (i != INVALID_INDEX && (limit == 0 || result.size() < limit)); } // return whatever we found } ////////////////////////////////////////////////////////////////////////////// /// @brief looks up all elements with the same key as a given element, /// continuation ////////////////////////////////////////////////////////////////////////////// std::vector* lookupWithElementByKeyContinue(UserData* userData, Element const& element, size_t limit = 0) const { auto result = std::make_unique>(); lookupWithElementByKeyContinue(userData, element, *result.get(), limit); return result.release(); } ////////////////////////////////////////////////////////////////////////////// /// @brief looks up all elements with the same key as a given element, /// continuation. /// Accepts a result vector as input. The result of this lookup will /// be appended to the given vector. /// This function returns as soon as limit many elements are inside /// the given vector, no matter if the come from this lookup or /// have been in the result before. ////////////////////////////////////////////////////////////////////////////// void lookupWithElementByKeyContinue(UserData* userData, Element const& element, std::vector& result, size_t limit = 0) const { if (limit > 0 && result.size() >= limit) { // The vector is full, nothing to do. return; } uint64_t hashByKey = _helper.HashElement(element, true); Bucket const& b = _buckets[hashByKey & _bucketsMask]; uint64_t hashByElm; IndexType i = findElementPlace(userData, b, element, true, hashByElm); if (!b._table[i].value) { // This can only happen if the element was the first in its doubly // linked list (after all, the caller guaranteed that element was // the last of a previous lookup). To cover this case, we have to // look in the position given by the hashByKey: i = hashToIndex(hashByKey) % b._nrAlloc; // Now find the first slot with an entry with the same key // that is the start of a linked list, or a free slot: while (b._table[i].value && (b._table[i].prev != INVALID_INDEX || (useHashCache && b._table[i].readHashCache() != hashByKey) || !_helper.IsEqualElementElementByKey(userData, element, b._table[i].value))) { i = incr(b, i); #ifdef TRI_INTERNAL_STATS _nrProbes++; #endif } if (!b._table[i].value) { // This cannot really happen, but we handle it gracefully anyway return; } } // continue search of the table while (true) { i = b._table[i].next; if (i == INVALID_INDEX || (limit != 0 && result.size() >= limit)) { break; } result.push_back(b._table[i].value); } // return whatever we found return; } ////////////////////////////////////////////////////////////////////////////// /// @brief looks up all elements with the same key as a given element, /// continuation ////////////////////////////////////////////////////////////////////////////// std::vector* lookupByKeyContinue(UserData* userData, Element const& element, size_t limit = 0) const { return lookupWithElementByKeyContinue(userData, element, limit); } ////////////////////////////////////////////////////////////////////////////// /// @brief looks up all elements with the same key as a given element, /// continuation /// Accepts a result vector as input. The result of this lookup will /// be appended to the given vector. /// This function returns as soon as limit many elements are inside /// the given vector, no matter if the come from this lookup or /// have been in the result before. ////////////////////////////////////////////////////////////////////////////// void lookupByKeyContinue(UserData* userData, Element const& element, std::vector& result, size_t limit = 0) const { lookupWithElementByKeyContinue(userData, element, result, limit); } ////////////////////////////////////////////////////////////////////////////// /// @brief removes an element from the array, caller is responsible to free /// it ////////////////////////////////////////////////////////////////////////////// Element remove(UserData* userData, Element const& element) { IndexType j = 0; #ifdef TRI_INTERNAL_STATS // update statistics _nrRems++; #endif #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, true, true); #endif Bucket* b; IndexType i = lookupByElement(userData, element, b); if (!b->_table[i].value) { return Element(); } Element old = b->_table[i].value; // We have to delete entry i if (b->_table[i].prev == INVALID_INDEX) { // This is the first in its linked list. j = b->_table[i].next; if (j == INVALID_INDEX) { // The only one in its linked list, simply remove it and heal // the hole: invalidateEntry(*b, i); #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, false, false); #endif healHole(userData, *b, i); // this element did not create a collision } else { // There is at least one successor in position j. b->_table[j].prev = INVALID_INDEX; moveEntry(*b, j, i); if (useHashCache) { // We need to exchange the hashCache value by that of the key: b->_table[i].writeHashCache(_helper.HashElement(b->_table[i].value, true)); } #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, false, false); #endif healHole(userData, *b, j); b->_nrCollisions--; // one collision less } } else { // This one is not the first in its linked list j = b->_table[i].prev; b->_table[j].next = b->_table[i].next; j = b->_table[i].next; if (j != INVALID_INDEX) { // We are not the last in the linked list. b->_table[j].prev = b->_table[i].prev; } invalidateEntry(*b, i); #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, false, false); #endif healHole(userData, *b, i); b->_nrCollisions--; } b->_nrUsed--; #ifdef TRI_CHECK_MULTI_POINTER_HASH check(userData, true, true); #endif // return success return old; } ////////////////////////////////////////////////////////////////////////////// /// @brief resize the array ////////////////////////////////////////////////////////////////////////////// int resize(UserData* userData, size_t size) noexcept { size /= _buckets.size(); for (auto& b : _buckets) { if (2 * (2 * size + 1) < 3 * b._nrUsed) { return TRI_ERROR_BAD_PARAMETER; } try { resizeInternal(userData, b, 2 * size + 1); } catch (...) { return TRI_ERROR_OUT_OF_MEMORY; } } return TRI_ERROR_NO_ERROR; } ////////////////////////////////////////////////////////////////////////////// /// @brief return selectivity, this is a number s with 0.0 < s <= 1.0. If /// s == 1.0 this means that every document is identified uniquely by its /// key. It is computed as /// number of different keys/number of elements in table ////////////////////////////////////////////////////////////////////////////// double selectivity() { size_t nrUsed = 0; size_t nrCollisions = 0; for (auto& b : _buckets) { nrUsed += b._nrUsed; nrCollisions += b._nrCollisions; } return nrUsed > 0 ? static_cast(nrUsed - nrCollisions) / static_cast(nrUsed) : 1.0; } ////////////////////////////////////////////////////////////////////////////// /// @brief iteration over all pointers in the hash array, the callback /// function is called on the Element for each thingy stored in the hash ////////////////////////////////////////////////////////////////////////////// void iterate(UserData* userData, std::function callback) { for (auto& b : _buckets) { for (IndexType i = 0; i < b._nrAlloc; i++) { if (b._table[i].value) { callback(userData, b._table[i].value); } } } } private: ////////////////////////////////////////////////////////////////////////////// /// @brief increment IndexType by 1 modulo _nrAlloc: ////////////////////////////////////////////////////////////////////////////// inline IndexType incr(Bucket const& b, IndexType i) const { IndexType dummy = (++i) - b._nrAlloc; return i < b._nrAlloc ? i : dummy; } ////////////////////////////////////////////////////////////////////////////// /// @brief resize the array, internal method ////////////////////////////////////////////////////////////////////////////// void resizeInternal(UserData* userData, Bucket& b, size_t targetSize) { std::string const cb(_contextCallback()); targetSize = TRI_NearPrime(targetSize); PerformanceLogScope logScope(std::string("multi hash-resize ") + cb + ", target size: " + std::to_string(targetSize)); Bucket copy; copy.allocate(targetSize); #ifdef TRI_INTERNAL_STATS _nrResizes++; #endif // table is already clear by allocate, copy old data if (b._nrUsed > 0) { EntryType* oldTable = b._table; IndexType const oldAlloc = b._nrAlloc; TRI_ASSERT(oldAlloc > 0); for (IndexType j = 0; j < oldAlloc; j++) { if (oldTable[j].value && oldTable[j].prev == INVALID_INDEX) { // This is a "first" one in its doubly linked list: uint64_t hashByKey; if (useHashCache) { hashByKey = oldTable[j].readHashCache(); } else { hashByKey = _helper.HashElement(oldTable[j].value, true); } IndexType insertPosition = insertFirst(userData, copy, oldTable[j].value, hashByKey); // Now walk to the end of the list: IndexType k = j; while (oldTable[k].next != INVALID_INDEX) { k = oldTable[k].next; } // Now insert all of them backwards, not repeating k: while (k != j) { uint64_t hashByElm; if (useHashCache) { hashByElm = oldTable[k].readHashCache(); } else { hashByElm = _helper.HashElement(oldTable[k].value, false); } insertFurther(userData, copy, oldTable[k].value, hashByKey, hashByElm, insertPosition); k = oldTable[k].prev; } } } } b = std::move(copy); } #ifdef TRI_CHECK_MULTI_POINTER_HASH ////////////////////////////////////////////////////////////////////////////// /// @brief internal debugging check function ////////////////////////////////////////////////////////////////////////////// bool check(UserData* userData, bool checkCount, bool checkPositions) const { std::cout << "Performing AssocMulti check " << checkCount << checkPositions << std::endl; bool ok = true; for (auto& b : _buckets) { IndexType i, ii, j, k; IndexType count = 0; for (i = 0; i < b._nrAlloc; i++) { if (b._table[i].value) { count++; if (b._table[i].prev != INVALID_INDEX) { if (b._table[b._table[i].prev].next != i) { std::cout << "Alarm prev " << i << std::endl; ok = false; } } if (b._table[i].next != INVALID_INDEX) { if (b._table[b._table[i].next].prev != i) { std::cout << "Alarm next " << i << std::endl; ok = false; } } ii = i; j = b._table[ii].next; while (j != INVALID_INDEX) { if (j == i) { std::cout << "Alarm cycle " << i << std::endl; ok = false; break; } ii = j; j = b._table[ii].next; } } } if (checkCount && count != b._nrUsed) { std::cout << "Alarm _nrUsed wrong " << b._nrUsed << " != " << count << "!" << std::endl; ok = false; } if (checkPositions) { for (i = 0; i < b._nrAlloc; i++) { if (b._table[i].value) { IndexType hashIndex; if (b._table[i].prev == INVALID_INDEX) { // We are the first in a linked list. uint64_t hashByKey = _helper.HashElement(b._table[i].value, true); hashIndex = hashToIndex(hashByKey); j = hashIndex % b._nrAlloc; if (useHashCache && b._table[i].readHashCache() != hashByKey) { std::cout << "Alarm hashCache wrong " << i << std::endl; } for (k = j; k != i;) { if (!b._table[k].value || (b._table[k].prev == INVALID_INDEX && _helper.IsEqualElementElementByKey(userData, b._table[i].value, b._table[k].value))) { ok = false; std::cout << "Alarm pos bykey: " << i << std::endl; } k = incr(b, k); } } else { // We are not the first in a linked list. uint64_t hashByElm = _helper.HashElement(b._table[i].value, false); hashIndex = hashToIndex(hashByElm); j = hashIndex % b._nrAlloc; if (useHashCache && b._table[i].readHashCache() != hashByElm) { std::cout << "Alarm hashCache wrong " << i << std::endl; } for (k = j; k != i;) { if (!b._table[k].value || _helper.IsEqualElementElement(userData, b._table[i].value, b._table[k].value)) { ok = false; std::cout << "Alarm unique: " << k << ", " << i << std::endl; } k = incr(b, k); } } } } } } if (!ok) { std::cout << "Something is wrong!" << std::endl; } return ok; } #endif ////////////////////////////////////////////////////////////////////////////// /// @brief find an element or its place using the element hash function ////////////////////////////////////////////////////////////////////////////// inline IndexType findElementPlace(UserData* userData, Bucket const& b, Element const& element, bool checkEquality, uint64_t& hashByElm) const { // This either finds a place to store element or an entry in // the table that is equal to element. If checkEquality is // set to false, the caller guarantees that there is no entry // that compares equal to element in the table, which saves a // lot of element comparisons. This function always returns a // pointer into the table, which is either empty or points to // an entry that compares equal to element. hashByElm = _helper.HashElement(element, false); IndexType hashindex = hashToIndex(hashByElm); IndexType i = hashindex % b._nrAlloc; while (b._table[i].value && (!checkEquality || (useHashCache && b._table[i].readHashCache() != hashByElm) || !_helper.IsEqualElementElement(userData, element, b._table[i].value))) { i = incr(b, i); #ifdef TRI_INTERNAL_STATS _nrProbes++; #endif } return i; } ////////////////////////////////////////////////////////////////////////////// /// @brief find an element or its place by key or element identity ////////////////////////////////////////////////////////////////////////////// IndexType lookupByElement(UserData* userData, Element const& element, Bucket*& buck) const { // This performs a complete lookup for an element. It returns a slot // number. This slot is either empty or contains an element that // compares equal to element. uint64_t hashByKey = _helper.HashElement(element, true); Bucket const& b = _buckets[hashByKey & _bucketsMask]; buck = const_cast(&b); IndexType hashIndex = hashToIndex(hashByKey); IndexType i = hashIndex % b._nrAlloc; // Now find the first slot with an entry with the same key // that is the start of a linked list, or a free slot: while (b._table[i].value && (b._table[i].prev != INVALID_INDEX || (useHashCache && b._table[i].readHashCache() != hashByKey) || !_helper.IsEqualElementElementByKey(userData, element, b._table[i].value))) { i = incr(b, i); #ifdef TRI_INTERNAL_STATS _nrProbes++; #endif } if (b._table[i].value) { // It might be right here! if (_helper.IsEqualElementElement(userData, element, b._table[i].value)) { return i; } // Now we have to look for it in its hash position: uint64_t hashByElm; IndexType j = findElementPlace(userData, b, element, true, hashByElm); // We have either found an equal element or nothing: return j; } // If we get here, no element with the same key is in the array, so // we will not be able to find it anywhere! return i; } ////////////////////////////////////////////////////////////////////////////// /// @brief helper to decide whether something is between to places ////////////////////////////////////////////////////////////////////////////// static inline bool isBetween(IndexType from, IndexType x, IndexType to) { // returns whether or not x is behind from and before or equal to // to in the cyclic order. If x is equal to from, then the result is // always false. If from is equal to to, then the result is always // true. return (from < to) ? (from < x && x <= to) : (x > from || x <= to); } ////////////////////////////////////////////////////////////////////////////// /// @brief helper to invalidate a slot ////////////////////////////////////////////////////////////////////////////// inline void invalidateEntry(Bucket& b, IndexType i) { b._table[i].value = Element(); b._table[i].next = INVALID_INDEX; b._table[i].prev = INVALID_INDEX; if (useHashCache) { b._table[i].writeHashCache(0); } } ////////////////////////////////////////////////////////////////////////////// /// @brief helper to move an entry from one slot to another ////////////////////////////////////////////////////////////////////////////// inline void moveEntry(Bucket& b, IndexType from, IndexType to) { // Moves an entry, adjusts the linked lists, but does not take care // for the hole. to must be unused. from can be any element in a // linked list. b._table[to] = b._table[from]; if (b._table[to].prev != INVALID_INDEX) { b._table[b._table[to].prev].next = to; } if (b._table[to].next != INVALID_INDEX) { b._table[b._table[to].next].prev = to; } invalidateEntry(b, from); } ////////////////////////////////////////////////////////////////////////////// /// @brief helper to heal a hole where we deleted something ////////////////////////////////////////////////////////////////////////////// void healHole(UserData* userData, Bucket& b, IndexType i) { IndexType j = incr(b, i); while (b._table[j].value) { // Find out where this element ought to be: // If it is the start of one of the linked lists, we need to hash // by key, otherwise, we hash by the full identity of the element: uint64_t hash = _helper.HashElement(b._table[j].value, b._table[j].prev == INVALID_INDEX); IndexType hashIndex = hashToIndex(hash); IndexType k = hashIndex % b._nrAlloc; if (!isBetween(i, k, j)) { // we have to move j to i: moveEntry(b, j, i); i = j; // Now heal this hole at j, // j will be incremented right away } j = incr(b, j); #ifdef TRI_INTERNAL_STATS _nrProbesD++; #endif } } ////////////////////////////////////////////////////////////////////////////// /// @brief convert a 64bit hash value to an index of type IndexType ////////////////////////////////////////////////////////////////////////////// inline IndexType hashToIndex(uint64_t const h) const { return static_cast(sizeof(IndexType) == 8 ? h : TRI_64To32(h)); } }; } // namespace basics } // namespace arangodb #endif